1. Describe all least-squares solutions to $A\mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$.

What is the distance between **b** and any $A\mathbf{x}^*$ (this is called the least-squares error)?

2. Show that $B = {\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3}$ is an orthogonal basis of \mathbb{R}^3 and express \mathbf{x} as a linear combination of the \mathbf{u} 's, find the coordinates of \mathbf{x} relative to B, and find the coordinate vector $[\mathbf{x}]_B$ of \mathbf{x} relative to B.

$$\mathbf{u}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -1\\4\\1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} 8\\-4\\3 \end{bmatrix}.$$

Then normalize the \mathbf{u} 's to produce an orthonormal basis.

- 3. Find a basis for the orthogonal complement \mathbf{u}_{\perp} to $\mathbf{u} = (0, 1, 0, 2)$. Is (1, -4, 3, 2) in \mathbf{u}_{\perp} ?
- 4. Find a unit vector in the opposite direction of $\begin{bmatrix} -3\\4 \end{bmatrix}$.
- 5. Find a nonzero vector perpendicular to both $\begin{bmatrix} -3\\ -8\\ -2 \end{bmatrix}$ and $\begin{bmatrix} 1\\ 3\\ -1 \end{bmatrix}$.
- 6. Let $A = \begin{bmatrix} 4 & -3 \\ 2 & -1 \end{bmatrix}$. Compute A^8 . 7. Diagonalize $A = \begin{bmatrix} 2 & 4 & 3 \\ -4 & -6 & 3 \\ 3 & 3 & 1 \end{bmatrix}$ or justify why this is not possible. 8. Let $A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3 \end{bmatrix}$.

Find a basis for which the linear transformation given by A is a diagonal matrix.

9. The matrix $A = \begin{bmatrix} -5 & 0 & 8 \\ 4 & -1 & -8 \\ -2 & 0 & 3 \end{bmatrix}$ has one real eigenvalue.

Find this eigenvalue, its multiplicity, and a basis of the corresponding eigenspace. What is the dimension of the eigenspace? Is A diagonalizable? Why or why not?

10. The matrix $A = \begin{bmatrix} 2 & 1 \\ 0 & k \end{bmatrix}$ has exactly one real eigenvalue if and only if k is what number? Find the dimension of the eigenspace in this case. 11. Find a basis for the subspace of \mathbb{R}^3 spanned by $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$, where

$$\mathbf{v}_1 = \begin{bmatrix} 1\\0\\-3 \end{bmatrix}, \, \mathbf{v}_2 = \begin{bmatrix} 3\\1\\-4 \end{bmatrix}, \, \mathbf{v}_3 = \begin{bmatrix} -2\\-1\\1 \end{bmatrix}, \, \mathbf{v}_4 = \begin{bmatrix} -1\\-1\\-2 \end{bmatrix}.$$

- 12. If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A? Is $T(\mathbf{x}) = A\mathbf{x}$ onto? One-to-one?
- 13. If $T: \mathbb{R}^9 \to \mathbb{R}^6$ is a linear transformation, could T have a 7-dimensional kernel?
- 14. Let A be an $n \times n$ matrix. Suppose you find that the dimension of the null space of A is 1 is A invertible in this case? Is $T(\mathbf{x}) = A\mathbf{x}$ one-to-one? Suppose you find the dimension of the column space of A (the rank of A) is n is A invertible in this case? Is $T(\mathbf{x}) = A\mathbf{x}$ onto?
- 15. Suppose you find that the eigenvalues of a 3×3 matrix A are 0, 1, and 2 is A invertible?
- 16. Suppose you compute the determinant of a 4×4 matrix A to be 24. Do the columns of A form a basis for \mathbb{R}^4 ?
- 17. Let A be a 4×4 matrix with rows v_1, v_2, v_3, v_4 and suppose det A = -2.

Compute det	v_4	
	$5v_2 + 2v_3$	
	$6v_2 + iv_3$	
	v_1	

Selected webwork problems (I'm referring to what the webworks are called on Gauchospace, which doesn't always match up with webwork):