Math 3B Final Review

New material

u-substitution: works for integrating compositions of functions; pick u to be the 'inside' function.

Integration by parts - undoing the product rule: $\int u \, dv = uv - \int v \, du$.

Generally, picking u in this descending order works, and dv is what's left:

Inverse trig

Logarithm

Algebraic (polynomial)

Trig

Exponential

Trig substitutions and integrals: See separate handout.

Partial fractions: -

If necessary, make a substitution to get a ratio of polynomials

If the degree of the numerator is \geq the degree of denominator, do long division first.

Then factor the denominator into linear terms and irreducible quadratics.

$$\begin{array}{cccc} \text{factor in denominator} & & \text{term in partial fraction decomposition} \\ & (ax+b)^k & \Rightarrow & \frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \ldots + \frac{A_k}{(ax+b)^k} \\ & (ax^2+bx+c)^k & \Rightarrow & \frac{A_1x+B_1}{ax^2+bx+c} + \frac{A_2x+B_2}{(ax^2+bx+c)^2} + \ldots + \frac{A_kx+B_k}{(ax^2+bx+c)^k} \end{array}$$

 $9-9+5=(x+3)^2-4$ (divide x coefficient by 2, square it, and add and subtract it. Note: works when coefficient of x^2 is 1)

Improper integrals

Type 1: infinite interval:
$$\int_a^\infty f(x)dx = \lim_{t\to\infty} \int_a^t f(x)dx$$
, $\int_{-\infty}^b f(x)dx = \lim_{t\to-\infty} \int_t^b f(x)dx$

Type 2: discontinuity in interval: -

$$f$$
 discontinuous at a : $\int_a^b f(x)dx = \lim_{t \to a^+} \int_t^b f(x)dx$

$$f$$
 discontinuous at b : $\int_a^b f(x)dx = \lim_{t \to b^-} \int_a^t f(x)dx$

$$f$$
 discontinuous at $c, a < c < b$: $\int_a^b f(x)dx = \lim_{t \to c^-} \int_a^t f(x)dx + \lim_{t \to c^+} \int_t^b f(x)dx$

Note!: It is possible that an integral is both Type 1 and Type 2.

Old material

Definite integral: Suppose f(x) is continuous on [a,b]. Divide [a,b] into subintervals of length $\Delta x = \frac{b-a}{n}$ and choose a sample point x_i^* from each subinterval. Then

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x = \lim_{n \to \infty} \Delta x \sum_{i=1}^n f(x_i^*).$$

Approximating integrals with Riemann sums: Choose n = number of rectangles and choose a sample point x_i^* (usually left, right, or mid) from each subinterval. Then

$$\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x = \Delta x \left[f(x_{1}^{*}) + f(x_{2}^{*}) + \dots + f(x_{n}^{*}) \right] = A_{n}, \text{ where } \Delta x = \frac{b-a}{n}.$$

Each A_n is called a **Riemann sum**. If $x_i^* = \text{right endpoint}$, then $x_i^* = a + i \cdot \Delta x$.

For an increasing function, using left endpoints gives a lower bound and using right endpoints gives an upper bound.

For a decreasing function, using right endpoints gives a lower bound and using left endpoints gives an upper bound.

Antiderivative: An anti-derivative of f(x) is a function F(x) such that F'=f.

Indefinite integral: $\int f(x) dx = F(x) + C$, where F is an anti-derivative of f.

FTC ("integration and differentiation are inverse processes")

Part 1:
$$\frac{d}{dx} \int_a^x f(t) dt = f(x)$$
.

Part 1 w/ Chain Rule: $\frac{d}{dx} \int_a^{g(x)} f(t) dt = f(g(x)) \cdot g'(x)$.

Part 2:
$$\int_a^b F'(x) dx = F(b) - F(a)$$

Part 2: $\int_a^b F'(x) dx = F(b) - F(a)$ Main application of FTC2: the integral of the rate of change of F(x) is the net change in F(x) from x = a to x = b.

eg, if v(t) = velocity, then $\int_{t_1}^{t_2} v(t) dt$ = net distance traveled = net change in position from time t_1 to t_2 = displacement (not total distance traveled (in general)).

Applications

Area between curves: First find where the curves intersect. Then do $\int_a^b [\text{top function}] - [\text{bottom function}] dx \text{ or } \int_c^d [\text{right function}] - [\text{left function}] dy$

Average value of a function f(x) between x = a and x = b: $\frac{1}{b-a} \int_a^b f(x) dx$ Volume: We can find the volume of a solid by adding up areas of cross sections of the solid. The main formula is $\int_a^b A(x) dx$ or $\int_c^d A(y) dy$ where A(x), A(y) give the area of a cross section of the solid. The two main cases are:

Disks/Washers: $A = \pi((\text{outer radius})^2 - (\text{inner radius})^2)$. Cross sections are perpendicular to the axis of rotation.

Cylindrical she s: $A = 2\pi (\text{radius}) (\text{height})$. Cross sections are parallel to the axis of rotation.

Work = Force \times Distance:

Method I: Distance in pieces: Chop up the distance and add up the work required to move each tiny distance $\Delta x \Rightarrow W = \int_a^b \text{force } dx$.

Method II: Object in pieces: Chop up the object and add up the work required to move each piece the whole distance $\Rightarrow W = \int_a^b$ force \times distance dx. **Hooke's Law:** Force required to stretch a spring x units beyond natural length is

proportional to x: f(x) = kx.

Useful formulas: Force = mass \times acceleration, mass = density \cdot volume

Note: Pounds = unit of force, Kg = unit of mass. $g = 9.8 \text{ m/s}^2 = 32 \text{ ft/s}^2$.

Units: kg-m-sec \Rightarrow Joules, lb-ft-sec \Rightarrow ft-lbs

More applications (not on the final)

Arc length

$$L = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \text{ if } y = f(x), a \le x \le b.$$

$$L = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy \text{ if } x = g(y), c \le y \le d.$$

Arc length function: $s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} dt$ = length of arc from the point (a, f(a)) to (x, f(x)).

Surface area of a solid of revolution

Rotation about x-axis: $S = 2\pi \int y \, ds$,

Rotation about y-axis: $S = 2\pi \int x \, ds$,

where
$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 if $y = f(x), a \le x \le b$.

$$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$
 if $x = g(y), c \le y \le d$.

Center of mass

Let ρ be the uniform density of a plate that is the region bounded by the curves f(x) and g(x), where $f(x) \geq g(x)$.

Moments M_x and M_y : measure the tendency of a region to rotate about the x- and

y-axis, respectively:
$$M_x = \rho \int_a^b \frac{1}{2} ([f(x)]^2 - [g(x)]^2) dx, M_y = \rho \int_a^b x (f(x) - g(x)) dx.$$

Center of mass: Let $A = \int_a^b f(x) - g(x) dx$ be the area of the plate and $M = \rho \times A$ be the mass of the plate. Then the coordinates of the center of mass $(\overline{x}, \overline{y})$ are: $\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x(f(x) - g(x)) dx}{A}$, and $\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} \left([f(x)]^2 - [g(x)]^2 \right) dx}{A}$

$$\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x(f(x) - g(x))dx}{A}$$
, and $\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} ([f(x)]^2 - [g(x)]^2) dx}{A}$

Hydrostatic Force

Hydrostatic Pressure: $P = \rho g d$, where $\rho = (\text{mass})$ density of fluid, $g = 9.8 \text{ m/s}^2$, d = depth below surface.

Hydrostatic Force: $F = \int_a^b P \times A \, dx$, where A is the area of strips of height Δx and width determined by the function.

3