MATH 3B: Final review problems

A. Volumes The region bounded by the given curves is rotated about the specificed axis. Find the volume of the resulting solid by any method.
(1) $y=x^{4}, y=0, x=1$; about $x=2$
(2) $x=y^{2}+1, x=2$; about $y=-2$
(3) $y=\sqrt{x-1}, y=0, x=5$; about the x-axis
(4) Find the volume of a sphere of radius r (using calculus).

B. Arc length

(1) Find the length of the arc of the curve $x=\frac{2}{3}(y-1)^{3 / 2}$ between $1 \leq y \leq 4$.
(2) Find the length of the arc of the curve $x=t-\sin t, y=1-\cos t$ for $0 \leq t \leq 2 \pi$.

C. Surface area

(1) Find the surface area of the solid obtained by rotating the following parametric curve about the x-axis: $x=\cos ^{3} t, y=\sin ^{3} t, 0 \leq t \leq \frac{\pi}{2}$.
(2) Find the surface area of the solid obtained by rotating the curve $y=x^{3}, 0 \leq x \leq 2$ about the x-axis.
(3) Find the surface area of the solid obtained by rotating the curve $x=\frac{1}{3}\left(y^{2}+2\right)^{3 / 2}, 1 \leq$ $y \leq 2$ about the x-axis. (hint: write the stuff under the radical as something squared).
(4) Find the surface area of a sphere of radius r (using calculus).

D. Area

(1) Find the area of an ellipse, $x=3 \cos t, y=5 \sin t, 0 \leq t \leq 2 \pi$
E. Riemann sums Use Riemann sums to evaluate the following limits.
(1) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{\sqrt{n^{2}+k n}}$
(2) $\lim _{n \rightarrow \infty}\left[\left(\frac{1}{n}\right)^{1}\left(\frac{2}{n}\right)^{2} \cdot \ldots \cdot\left(\frac{n}{n}\right)^{n}\right]^{1 / n^{2}}$
(3) $\lim _{n \rightarrow \infty} \frac{1}{n \sqrt{n}} \sum_{k=1}^{n} \frac{k}{\sqrt{n+k}}$
(4) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sqrt{\frac{k}{n^{3}}+\frac{2}{n^{2}}}$
(5) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{k}{n^{2}} e^{k^{2} / n^{2}}$
F. Comparison test Use the comparison test to show that the following integrals converge or diverge.
(1) $\int_{1}^{\infty} \frac{x}{x^{3}+1} \mathrm{~d} x$
(2) $\int_{1}^{\infty} e^{-x^{2}} \mathrm{~d} x$
(3) $\int_{1}^{\infty} \frac{1+e^{-x}}{x} \mathrm{~d} x$
(4) $\int_{0}^{1} \frac{\sec ^{2} x}{x^{3 / 2}} \mathrm{~d} x$
(5) $\int_{0}^{1} \frac{\sin ^{2} x}{\sqrt{x}} \mathrm{~d} x$
(6) $\int_{-\infty}^{-1} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x$
(7) $\int_{1}^{-\infty} \frac{\sin (x)+2}{x} \mathrm{~d} x$
(8) $\int_{0}^{1} \frac{\sin (x)+2}{x^{2}} \mathrm{~d} x$
(9) $\int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} \mathrm{~d} x$
G. Determine if the following improper integrals converge or diverge, and evaluate those that are convergent.
(1) $\int_{0}^{1} \frac{1}{x} \mathrm{~d} x$
(2) $\int_{0}^{1} \frac{1}{x(\ln x)^{2}} \mathrm{~d} x$
(3) $\int_{0}^{1} x^{2} \ln (x) \mathrm{d} x$
(4) $\int_{0}^{1} \frac{\ln (x)}{x} \mathrm{~d} x$

