MATH 3B Notes: Integrating rational functions **A.** To integrate a rational function p(x)/q(x), like $\frac{x}{x^2+3x+2}$: - (1) If the degree of the numerator (highest power of x) is \geq the degree of the denominator, first do long division. - (2) Factor the denominator into linear terms and irreducible quadratics. - (3) Get the partial fraction decomposition of p(x)/q(x) using the rules: ## factor in denominator term in partial fraction decomposition $$(ax+b)^k \Rightarrow \frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_k}{(ax+b)^k}$$ $$(ax^2 + bx + c)^k \Rightarrow \frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$ - (4) Set p(x)/q(x) in factored form equal to its partial fraction decomposition, multiply by q(x) and equate coefficients to solve for constants (or pick values of x to make constants 0). - (5) We just have to integrate expressions like $\frac{A}{(ax+b)^k}$ and $\frac{Ax+B}{(ax^2+bx+c)^k}$. The first, $\frac{A}{(ax+b)^k}$, - is done with a simple substitution, u = ax + b. (6) We'll break $\frac{Ax+B}{(ax^2+bx+c)^k}$ into two fractions to integrate it. For the first we'll let u = ax + b. $ax^2 + bx + c$, du = (2ax + b)dx. We want the numerator of the first fraction to be a multiple of du = (2ax + b)dx, which then becomes a simple integral. - (7) To integrate the second fraction, we'll complete the square and make a substitution to convert this to an integral like $\int \frac{du}{(u^2+1)^k}$. - (8) Next let $u = \tan t$, $du = (1 + \tan^2 t)dt$, to get an integral $\int \cos^m t \, dt$. - (9) The power of cosine will be even, and you use the trig identity $\cos^2 t = \frac{1}{2}(1+\cos(2t))$ repeatedly to integrate. For example, $$\int \cos^4 t \, dt = \int \left[\frac{1}{2} (1 + \cos(2t)) \right]^2 \, dt =$$ $$\int \frac{1}{4} \left[1 + 2\cos(2t) + \cos^2(2t) \right] \, dt = \int \frac{1}{4} \left[1 + 2\cos(2t) + \frac{1}{2} (1 + \cos(4t)) \right] \, dt.$$ **B.** To integrate a rational function $p(\cos x, \sin x)/q(\cos x, \sin x)$, like $\frac{\sin x}{1 + \cos x}$: **Method 1:** Let $t = \tan(x/2)$ and use the formulas $$\cos x = \frac{1 - t^2}{1 + t^2}$$, $\sin x = \frac{2t}{1 + t^2}$, and $dx = \frac{2}{1 + t^2}dt$ to convert this to a usual rational function and see A. Method 2 - Regles de Bioche: If p/q dx remains the same after the one of the following substitutions, make that substitution to convert the integral to a rational function like in case A. - (1) $x \mapsto -x$, $dx \mapsto -dx$, then let $t = \cos x$, $-dt = \sin x dx$. - (2) $x \mapsto \pi x$, $dx \mapsto -dx$, then let $t = \sin x$, $dt = \cos x dx$. - (3) $x \mapsto \pi + x$, $dx \mapsto dx$, then let $t = \tan x$, $dt = \sec^2 x dx = (\tan^2 x + 1) dx$. To check the above conditions, use: $$\sin(-x) = -\sin(x)$$, $\sin(\pi - x) = \sin(x)$, $\sin(\pi + x) = -\sin(x)$ $\cos(-x) = \cos(x)$, $\cos(\pi - x) = -\cos(x)$, $\cos(\pi + x) = -\cos(x)$ (if you speak French: http://fr.wikipedia.org/wiki/Regles_de_Bioche) C. To integrate a rational function $p(e^x)/q(e^x)$, like $\frac{1+e^x}{2+e^{2x}}$: Substitute $u = e^x$, $du = e^x dx$, so dx = du/u, to convert this to a rational function like in case **A**.