MATH 122A EXAM REVIEW

Date: 1/30/22 Name: Hogarth

I want to make something very clear, these questions are my bias opinion of what questions I would study. The emphasis is on the I.

You should be able to site definitions and theorems by heart.

1. Find all the roots of $z^3 = \overline{z}$.

2. Find the roots of the following equation: $z^3 = (-1+i)$

3. Express $\left(\frac{-\sqrt{3}}{2} + \frac{i}{2}\right)^{603}$ in the form of a + bi.

4. what is the value of

 $(-2)^{\sqrt{2}}$

on the principle branch.

- 5. What is a conformal map and what does it preserve?
- 6. What is so special about fractional linear transformations?

7. Find a fractional transformation that maps the points

$$z_1 = -1, \qquad z_2 = 0, \qquad z_3 = 1$$

onto the points

$$w_1 = -i, \qquad w_2 = 1, \qquad w_3 = i.$$

8. Show that the mapping

$$T(z) = \frac{(1-i)z + 2}{(1+i)z + 2}$$

maps the disk D: |z+1| < 1 onto the upper half plane Im(T(z)) > 0.

9. What does it mean for a function to be harmonic?

10. What is a harmonic conjugate of a function?

11. Show that $u(x,y) = xy^3 - x^3y$ is a harmonic function and find its harmonic conjugate v(x,y).

12. What does it mean for a function to be analytic?

13. Define a region where $\sqrt{1-z}$ is analytic.

- 14. A holomorphic function f defined on a connected open set G must be constant on G if:
 - (a) f'(z) = 0 for all $z \in G$
 - (b) f takes only real values on G.
 - (c) f lies on a line.
 - (d) $\overline{f(z)}$ is a holomorphic function.
 - (e) |f| is constant on G.
 - (f) at every point in G f = 0 or f' = 0. [Hint: consider f^2]
- 15. Suppose that f is analytic on the unit disc and that Ref(z) = 3 for all z in the unit disk. Then f is constant on the unit disk.

16. Let z = x + iy. The function defined by

$$f(z) = \frac{(\bar{z})^2}{z} = \frac{x^3 - 3xy^2}{x^2 + y^2} + i\frac{y^3 - 3x^2y}{x^2 + y^2}$$

when $z \neq 0$ and f(0) = 0 is *NOT* differentiable at the point $z_0 = 0$. However, the Cauchy-Riemann equations hold true at (0,0). Why doesn't this contradict our theorem? Verify your claim.

17. Suppose u, v, U, V are harmonic functions, such that, v is a harmonic conjugate of u, and V is a harmonic conjugate of U. Show that uV + vU is harmonic, and find its harmonic conjugate.

18. Suppose $f : \mathbb{C} \to \mathbb{C}$ is a non constant polynomial. If the derivative of f is never zero then f is injective. Is this true for arbitrary entire functions?