Math 122A Exam REVIEW

Date: $1 / 30 / 22$
Name: Hogarth
I want to make something very clear, these questions are my bias opinion of what questions I would study. The emphasis is on the I.
You should be able to site definitions and theorems by heart.

1. Find all the roots of $z^{3}=\bar{z}$.
2. Find the roots of the following equation: $z^{3}=(-1+i)$
3. Express $\left(\frac{-\sqrt{3}}{2}+\frac{i}{2}\right)^{603}$ in the form of $a+b i$.
4. what is the value of

$$
(-2)^{\sqrt{2}}
$$

on the principle branch.
5. What is a conformal map and what does it preserve?
6. What is so special about fractional linear transformations?
7. Find a fractional transformation that maps the points

$$
z_{1}=-1, \quad z_{2}=0, \quad z_{3}=1
$$

onto the points

$$
w_{1}=-i, \quad w_{2}=1, \quad w_{3}=i .
$$

8. Show that the mapping

$$
T(z)=\frac{(1-i) z+2}{(1+i) z+2}
$$

maps the disk $D:|z+1|<1$ onto the upper half plane $\operatorname{Im}(T(z))>0$.
9. What does it mean for a function to be harmonic?
10. What is a harmonic conjugate of a function?
11. Show that $u(x, y)=x y^{3}-x^{3} y$ is a harmonic function and find its harmonic conjugate $v(x, y)$.
12. What does it mean for a function to be analytic?
13. Define a region where $\sqrt{1-z}$ is analytic.
14. A holomorphic function f defined on a connected open set G must be constant on G if:
(a) $f^{\prime}(z)=0$ for all $z \in G$
(b) f takes only real values on G.
(c) f lies on a line.
(d) $\overline{f(z)}$ is a holomorphic function.
(e) $|f|$ is constant on G.
(f) at every point in $G f=0$ or $f^{\prime}=0$. [Hint: consider f^{2}]
15. Suppose that f is analytic on the unit disc and that $\operatorname{Ref}(z)=3$ for all z in the unit disk. Then f is constant on the unit disk.
16. Let $z=x+i y$. The function defined by

$$
f(z)=\frac{(\bar{z})^{2}}{z}=\frac{x^{3}-3 x y^{2}}{x^{2}+y^{2}}+i \frac{y^{3}-3 x^{2} y}{x^{2}+y^{2}}
$$

when $z \neq 0$ and $f(0)=0$ is NOT differentiable at the point $z_{0}=0$. However, the Cauchy-Riemann equations hold true at $(0,0)$. Why doesn't this contradict our theorem? Verify your claim.
17. Suppose u, v, U, V are harmonic functions, such that, v is a harmonic conjugate of u, and V is a harmonic conjugate of U. Show that $u V+v U$ is harmonic, and find its harmonic conjugate.
18. Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a non constant polynomial. If the derivative of f is never zero then f is injective. Is this true for arbitrary entire functions?

