A. Volumes The region bounded by the given curves is rotated about the specificed axis. Find the volume of the resulting solid by any method.

- (1) $y = x^4, y = 0, x = 1$; about x = 2
- (2) $x = y^2 + 1, x = 2$; about y = -2
- (3) $y = \sqrt{x-1}, y = 0, x = 5$; about the *x*-axis

(4) Find the volume of a sphere of radius r (using calculus).

B. Arc length

- (1) Find the length of the arc of the curve $x = \frac{2}{3}(y-1)^{3/2}$ between $1 \le y \le 4$. (2) Find the length of the arc of the curve $x = t \sin t$, $y = 1 \cos t$ for $0 \le t \le 2\pi$.

C. Surface area

- (1) Find the surface area of the solid obtained by rotating the following parametric curve about the x-axis: $x = \cos^3 t, y = \sin^3 t, 0 \le t \le \frac{\pi}{2}$.
- (2) Find the surface area of the solid obtained by rotating the curve $y = x^3, 0 \le x \le 2$ about the *x*-axis.
- (3) Find the surface area of the solid obtained by rotating the curve $x = \frac{1}{3}(y^2+2)^{3/2}, 1 \leq 1$ $y \leq 2$ about the x-axis. (hint: write the stuff under the radical as something squared).
- (4) Find the surface area of a sphere of radius r (using calculus).

D. Area

- (1) Find the area of an ellipse, $x = 3 \cos t, y = 5 \sin t, 0 \le t \le 2\pi$
- E. Riemann sums Use Riemann sums to evaluate the following limits.

(1)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{k}{\sqrt{n^2 + kn}}$$

(2)
$$\lim_{n \to \infty} \left[\left(\frac{1}{n}\right)^1 \left(\frac{2}{n}\right)^2 \cdot \dots \cdot \left(\frac{n}{n}\right)^n \right]^{1/n^2}$$

(3)
$$\lim_{n \to \infty} \frac{1}{n\sqrt{n}} \sum_{k=1}^{n} \frac{k}{\sqrt{n+k}}$$

(4)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \sqrt{\frac{k}{n^3} + \frac{2}{n^2}}$$

(5)
$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n^2} e^{k^2/n^2}$$

F. Comparison test Use the comparison test to show that the following integrals converge or diverge.

(1)
$$\int_{1}^{\infty} \frac{x}{x^{3}+1} dx$$

(2)
$$\int_{1}^{\infty} e^{-x^{2}} dx$$

(3)
$$\int_{1}^{\infty} \frac{1+e^{-x}}{x} dx$$

(4)
$$\int_{0}^{1} \frac{\sec^{2}x}{x^{3/2}} dx$$

(5)
$$\int_{0}^{1} \frac{\sin^{2}x}{\sqrt{x}} dx$$

(6)
$$\int_{-\infty}^{-1} \frac{\sin^{2}x}{x^{2}} dx$$

(7)
$$\int_{1}^{\infty} \frac{\sin(x)+2}{x} dx$$

(8)
$$\int_{0}^{1} \frac{\sin(x)+2}{x^{2}} dx$$

(9)
$$\int_{1}^{\infty} \frac{1}{x} \sqrt{1+\frac{1}{x^{4}}} dx$$

G. Determine if the following improper integrals converge or diverge, and evaluate those that are convergent.

(1)
$$\int_{0}^{1} \frac{1}{x} dx$$

(2) $\int_{0}^{1} \frac{1}{x(\ln x)^{2}} dx$
(3) $\int_{0}^{1} x^{2} \ln(x) dx$
(4) $\int_{0}^{1} \frac{\ln(x)}{x} dx$