
Post-Midterm 2

A linear first order DE system can be written as x′(t) = A(t)x(t) + f(t). The system is ho-
mogeneous if f(t) = 0.

Existence and Uniqueness for Linear DE Systems: The IVP x′(t) = A(t)x(t) + f(t),x(t0) = x0, has
a unique solution on an open interval I containing t0 if A(t) and f(t) are both continuous on I.

The general solution to a homogeneous system of n first order linear DEs is c1x1(t) + ...+ cnxn(t),
where x1(t), ...,xn(t) are n LI solutions. We say that x1(t), ...,xn(t) form a fundamental set of
solutions.

The general solution to a non-homogeneous linear first order DE system is x = xh + xp, where
xh is the general solution to the associated homogeneous system, and xp is any particular solution
to the non-homogeneous system.

Solving homogeneous linear 2× 2 DE systems with constant coefficients, x′ = Ax.

• Case 1: (Possibly equal) real eigenvalues λ1, λ2, LI eigenvectors v1,v2.

General solution: x(t) = c1e
λ1tv1 + c2e

λ2tv2.

• Case 2: Complex conjugate eigenvalues λ1, λ2 = a ± bi, complex conjugate eigenvectors
v1,v2 = p± iq.

General solution: x(t) = c1e
at(cos(bt)p− sin(bt)q) + c2e

at(sin(bt)p + cos(bt)q).

• Case 3: Repeated real eigenvalue λ, one LI eigenvector v. Solve (A − λI)u = v to find a
nonzero vector u, called a generalized eigenvector of A corresponding to λ.

General solution: x(t) = c1e
λtv + c2e

λt(tv + u).

Note that this generalizes to n× n systems. The above contribute terms to the general solution.

Summary of phase portraits: see page 2 of PDF on my course page. The borderline cases on
page 3 are not as important.

For x′ = Ax, 0 is a source (unstable) if nearby solutions move away, a sink (asymptotically stable) if
nearby solutions move towards, and a saddle (unstable) if nearby solutions exhibit both behaviors.
In the case of purely imaginary eigenvalues, 0 is neutrally stable. If |λ1| > |λ2|, v1 is called the
fast eigenvector v1 is called the fast eigenvector. c1e

λ1t approaches ±∞ or 0 (depending on sign)
fastest, affecting solution trajectories as t→∞.

An n×n matrix A is diagonalizable if and only if A has n LI eigenvectors. In this case, A = PDP−1,
where D is a diagonal matrix of eigenvalues and P is a matrix are eigenvectors listed in the same
order as the eigenvalues of D.

The change of variables x = Pw transforms a homogeneous linear DE system x′ = Ax (with
diagonalizable matrix A) into a decoupled system w′ = Dw.



The change of variables x = Pw transforms a non-homogeneous linear DE system x′ = Ax + f(t)
(with diagonalizable matrix A) into a decoupled system w′ = Dw+P−1f(t). The decoupled system
can be solved using methods for first order DEs. Then use x = Pw to find x.

For an (autonomous) non-linear system x′ = f(x, y), y′ = g(x, y), equilibrium solutions occur where
x′ = y′ = 0. If (a, b) is an equilibrium point, make the substitution u = x− a, v = y− b to translate
the equilibrium point to (0, 0). By writing x′ and y′ in terms of u and v and dropping non-linear
terms (which are small since u and v are close to 0), we see that near the equilibrium point, the
system behaves like the linear system u′ = Au. Thus we can describe the nature of the equilibrium
point and nearby solutions using our previous methods.

Post-Midterm 1, Pre-Midterm 2

The most general 2nd order linear DE is p(t)y′′ + q(t)y′ + r(t)y = g(t). If g(t) = 0, the DE is
homogeneous.
For the DE ay′′ + by′ + cy = 0 we assume y(t) = ert. This leads to the characteristic equation
ar2 + br + c = 0.

• Case 1: Distinct real roots r1, r2. General solution: y(t) = c1e
r1t + c2e

r2t.

• Case 2: Complex roots r1, r2 = a± bi. General solution: y(t) = eat(c1 cos(bt) + c2 sin(bt)).

• Case 3: Repeated real root r. General solution: y(t) = c1e
rt + c2te

rt.

Existence and Uniqueness for 2nd order linear DEs: For the IVP

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0,

there exists a unique solution to the IVP on the interval I = (a, b) containing t0 if p(t), q(t) and
g(t) are continuous on I.

Solutions to y′′ + p(t)y′ + q(t)y = 0 form a 2-dimensional vector space. What this tells us is
that given 2 linearly independent solutions y1 and y2, c1y1 + c2y2 is also a solution, and every solu-
tion is of this form. We say that y1 and y2 form a fundamental set of solutions.

Wronskian test for linear independence: If W (f, g) = fg′ − f ′g 6= 0, then f and g are lin-
early independent.

The general solution of the linear nonhomogeneous DE y′′+p(t)y′+q(t)y = f(t) is y = c1y1+c2y2+yp,
where y1 and y2 are linearly independent solutions to the associated homogeneous DE and yp is any
particular solution of the nonhomogeneous DE.

Reduction of order: Given a solution y1 to a 2nd order linear homogeneous DE p(t)y′′ + q(t)y′ +
r(t)y = 0, we assume that y2 is of the form y2(t) = v(t)y1(t). Upon substituting y2 into our DE,
terms involving v will disappear, and we can solve the resulting 1st order DE by making the sub-
stitution w = v′, w′ = v′′ and using separation of variables or the integrating factor method.

Method of undetermined coefficients for solving the 2nd order linear nonhomogeneous DE
y′′ + p(t)y′ + q(t)y = f(t).



1. First find the general solution yh = c1y1 + c2y2 of the associated homogeneous equation.

2. Guess yp according to what f(t).
f(t) yp

polynomial Ant
n + ...+ A0where n is the degree of f

sin’s and cos’s A cos(ωt) +B sin(ωt)
exponential Aekt

product/sum of the above product/sum of the above

3. Compare your guess to yh and multiply by t (once or twice) if any part of yp shows up in yh.

4. Compute y′p, y
′′
p , substitute in to DE, equate coefficients and solve.

5. The general solution is then y = yh + yp.

Method of variation of parameters for solving the 2nd order linear nonhomogeneous DE
y′′ + p(t)y′ + q(t)y = g(t)

1. Find the general solution yh = c1y1 + c2y2 to the associated homogeneous DE.

2. A particular solution is given by

yp = −y1
∫

y2g

W (y1, y2)
dt+ y2

∫
y1g

W (y1, y2)
dt.

We can assume both constants of integration are 0.

3. The general solution is then y = yh + yp.

Pre-Midterm 1

We’ve considered difference equations of the form yn+1 = ayn + b. It’s called a difference equa-
tion because it can be rewritten as yn+1 − yn = (a− 1)yn + b. Its solution is yn = any0 + b

(
1−an
1−a

)
(provided a 6= 1). This can be seen by using the fact that

n−1∑
k=0

ak =
1− an

1− a
.

We can model interest problems with difference equations - think about what yn, a, and b rep-
resent.

The family of solutions to a DE are called integral curves.

A slope field or direction field for a DE y′ = f(t, y) is a graph of tick marks in the ty-plane
where the tick mark through the point (t, y) has slope f(t, y).

An isocline is a curve on which solutions to a DE have the same constant slope. As an ex-
ample, for the DE y′ = t+ y, if we set y′ = t+ y = 1 we see that the line y = −t+ 1 is an isocline
on which solutions have slope 1. Isoclines are useful for sketching slope fields quickly.

An equilibrium solution to a DE is a constant solution, found by setting y′ = f(t, y) = 0.

A DE that can be written in the form N(y)y′ = M(x) is called separable. Sometimes a DE



is not separable, but a substitution will turn it in to a separable DE.

An explicit solution to a DE is a a solution given in the form y = y(t). An implicit solu-
tion is one given by an equation not in this form.

A first order linear DE can be written in the form y′ + p(t)y = q(t). To solve such a DE,
use the integrating factor method:

1. Make sure the DE is in the form above (nothing in front of y′).

2. Find the integrating factor µ(t) =
∫
p(t) dt.

3. Multiply the DE by µ(t) and check that the left hand side becomes (µ(t)y)′.

4. Integrate both sides, getting µ(t)y on the left and the constant of integration on the right.

5. Solve for y(t).

An initial value problem (IVP) is a DE y′ = f(t, y) with an initial condition y(t0) = y0.

Existence/Uniqueness (E/U) Theorem: For a first order linear DE y′ + p(t)y = q(t) with
initial condition y(t0) = y0, there exists a unique solution to the IVP on the interval I = (a, b)
containing t0 if p(t) and q(t) are continuous on I.

The largest interval on which the solution is valid and contains t0 is called the interval of validity.

Notice that DEs like y′ =
√
y can’t be written in this form, so the E/U theorem doesn’t ap-

ply.

A first order DE is autonomous if it can be written in the form y′ = f(y) (no dependence on
t).

An (asymptotically) stable equilibrium solution is one that nearby solutions approach as t→∞.
If this nearby solutions move away from an equilibrium solution as t→∞, an equilibrium solution
is called unstable. If nearby solutions on one side approach an equilibrium solution and move away
on the other side, the equilibrium solution is called semi-stable.

An exponential growth/decay equation is of the form y′ = ry. This is a separable DE with
solution y = y0e

rt.

The logistic equation is y′ = ry(1 − y
K

) where r,K > 0. Here r is the growth rate and K is

the limiting value. One can show that the solution to this DE is y = y0K
y0+(K−y0)e−rt .

A threshold equation is of the form y′ = −ry(1 − y
T

) where r, T > 0. As t increases, y ei-
ther approaches 0 or grows without bound, depending on whether the initial value is less than or
greater than the threshold value T .

Mixing problems: know how to set up a DE of the form q′ = flow rate in − flow rate out.



The DE mdv
dt

= mg − kv models a falling object, where m is the mass of the object, g is the
acceleration due to gravity (g = 9.8 m/s2 = 32 ft/s2) and k > 0 is the constant of proportionality
slowing the object down (drag). Note that this DE is set up so that downward is the positive
direction. We can model similar situations with a similar DE by taking into consideration the signs
of mg and kv, and the choice of positive direction being up or down.


