MATH 3B Final practice problems

1. A honeybee population starts with 100 bees and increases at a rate of $n^{\prime}(t)$ bees per week. What does $100+\int_{0}^{4} v^{\prime}(t) \mathrm{d} t$ represent?

Solution: By FTC2/Net Change theorem,

$$
100+\int_{0}^{4} v^{\prime}(t) d t=100+n(4)-n(0)=100+n(4)-100=n(4)
$$

and $n(4)$ is just the bee population after 4 weeks.
2. Compute the following:
(a) $\int e^{-x} \cos (2 x) \mathrm{d} x$

Solution: Apply integration by parts twice and get $\int e^{-x} \cos (2 x) \mathrm{d} x$ by itself.
(b) $\int \frac{1+x^{2}}{\sqrt{3 x+x^{3}}} \mathrm{~d} x$

Solution: Let $u=3 x+x^{3}$. Then $\frac{1}{3} d u=\left(1+x^{2}\right) d x$ and the rest is straightforward.
(c) $\int \cos (\sqrt{x}) \mathrm{d} x$

Solution: Let $u=\sqrt{x}$. Then $d u=\frac{1}{2 \sqrt{x}} d x \Rightarrow 2 \sqrt{x} d u=2 u d u=d x$. Then integration by parts.
(d) $\frac{d}{d x} \int_{x}^{x^{2}} t^{3} \mathrm{~d} t$

Solution: By FTC1 and the chain rule,

$$
\frac{d}{d x} \int_{x}^{x^{2}} t^{3} d t=\frac{d}{d x}\left[\int_{0}^{x^{2}} t^{3} d t-\int_{0}^{x} t^{3} d t\right]=\left(x^{2}\right)^{3} 2 x-x^{3}=2 x^{7}-x^{3}
$$

(e) $\int \frac{(\ln (x))^{3}}{x} \mathrm{~d} x$

Solution: Let $u=\ln (x)$, so $d u=\frac{1}{x} d x \ldots$
(f) $\int \frac{x^{3}-\sqrt{x}}{x^{2}} \mathrm{~d} x$

Solution: Write as two fractions and integrate: $\frac{x^{3}-\sqrt{x}}{x^{2}}=x-x^{-\frac{3}{2}}$.
(g) $\int \sin ^{3}(x) \cos ^{2}(x) \mathrm{d} x$

Solution: $\quad \int \sin ^{3}(x) \cos ^{2}(x) \mathrm{d} x=\int\left(1-\cos ^{2}(x)\right) \sin (x) \cos ^{2}(x) \mathrm{d} x$.
Let $u=\cos (x) \Rightarrow-d u=\sin (x) d x \ldots$
(h) $\int_{0}^{1} \frac{4}{4 x-1} \mathrm{~d} x$

Solution: Notice that the integrand has a discontinuity at $x=1 / 4$, so

$$
\int_{0}^{1} \frac{4}{4 x-1} d x=\lim _{t \rightarrow 1 / 4^{-}} \int_{0}^{t} \frac{4}{4 x-1} d x+\lim _{t \rightarrow 1 / 4^{+}} \int_{t}^{1} \frac{4}{4 x-1} d x .
$$

If you show that one of these integrals diverge, then the whole thing does (both diverge).
(i) $\int \frac{1}{x^{2}-1} d x$

Solution: Factor and do partial fractions...
3. Consider the region $R=\{(x, y): x \geq 1,0 \leq y \leq 1 / x\}$.
(a) Show that the region R has infinite area.

Solution: The area of the region R is

$$
\int_{1}^{\infty} 1 / x d x=\lim _{t \rightarrow \infty} \int_{1}^{t} 1 / x d x=\lim _{t \rightarrow \infty}[\ln (x)]_{1}^{t}=\lim _{t \rightarrow \infty} \ln (t)-0=\infty .
$$

(b) Find the volume of the solid obtained by rotating R about the x-axis. It is finite, which is kinda crazy given part (a), huh?

Solution: Method 1: Disks

$$
\pi \int_{1}^{\infty} r^{2} d x=\pi \lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\pi \lim _{t \rightarrow \infty}\left[-\frac{1}{x}\right]_{1}^{t}=\pi(0-(-1))=\pi .
$$

Solution: Method 2: Shells

$$
2 \pi \int_{0}^{1} r h d y=2 \pi \int_{0}^{1} y\left(\frac{1}{y}-1\right) d y=2 \pi \int_{0}^{1} 1-y d y=2 \pi\left[y-\frac{y^{2}}{2}\right]_{0}^{1}=\pi
$$

Notice that for the first method we had an improper integral, and for the second we didn't, but we did need to solve for x in terms of y.
4. Find the work required to lift a chain lying on the ground to a height of 10 feet if the chain weighs 20 pounds and is 10 feet long.

Solution: Method 1: Chop up the object. We chop up the chain into pieces of length $\Delta x \mathrm{ft}$. Each piece weighs $\Delta x \mathrm{ft} \times 2 \mathrm{lb} / \mathrm{ft}=2 \Delta x \mathrm{lbs}$. A piece $x \mathrm{ft}$ above ground needs to be lifted up another $10-x \mathrm{ft}$, so the work required for each piece of chain is $2(10-x) \Delta x$. Adding up the work required for each piece gives $\int_{0}^{10} 2(10-x) d x=100 J$.
Solution: Method 2: Chop up the distance. Let x be the height above the ground. We'll add up the work required to lift the chain each tiny distance Δx. If we're at a height of x feet, we have to lift x feet of chain and the rest is coiled up on the ground. The force to move each tiny distance $=x$ feet $\times 2 \mathrm{lb} / \mathrm{ft}=2 x \mathrm{lb}$, so the total work is $W=\int_{0}^{10} 2 x \mathrm{~d} x=100 \mathrm{~J}$.
5. Evaluate $\int_{0}^{\infty} \frac{1}{x-2} \mathrm{~d} x$ or show that the integral diverges.

Solution: Notice we are integrating over an infinite interval and $f(x)=\frac{x}{x-2}$ is discontinous at $x=2$, which is in our interval of integration. So we break up the integral as

$$
\int_{0}^{\infty} \frac{1}{x-2} d x=\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{1}{x-2} d x+\lim _{t \rightarrow 2^{+}} \int_{t}^{3} \frac{1}{x-2} d x+\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{1}{x-2} d x
$$

If one of the integrals on the right diverges, then $\int_{0}^{\infty} \frac{1}{x-2} d x$ diverges. The last one looks a lot like $\int \frac{1}{x} d x$ so we show it diverges:

$$
\lim _{t \rightarrow \infty} \int_{3}^{t} \frac{1}{x-2} d x=\lim _{t \rightarrow \infty}[\ln |x-2|]_{3}^{t}=\lim _{t \rightarrow \infty} \ln |t-3|-0=\infty .
$$

Thus $\int_{0}^{\infty} \frac{1}{x-2} d x$ diverges.
6. Find the volume of the solid obtained by rotating the region bounded by the curves $y=2 x$ and $y=x^{2}$ about the x-axis.

Solution: The curves intersect at $x=0$. We find the other intersection point: $2 x=$ $x^{2} \Rightarrow x=2$. Graph them or note that $2 x \geq x^{2}$ on $[0,2]$. Washers seem the best choice as then we'll integrate with respect to x and we already have y in terms of x :

$$
\pi \int_{0}^{2} r_{o}^{2}-r_{i}^{2} d x=\pi \int_{0}^{2}(2 x)^{2}-\left(x^{2}\right)^{2} d x=\pi \int_{0}^{2} 4 x^{2}-x^{4} d x=\pi\left[\frac{4 x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{2}=\pi\left(\frac{32}{3}-\frac{32}{5}\right) .
$$

7. Let $f(x)=x^{2}$. Approximate $\int_{0}^{4} x^{2} \mathrm{~d} x$ using a right hand Riemann sum and 4 subintervals.

Solution: We approximate the area by adding up the area of 4 rectangles, whose width is $\Delta x=\frac{b-a}{n}=\frac{4-0}{4}=1$, and whose height is determined by the value of $f(x)$ at the right endpoints of each rectangle, $x=1,2,3$, and 4 . This yields

$$
\int_{0}^{4} x^{2} d x \approx \Delta x[f(1)+f(2)+f(3)+f(4)]=(1)\left[1^{2}+2^{2}+3^{2}+4^{2}\right]=30
$$

