Math 122-A Winter 2022 HOMEWORK\# 5 (due February. 17)

1. Let $z_{0} \in \mathbb{C}$ be any interior point to any positive oriented simple closed curve C. Prove

$$
\oint_{C} \frac{d z}{z-z_{0}}=2 \pi i, \quad \oint_{C} \frac{d z}{\left(z-z_{0}\right)^{n+1}}=0, n=1,2,3, \ldots
$$

2. Let C be the contour of the circle $|z-i|=2$ in the positive sense. Find
(a) $\oint_{C} \frac{d z}{z^{2}+4}$,
(b) $\oint_{C} \frac{e^{z} d z}{z-\pi i / 2}$,
(c) $\oint_{C} \frac{\cos (z) d z}{\left(z^{2}+16\right) z}$
(d) $\oint_{C} \frac{d z}{2 z+1}$.
3. For $z \in \mathbb{C}$ with $|z| \neq 3$, denote C the contour of the circle $|z|=3$ in the positive sense and define

$$
g(z)=\oint_{C} \frac{2 w^{2}-w-2}{w-z} d w .
$$

Find the values of $g(2)$ and $g(3+2 i)$.
4. Assuming that the given contour ids positive oriented, compute
(a) $\oint_{|z|=3} \frac{\left(e^{z}+z\right) d z}{z-2}$,
(b) $\oint_{|z|=1} \frac{e^{z} d z}{z^{2}}$,
(c) $\oint_{|z|=2} \frac{d z}{z^{2}+z+1}$,
(d) $\oint_{|z|=1} \frac{d z}{z^{2}-1}$.

DEFINITION: A $f: \mathbb{C} \rightarrow \mathbb{C}$ is an ENTIRE function if f is analytic in all \mathbb{C}.
5. Prove that if f is entire and there exist $z_{0} \in \mathbb{C}$ and $r>0$ such that

$$
f(\mathbb{C}) \cap\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}=\emptyset
$$

then f is a constant function.
6. Identify all entire functions f such that $\forall z \in \mathbb{C} \quad|f(z)| \leq 2|z|$.

Proof. I will prove this using Morera's theorem. Consider the function

$$
g(z)=\left\{\begin{array}{cl}
\frac{f(z)}{z} & z \neq 0 \\
f^{\prime}(0) & z=0
\end{array}\right.
$$

Clearly, our function g is bounded by $\max \left\{2, f^{\prime}(0)\right\}$ and is analytic on the whole complex plane except for the point $z=0$.
CLAIM 1. g is continuous at $z=0$.
Proof. You should be able to provide a proof. Remember what we are using about f. It is bounded by what and how can you use that fact near zero?

Let γ be a simple path around zero. Let $\epsilon>0$ and a small enough so that the circle γ_{1} of radius ϵ and center 0 lies inside of γ. By the Deformation Theorem

$$
\int_{\gamma} g=\int_{\gamma_{1}} g
$$

By assumption, g is bounded by 2 near 0 . Hence, for ϵ small enough

$$
\left|\int_{\gamma_{1}} g\right| \leq 2 \pi \epsilon 2
$$

This hold for all small enough ϵ. Ergo,

$$
\int_{\gamma} g=0 .
$$

Now g satisfies the requirements for Morera's Theorem. This now gives us that g is analytic on the complex plane, hence entire. We also know that g is bounded; invoking Liouville's Theorem we have that g must be constant. It must be the case that $g=a z$ for some $a \in \mathbb{C}$. Given our assumption $|a| \leq 2$. This shows the result.

