MATH 3B Final practice problems

- 1. A honeybee population starts with 100 bees and increases at a rate of n'(t) bees per week. What does $100 + \int_0^4 v'(t) dt$ represent?
- 2. Compute the following:

(a)
$$\int e^{-x} \cos(2x) \, dx$$

(b)
$$\int \frac{1+x^2}{\sqrt{3x+x^3}} dx$$

(c)
$$\int \cos(\sqrt{x}) dx$$

(d)
$$\frac{d}{dx} \int_x^{x^2} t^3 dt$$

(e)
$$\int \frac{(\ln(x))^3}{x} \, \mathrm{d}x$$

(f)
$$\int \frac{x^3 - \sqrt{x}}{x^2} \, \mathrm{d}x$$

(g)
$$\int \sin^3(x)\cos^2(x) dx$$

(h)
$$\int_0^1 \frac{4}{4x-1} dx$$

(i)
$$\int \frac{1}{x^2 - 1} dx$$

- 3. Consider the region $R = \{(x, y) : x \ge 1, 0 \le y \le 1/x\}$.
 - (a) Show that the region R has infinite area.
 - (b) Find the volume of the solid obtained by rotating R about the x-axis. It is finite, which is kinda crazy given part (a), huh?
- 4. Find the work required to lift a chain lying on the ground to a height of 10 feet if the chain weighs 20 pounds and is 10 feet long.
- 5. Evaluate $\int_0^\infty \frac{1}{x-2} dx$ or show that the integral diverges.
- 6. Find the volume of the solid obtained by rotating the region bounded by the curves y = 2x and $y = x^2$ about the x-axis.
- 7. Let $f(x) = x^2$. Approximate $\int_0^4 x^2 dx$ using a right hand Riemann sum and 4 subintervals.