Math 122-A Winter 2022 HOMEWORK\# 6 (due February. 28)

(1) Let C be a closed, positive and simple curve. Using Green's theorem prove that $\frac{1}{2 i} \int_{C} \bar{z} d z=$ area enclosed by C
(2) Consider the function $f(z)=(z+1)^{2}$ and the region R bounded by the triangle with vertices $0,2, i$ (its boundary and interior). Find the points where $|f(z)|$ reaches its maximum and minimum value of R.
(3) Find the maximum of $|\sin (z)|$ on $[0,2 \pi] \times[0,2 \pi]$.
(4) Calculate:
(a) $\int_{0}^{2 \pi} \frac{d \theta}{a+b \cos (\theta)} \quad 0<b<a$.

HINT: Work backward using that $\cos (\theta)=\left(e^{i \theta}+e^{-i \theta}\right) / 2$ to convert the integral into a complex integral along the curve $|z|=1$
(b) $\int_{0}^{2 \pi} \frac{d \theta}{(a+b \cos (\theta))^{2}}$
(c) $\int_{0}^{2 \pi} \frac{\sin (\theta) d \theta}{(a+b \cos (\theta))^{2}}, \quad 0<b<a$.

Hint: If you want to do a brute force method consider the following integral:

$$
\operatorname{Im} \int_{0}^{2 \pi} \frac{e^{i \theta} d \theta}{(a+b \cos (\theta))^{2}}
$$

This should be similar to part (b). Note that after expanding and making the substitution from the hint in a) you will be left to find the roots, assuming I didn't make a mistake, of the polynomial:

$$
p(z)=b z^{4}+(4 a+2) z^{2}+b
$$

Letting $z^{2}=w$ and considering $p(w)$ gives you a quadratic and you can find the roots of these no problem.
(5) Prove that if $f: \mathbb{C} \rightarrow \mathbb{C}$ is entire such that for some $n \in \mathbb{N}$

$$
\lim _{|z| \rightarrow \infty} \frac{|f(z)|}{|z|^{n}}=M<\infty
$$

then f is a polynomial of degree at most n.
(6) Let $A \subset \mathbb{C}$ be an open set and $f: A \rightarrow \mathbb{C}$ be an analytic function on A. Assuming that $z_{0} \in A$ such that at z_{0}

$$
\begin{aligned}
& \left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq R\right\}, \quad R>0 \\
& f\left(z_{0}\right)=\frac{1}{\pi R^{2}} \iint_{\left|z-z_{0}\right| \leq R} f(x+i y) d x d y .
\end{aligned}
$$

(7) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as

$$
f(x)=e^{-1 / x^{2}} \quad \text { if } \quad x \neq 0, \quad f(0)=0
$$

Show that f is infinitely differentiable and $\forall n \in \mathbb{N} \quad f^{(n)}(0)=0$. Verify that the power serie of f at $x=0$ does not agree with f in any neighborhood of 0 .

