Math 3B Final Review

New material

u-substitution: works for integrating compositions of functions; pick u to be the 'inside' function.
Integration by parts - undoing the product rule: $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$.
Generally, picking u in this descending order works, and $\mathrm{d} v$ is what's left:
Inverse trig
Logarithm
Algebraic (polynomial)
Trig
Exponential
Trig substitutions and integrals: See separate handout.
Partial fractions: -
If necessary, make a substitution to get a ratio of polynomials
If the degree of the numerator is \geq the degree of denominator, do long division first.
Then factor the denominator into linear terms and irreducible quadratics.
factor in denominator term in partial fraction decomposition

$$
\begin{array}{ccc}
(a x+b)^{k} & \Rightarrow & \frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\ldots+\frac{A_{k}}{(a x+b) k} \\
\left(a x^{2}+b x+c\right)^{k} & \Rightarrow & \frac{A_{1}}{a x^{2}+b x+B_{1}}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\ldots+\frac{A_{k} x+B_{k}}{\left(a x^{2}+b x+c\right)^{k}}
\end{array}
$$

Misc: Sometimes you'll need to "complete the square": eg: $x^{2}+6 x+5=x^{2}+6 x+$ $9-9+5=(x+3)^{2}-4$ (divide x coefficient by 2 , square it, and add and subtract it. Note: works when coefficient of x^{2} is 1)

Improper integrals

Type 1: infinite interval: $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x, \int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x$
Type 2: discontinuity in interval: -
f discontinuous at $a: \int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x$
f discontinuous at $b: \int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x$
f discontinuous at $c, a<c<b: \int_{a}^{b} f(x) d x=\lim _{t \rightarrow c^{-}} \int_{a}^{t} f(x) d x+\lim _{t \rightarrow c^{+}} \int_{t}^{b} f(x) d x$
Note!: It is possible that an integral is both Type 1 and Type 2.

Old material

Definite integral: Suppose $f(x)$ is continuous on $[a, b]$. Divide $[a, b]$ into subintervals of length $\Delta x=\frac{b-a}{n}$ and choose a sample point x_{i}^{*} from each subinterval. Then
$\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\lim _{n \rightarrow \infty} \Delta x \sum_{i=1}^{n} f\left(x_{i}^{*}\right)$.
Approximating integrals with Riemann sums: Choose $n=$ number of rectangles and choose a sample point x_{i}^{*} (usually left, right, or mid) from each subinterval. Then $\int_{a}^{b} f(x) \mathrm{d} x \approx \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\Delta x\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\ldots+f\left(x_{n}^{*}\right)\right]=A_{n}$, where $\Delta x=\frac{b-a}{n}$.

Each A_{n} is called a Riemann sum. If $x_{i}^{*}=$ right endpoint, then $x_{i}^{*}=a+i \cdot \Delta x$.
For an increasing function, using left endpoints gives a lower bound and using right endpoints gives an upper bound.
For a decreasing function, using right endpoints gives a lower bound and using left endpoints gives an upper bound.

Antiderivative: An anti-derivative of $f(x)$ is a function $F(x)$ such that $F^{\prime}=f$.
Indefinite integral: $\int f(x) \mathrm{d} x=F(x)+C$, where F is an anti-derivative of f.

FTC ("integration and differentiation are inverse processes")

Part 1: $\frac{d}{d x} \int_{a}^{x} f(t) \mathrm{d} t=f(x)$.
Part 1 w/ Chain Rule: $\frac{d}{d x} \int_{a}^{g(x)} f(t) \mathrm{d} t=f(g(x)) \cdot g^{\prime}(x)$.
Part 2: $\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a)$
Main application of FTC2: the integral of the rate of change of $F(x)$ is the net change in $F(x)$ from $x=a$ to $x=b$. eg, if $v(t)=$ velocity, then $\int_{t_{1}}^{t_{2}} v(t) \mathrm{d} t=$ net distance traveled $=$ net change in position from time t_{1} to $t_{2}=$ displacement ($n o t$ total distance traveled (in general)).

Applications

Area between curves: First find where the curves intersect. Then do \int_{a}^{b} [top function] - [bottom function] $\mathrm{d} x$ or \int_{c}^{d} [right function] $-[$ left function $] \mathrm{d} y$
Average value of a function $f(x)$ between $x=a$ and $x=b: \frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x$
Volume: We can find the volume of a solid by adding up areas of cross sections of the solid. The main formula is $\int_{a}^{b} A(x) \mathrm{d} x$ or $\int_{c}^{d} A(y) \mathrm{d} y$ where $A(x), A(y)$ give the area of a cross section of the solid. The two main cases are:
Disks/Washers: $A=\pi\left((\text { outer radius })^{2}-(\text { inner radius })^{2}\right)$. Cross sections are perpendicular to the axis of rotation.
Cylindrical she $\|$ s: $A=2 \pi$ (radius)(height). Cross sections are parallel to the axis of rotation.
Work $=$ Force \times Distance:
Method I: Distance in pieces: Chop up the distance and add up the work required to move each tiny distance $\Delta x \Rightarrow W=\int_{a}^{b}$ force $d x$.
Method II: Object in pieces: Chop up the object and add up the work required to move each piece the whole distance $\Rightarrow W=\int_{a}^{b}$ force \times distance $d x$.
Hooke's Law: Force required to stretch a spring x units beyond natural length is proportional to $x: f(x)=k x$.
Useful formulas: Force $=$ mass \times acceleration, mass $=$ density \cdot volume
Note: Pounds $=$ unit of force, $\mathrm{Kg}=$ unit of mass. $g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}$.
Units: kg -m-sec \Rightarrow Joules, lb-ft-sec $\Rightarrow \mathrm{ft}-\mathrm{lbs}$

More applications (not on the final)

Arc length

$L=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ if $y=f(x), a \leq x \leq b$.
$L=\int_{c}^{d} \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y$ if $x=g(y), c \leq y \leq d$.
Arc length function: $s(x)=\int_{a}^{x} \sqrt{1+\left[f^{\prime}(t)\right]^{2}} d t=$ length of arc from the point $(a, f(a))$ to $(x, f(x))$.

Surface area of a solid of revolution

Rotation about x-axis: $S=2 \pi \int y \mathrm{~d} s$,
Rotation about y-axis: $S=2 \pi \int x \mathrm{~d} s$,
where $d s=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$ if $y=f(x), a \leq x \leq b$.

$$
d s=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y \text { if } x=g(y), c \leq y \leq d
$$

Center of mass

Let ρ be the uniform density of a plate that is the region bounded by the curves $f(x)$ and $g(x)$, where $f(x) \geq g(x)$.

Moments M_{x} and M_{y} : measure the tendency of a region to rotate about the x - and y-axis, respectively:

$$
M_{x}=\rho \int_{a}^{b} \frac{1}{2}\left([f(x)]^{2}-[g(x)]^{2}\right) d x, M_{y}=\rho \int_{a}^{b} x(f(x)-g(x)) d x
$$

Center of mass: Let $A=\int_{a}^{b} f(x)-g(x) d x$ be the area of the plate and $M=\rho \times A$ be the mass of the plate. Then the coordinates of the center of mass (\bar{x}, \bar{y}) are: $\bar{x}=\frac{M_{y}}{M}=\frac{\int_{a}^{b} x(f(x)-g(x)) d x}{A}$, and $\bar{y}=\frac{M_{x}}{M}=\frac{\int_{a}^{b} \frac{1}{2}\left([f(x)]^{2}-[g(x)]^{2}\right) d x}{A}$

Hydrostatic Force

Hydrostatic Pressure: $P=\rho g d$, where $\rho=$ (mass) density of fluid, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, $d=$ depth below surface.
Hydrostatic Force: $F=\int_{a}^{b} P \times A \mathrm{~d} x$, where A is the area of strips of height Δx and width determined by the function.

