Definite integral: Suppose $f(x)$ is continuous on $[a, b]$. Divide $[a, b]$ into subintervals of length $\Delta x=\frac{b-a}{n}$ and choose a sample point x_{i}^{*} from each subinterval. Then
$\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \Delta x \sum_{i=1}^{n} f\left(x_{i}^{*}\right)$.
To compute integrals using this definition, it is standard to take the sample point x_{i}^{*} to be the right endpoint, $x_{i}^{*}=a+i \Delta x$.

Approximating integrals with Riemann sums: Choose $n=$ number of rectangles and choose a sample point x_{i}^{*} from each subinterval. Then
$\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\Delta x\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\ldots+f\left(x_{n}^{*}\right)\right]=A_{n}$, where $\Delta x=\frac{b-a}{n}$.
Each A_{n} is called a Riemann sum.
Antiderivative: An anti-derivative of $f(x)$ is a function $F(x)$ such that $F^{\prime}=f$.
Indefinite integral: $\int f(x) \mathrm{d} x=F(x)+C$, where F is an anti-derivative of f.
FTC ("integration and differentiation are inverse processes")
Part 1: $\frac{d}{d x} \int_{a}^{x} f(t) \mathrm{d} t=f(x)$.
Know how to apply the chain rule with part 1!
Part 2: $\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a)$
Main application of FTC2: the integral of the rate of change of $F(x)$ is the net change in $F(x)$ from $x=a$ to $x=b$.
eg, if $v(t)=$ velocity, then $\int_{t_{1}}^{t_{2}} v(t) \mathrm{d} t=$ net distance traveled $=$ net change in position from time t_{1} to t_{2} (not total distance traveled (in general)).
Cauchy-Schwarz inequality: $\left(\int_{a}^{b} f(x) g(x) \mathrm{d} x\right)^{2} \leq\left(\int_{a}^{b} f(x)^{2} \mathrm{~d} x\right)\left(\int_{a}^{b} g(x)^{2} \mathrm{~d} x\right)$
Integration techniques
u-substitution/change of variables - undoing the chain rule: .
Given $\int_{a}^{b} f(g(x)) g^{\prime}(x) \mathrm{d} x$, substitute $u=g(x) \Rightarrow d u=g^{\prime}(x) \mathrm{d} x$ to convert $\int_{a}^{b} f(g(x)) g^{\prime}(x) \mathrm{d} x=\int_{g(a)}^{g(b)} f(u) \mathrm{d} u$. u-substitution works for integrating compositions of functions; pick u to be the 'inside' function (for indefinite integrals, drop the limits of integration).

Integration by parts - undoing the product rule: $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$.
Generally, picking u in this descending order works, and $\mathrm{d} v$ is what's left:
Inverse trig
Logarithm
Algebraic (polynomial)
Trig Exponential

Summation formulas: In using the limit definition to compute definite integrals, these formulas may be helpful:
(1) $\sum_{i=1}^{n} c a_{i}=c \sum_{i=1}^{n} a_{i}$.
(2) $\sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$.
(3) $\sum_{i=1}^{n} c=c n$.
(4) $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.
(5) $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(6) $\sum_{i=1}^{n} i^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$.

