Math 4A Final practice problems

1. Describe all least-squares solutions to $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 8 \\ 2\end{array}\right]$.

What is the distance between \mathbf{b} and any $A \mathbf{x}^{*}$ (this is called the least-squares error)?
2. Show that $B=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ is an orthogonal basis of \mathbb{R}^{3} and express \mathbf{x} as a linear combination of the \mathbf{u} 's, find the coordinates of \mathbf{x} relative to B, and find the coordinate vector $[\mathbf{x}]_{B}$ of \mathbf{x} relative to B.
$\mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right], \mathbf{x}=\left[\begin{array}{c}8 \\ -4 \\ 3\end{array}\right]$.
Then normalize the u's to produce an orthonormal basis.
3. Find a basis for the orthogonal complement \mathbf{u}_{\perp} to $\mathbf{u}=(0,1,0,2)$. Is $(1,-4,3,2)$ in \mathbf{u}_{\perp} ?
4. Find a unit vector in the opposite direction of $\left[\begin{array}{c}-3 \\ 4\end{array}\right]$.
5. Find a nonzero vector perpendicular to both $\left[\begin{array}{c}-3 \\ -8 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]$.
6. Let $A=\left[\begin{array}{ll}4 & -3 \\ 2 & -1\end{array}\right]$. Compute A^{8}.
7. Diagonalize $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ -4 & -6 & 3 \\ 3 & 3 & 1\end{array}\right]$ or justify why this is not possible.
8. Let $A=\left[\begin{array}{cccc}5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 1 & 4 & -3 & 0 \\ -1 & -2 & 0 & -3\end{array}\right]$.

Find a basis for which the linear transformation given by A is a diagonal matrix.
9. The matrix $A=\left[\begin{array}{ccc}-5 & 0 & 8 \\ 4 & -1 & -8 \\ -2 & 0 & 3\end{array}\right]$ has one real eigenvalue.

Find this eigenvalue, its multiplicity, and a basis of the corresponding eigenspace. What is the dimension of the eigenspace? Is A diagonalizable? Why or why not?
10. The matrix $A=\left[\begin{array}{ll}2 & 1 \\ 0 & k\end{array}\right]$ has exactly one real eigenvalue if and only if k is what number? Find the dimension of the eigenspace in this case.
11. Find a basis for the subspace of \mathbb{R}^{3} spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4}$, where
$\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ 0 \\ -3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}3 \\ 1 \\ -4\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}-1 \\ -1 \\ -2\end{array}\right]$.
12. If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A ? Is $T(\mathbf{x})=A \mathbf{x}$ onto? One-to-one?
13. If $T: \mathbb{R}^{9} \rightarrow \mathbb{R}^{6}$ is a linear transformation, could T have a 7 -dimensional kernel?
14. Let A be an $n \times n$ matrix. Suppose you find that the dimension of the null space of A is 1 is A invertible in this case? Is $T(\mathbf{x})=A \mathbf{x}$ one-to-one? Suppose you find the dimension of the column space of A (the rank of A) is n - is A invertible in this case? Is $T(\mathbf{x})=A \mathbf{x}$ onto?
15. Suppose you find that the eigenvalues of a 3×3 matrix A are 0,1 , and 2 - is A invertible?
16. Suppose you compute the determinant of a 4×4 matrix A to be 24 . Do the columns of A form a basis for \mathbb{R}^{4} ?
17. Let A be a 4×4 matrix with rows $v_{1}, v_{2}, v_{3}, v_{4}$ and suppose $\operatorname{det} A=-2$.

Compute det $\left[\begin{array}{c}v_{4} \\ 5 v_{2}+2 v_{3} \\ 6 v_{2}+7 v_{3} \\ v_{1}\end{array}\right]$.
Selected webwork problems (I'm referring to what the webworks are called on Gauchospace, which doesn't always match up with webwork):

1-1: 5
1-2: 1, 2, 10
2-1: 11
3-1: 11 3-2: 5 4-1: 8
4-2: 5
5-1: 1, 6, 10, 12
5-2: 7, 8
6-1: 1, 3, 5, 8
6-2: 2
7-1: 6, 7
7-2: $1,2,5,7,8$
8-1: 7, 9, 12
8-2: 7
9-1: 12
9-2: 3,8

