MATH 3B Final practice problems

1. A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{4} v^{\prime}(t) \mathrm{d} t$ represent?
2. Compute the following:
(a) $\int e^{-x} \cos (2 x) \mathrm{d} x$
(b) $\int \frac{1+x^{2}}{\sqrt{3 x+x^{3}}} \mathrm{~d} x$
(c) $\int \cos (\sqrt{x}) \mathrm{d} x$
(d) $\frac{d}{d x} \int_{x}^{x^{2}} t^{3} \mathrm{~d} t$
(e) $\int \frac{(\ln (x))^{3}}{x} \mathrm{~d} x$
(f) $\int \frac{x^{3}-\sqrt{x}}{x^{2}} \mathrm{~d} x$
(g) $\int \sin ^{3}(x) \cos ^{2}(x) \mathrm{d} x$
(h) $\int_{0}^{1} \frac{4}{4 x-1} \mathrm{~d} x$
(i) $\int \frac{1}{x^{2}-1} d x$
3. Consider the region $R=\{(x, y): x \geq 1,0 \leq y \leq 1 / x\}$.
(a) Show that the region R has infinite area.
(b) Find the volume of the solid obtained by rotating R about the x-axis. It is finite, which is kinda crazy given part (a), huh?
4. Find the work required to lift a chain lying on the ground to a height of 10 feet if the chain weighs 20 pounds and is 10 feet long.
5. Evaluate $\int_{0}^{\infty} \frac{1}{x-2} \mathrm{~d} x$ or show that the integral diverges.
6. Find the volume of the solid obtained by rotating the region bounded by the curves $y=2 x$ and $y=x^{2}$ about the x-axis.
7. Let $f(x)=x^{2}$. Approximate $\int_{0}^{4} x^{2} \mathrm{~d} x$ using a right hand Riemann sum and 4 subintervals.
