Math 122-A Winter 2022 HOMEWORK# 6 (due February. 28)

(1) Let C be a closed, positive and simple curve. Using Green's theorem prove that $\frac{1}{2i}\int_C \bar{z}dz$ = area enclosed by C

(2) Consider the function $f(z) = (z+1)^2$ and the region R bounded by the triangle with vertices 0, 2, i (its boundary and interior). Find the points where |f(z)| reaches its maximum and minimum value of R.

(3) Find the maximum of $|\sin(z)|$ on $[0, 2\pi] \times [0, 2\pi]$.

- (4) Calculate:
- (a) $\int_0^{2\pi} \frac{d\theta}{a+b\cos(\theta)} \quad 0 < b < a.$

HINT: Work backward using that $\cos(\theta) = \left(e^{i\theta} + e^{-i\theta}\right)/2$ to convert the integral into a complex integral along the curve |z| = 1

(b) $\int_{0}^{2\pi} \frac{d\theta}{(a+b\cos(\theta))^2}$ (c) $\int_{0}^{2\pi} \frac{\sin(\theta)d\theta}{(a+b\cos(\theta))^2}$, 0 < b < a. Hint: If you want to do a brute force method consider the following integral:

$$\operatorname{Im} \int_0^{2\pi} \frac{e^{i\theta} d\theta}{(a+b\cos(\theta))^2}.$$

This should be similar to part (b). Note that after expanding and making the substitution from the hint in a) you will be left to find the roots, assuming I didn't make a mistake, of the polynomial:

$$p(z) = bz^4 + (4a+2)z^2 + b$$

Letting $z^2 = w$ and considering p(w) gives you a quadratic and you can find the roots of these no problem.

(5) Prove that if $f : \mathbb{C} \to \mathbb{C}$ is entire such that for some $n \in \mathbb{N}$

$$\lim_{|z|\to\infty}\frac{|f(z)|}{|z|^n} = M < \infty$$

then f is a polynomial of degree at most n.

(6) Let $A \subset \mathbb{C}$ be an open set and $f: A \to \mathbb{C}$ be an analytic function on A. Assuming that $z_0 \in A$ such that at z_0

$$\{z \in \mathbb{C} : |z - z_0| \le R\}, \quad R > 0$$

 $f(z_0) = \frac{1}{\pi R^2} \iint_{|z-z_0| \le R} f(x+iy) dx dy.$

(7) Let $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x) = e^{-1/x^2}$$
 if $x \neq 0$, $f(0) = 0$

Show that f is infinitely differentiable and $\forall n \in \mathbb{N}$ $f^{(n)}(0) = 0$. Verify that the power serie of f at x = 0 does not agree with f in any neighborhood of 0.