Post-Midterm 2

A linear first order DE system can be written as $\mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{f}(t)$. The system is homogeneous if $\mathbf{f}(t)=\mathbf{0}$.

Existence and Uniqueness for Linear DE Systems: The IVP $\mathbf{x}^{\prime}(t)=\mathbf{A}(t) \mathbf{x}(t)+\mathbf{f}(t), \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, has a unique solution on an open interval I containing t_{0} if $\mathbf{A}(t)$ and $\mathbf{f}(t)$ are both continuous on I.

The general solution to a homogeneous system of n first order linear DEs is $c_{1} \mathbf{x}_{1}(t)+\ldots+c_{n} \mathbf{x}_{n}(t)$, where $\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)$ are n LI solutions. We say that $\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{n}(t)$ form a fundamental set of solutions.

The general solution to a non-homogeneous linear first order DE system is $\mathbf{x}=\mathbf{x}_{h}+\mathbf{x}_{p}$, where \mathbf{x}_{h} is the general solution to the associated homogeneous system, and \mathbf{x}_{p} is any particular solution to the non-homogeneous system.

Solving homogeneous linear $2 \times 2 \mathrm{DE}$ systems with constant coefficients, $\mathbf{x}^{\prime}=\mathbf{A x}$.

- Case 1: (Possibly equal) real eigenvalues λ_{1}, λ_{2}, LI eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$.

General solution: $\mathbf{x}(t)=c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}$.

- Case 2: Complex conjugate eigenvalues $\lambda_{1}, \lambda_{2}=a \pm b i$, complex conjugate eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}=\mathbf{p} \pm i \mathbf{q}$.

General solution: $\mathbf{x}(t)=c_{1} e^{a t}(\cos (b t) \mathbf{p}-\sin (b t) \mathbf{q})+c_{2} e^{a t}(\sin (b t) \mathbf{p}+\cos (b t) \mathbf{q})$.

- Case 3: Repeated real eigenvalue λ, one LI eigenvector \mathbf{v}. Solve $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{u}=\mathbf{v}$ to find a nonzero vector \mathbf{u}, called a generalized eigenvector of \mathbf{A} corresponding to λ.

General solution: $\mathbf{x}(t)=c_{1} e^{\lambda t} \mathbf{v}+c_{2} e^{\lambda t}(t \mathbf{v}+\mathbf{u})$.
Note that this generalizes to $n \times n$ systems. The above contribute terms to the general solution.
Summary of phase portraits: see page 2 of PDF on my course page. The borderline cases on page 3 are not as important.

For $\mathbf{x}^{\prime}=A \mathbf{x}, \mathbf{0}$ is a source (unstable) if nearby solutions move away, a sink (asymptotically stable) if nearby solutions move towards, and a saddle (unstable) if nearby solutions exhibit both behaviors. In the case of purely imaginary eigenvalues, $\mathbf{0}$ is neutrally stable. If $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|, \mathbf{v}_{1}$ is called the fast eigenvector \mathbf{v}_{1} is called the fast eigenvector. $c_{1} e^{\lambda_{1} t}$ approaches $\pm \infty$ or 0 (depending on sign) fastest, affecting solution trajectories as $t \rightarrow \infty$.

An $n \times n$ matrix A is diagonalizable if and only if A has $n \mathrm{LI}$ eigenvectors. In this case, $A=P D P^{-1}$, where D is a diagonal matrix of eigenvalues and P is a matrix are eigenvectors listed in the same order as the eigenvalues of D.

The change of variables $\mathbf{x}=\mathbf{P w}$ transforms a homogeneous linear DE system $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ (with diagonalizable matrix \mathbf{A}) into a decoupled system $\mathbf{w}^{\prime}=\mathbf{D w}$.

The change of variables $\mathbf{x}=\mathbf{P w}$ transforms a non-homogeneous linear DE system $\mathbf{x}^{\prime}=\mathbf{A x}+\mathbf{f}(t)$ (with diagonalizable matrix \mathbf{A}) into a decoupled system $\mathbf{w}^{\prime}=\mathbf{D w}+\mathbf{P}^{-1} \mathbf{f}(t)$. The decoupled system can be solved using methods for first order DEs. Then use $\mathbf{x}=\mathbf{P w}$ to find \mathbf{x}.

For an (autonomous) non-linear system $x^{\prime}=f(x, y), y^{\prime}=g(x, y)$, equilibrium solutions occur where $x^{\prime}=y^{\prime}=0$. If (a, b) is an equilibrium point, make the substitution $u=x-a, v=y-b$ to translate the equilibrium point to $(0,0)$. By writing x^{\prime} and y^{\prime} in terms of u and v and dropping non-linear terms (which are small since u and v are close to 0), we see that near the equilibrium point, the system behaves like the linear system $\mathbf{u}^{\prime}=A \mathbf{u}$. Thus we can describe the nature of the equilibrium point and nearby solutions using our previous methods.

Post-Midterm 1, Pre-Midterm 2

The most general 2nd order linear DE is $p(t) y^{\prime \prime}+q(t) y^{\prime}+r(t) y=g(t)$. If $g(t)=0$, the DE is homogeneous.
For the DE $a y^{\prime \prime}+b y^{\prime}+c y=0$ we assume $y(t)=e^{r t}$. This leads to the characteristic equation $a r^{2}+b r+c=0$.

- Case 1: Distinct real roots r_{1}, r_{2}. General solution: $y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$.
- Case 2: Complex roots $r_{1}, r_{2}=a \pm b i$. General solution: $y(t)=e^{a t}\left(c_{1} \cos (b t)+c_{2} \sin (b t)\right)$.
- Case 3: Repeated real root r. General solution: $y(t)=c_{1} e^{r t}+c_{2} t e^{r t}$.

Existence and Uniqueness for 2nd order linear DEs: For the IVP

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime},
$$

there exists a unique solution to the IVP on the interval $I=(a, b)$ containing t_{0} if $p(t), q(t)$ and $g(t)$ are continuous on I.

Solutions to $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$ form a 2 -dimensional vector space. What this tells us is that given 2 linearly independent solutions y_{1} and $y_{2}, c_{1} y_{1}+c_{2} y_{2}$ is also a solution, and every solution is of this form. We say that y_{1} and y_{2} form a fundamental set of solutions.

Wronskian test for linear independence: If $W(f, g)=f g^{\prime}-f^{\prime} g \neq 0$, then f and g are linearly independent.

The general solution of the linear nonhomogeneous $\mathrm{DE} y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$ is $y=c_{1} y_{1}+c_{2} y_{2}+y_{p}$, where y_{1} and y_{2} are linearly independent solutions to the associated homogeneous DE and y_{p} is any particular solution of the nonhomogeneous DE.

Reduction of order: Given a solution y_{1} to a 2nd order linear homogeneous DE $p(t) y^{\prime \prime}+q(t) y^{\prime}+$ $r(t) y=0$, we assume that y_{2} is of the form $y_{2}(t)=v(t) y_{1}(t)$. Upon substituting y_{2} into our DE, terms involving v will disappear, and we can solve the resulting 1 st order DE by making the substitution $w=v^{\prime}, w^{\prime}=v^{\prime \prime}$ and using separation of variables or the integrating factor method.

Method of undetermined coefficients for solving the 2nd order linear nonhomogeneous DE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=f(t)$.

1. First find the general solution $y_{h}=c_{1} y_{1}+c_{2} y_{2}$ of the associated homogeneous equation.
2. Guess y_{p} according to what $f(t)$.
$f(t)$
polynomial
sin's and cos's exponential
product/sum of the above

$$
A_{n} t^{n}+\ldots+A_{0} \text { where } \mathrm{n} \text { is the degree of } \mathrm{f}
$$

$$
A \cos (\omega t)+B \sin (\omega t)
$$

$$
A e^{k t}
$$

product/sum of the above
3. Compare your guess to y_{h} and multiply by t (once or twice) if any part of y_{p} shows up in y_{h}.
4. Compute $y_{p}^{\prime}, y_{p}^{\prime \prime}$, substitute in to DE, equate coefficients and solve.
5. The general solution is then $y=y_{h}+y_{p}$.

Method of variation of parameters for solving the 2nd order linear nonhomogeneous DE $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$

1. Find the general solution $y_{h}=c_{1} y_{1}+c_{2} y_{2}$ to the associated homogeneous DE.
2. A particular solution is given by

$$
y_{p}=-y_{1} \int \frac{y_{2} g}{W\left(y_{1}, y_{2}\right)} d t+y_{2} \int \frac{y_{1} g}{W\left(y_{1}, y_{2}\right)} d t
$$

We can assume both constants of integration are 0 .
3. The general solution is then $y=y_{h}+y_{p}$.

Pre-Midterm 1

We've considered difference equations of the form $y_{n+1}=a y_{n}+b$. It's called a difference equation because it can be rewritten as $y_{n+1}-y_{n}=(a-1) y_{n}+b$. Its solution is $y_{n}=a^{n} y_{0}+b\left(\frac{1-a^{n}}{1-a}\right)$ (provided $a \neq 1$). This can be seen by using the fact that $\sum_{k=0}^{n-1} a^{k}=\frac{1-a^{n}}{1-a}$.
We can model interest problems with difference equations - think about what y_{n}, a, and b represent.

The family of solutions to a DE are called integral curves.
A slope field or direction field for a $\mathrm{DE} y^{\prime}=f(t, y)$ is a graph of tick marks in the $t y$-plane where the tick mark through the point (t, y) has slope $f(t, y)$.

An isocline is a curve on which solutions to a DE have the same constant slope. As an example, for the $\mathrm{DE} y^{\prime}=t+y$, if we set $y^{\prime}=t+y=1$ we see that the line $y=-t+1$ is an isocline on which solutions have slope 1 . Isoclines are useful for sketching slope fields quickly.

An equilibrium solution to a DE is a constant solution, found by setting $y^{\prime}=f(t, y)=0$.
A DE that can be written in the form $N(y) y^{\prime}=M(x)$ is called separable. Sometimes a DE
is not separable, but a substitution will turn it in to a separable DE.
An explicit solution to a DE is a a solution given in the form $y=y(t)$. An implicit solution is one given by an equation not in this form.

A first order linear DE can be written in the form $y^{\prime}+p(t) y=q(t)$. To solve such a DE, use the integrating factor method:

1. Make sure the DE is in the form above (nothing in front of y^{\prime}).
2. Find the integrating factor $\mu(t)=\int p(t) \mathrm{d} t$.
3. Multiply the DE by $\mu(t)$ and check that the left hand side becomes $(\mu(t) y)^{\prime}$.
4. Integrate both sides, getting $\mu(t) y$ on the left and the constant of integration on the right.
5. Solve for $y(t)$.

An initial value problem (IVP) is a DE $y^{\prime}=f(t, y)$ with an initial condition $y\left(t_{0}\right)=y_{0}$.
Existence/Uniqueness (E/U) Theorem: For a first order linear DE $y^{\prime}+p(t) y=q(t)$ with initial condition $y\left(t_{0}\right)=y_{0}$, there exists a unique solution to the IVP on the interval $I=(a, b)$ containing t_{0} if $p(t)$ and $q(t)$ are continuous on I.

The largest interval on which the solution is valid and contains t_{0} is called the interval of validity.
Notice that DEs like $y^{\prime}=\sqrt{y}$ can't be written in this form, so the E / U theorem doesn't apply.

A first order DE is autonomous if it can be written in the form $y^{\prime}=f(y)$ (no dependence on $t)$.

An (asymptotically) stable equilibrium solution is one that nearby solutions approach as $t \rightarrow \infty$. If this nearby solutions move away from an equilibrium solution as $t \rightarrow \infty$, an equilibrium solution is called unstable. If nearby solutions on one side approach an equilibrium solution and move away on the other side, the equilibrium solution is called semi-stable.

An exponential growth/decay equation is of the form $y^{\prime}=r y$. This is a separable DE with solution $y=y_{0} e^{r t}$.

The logistic equation is $y^{\prime}=r y\left(1-\frac{y}{K}\right)$ where $r, K>0$. Here r is the growth rate and K is the limiting value. One can show that the solution to this DE is $y=\frac{y_{0} K}{y_{0}+\left(K-y_{0}\right) e^{-r t}}$.

A threshold equation is of the form $y^{\prime}=-r y\left(1-\frac{y}{T}\right)$ where $r, T>0$. As t increases, y either approaches 0 or grows without bound, depending on whether the initial value is less than or greater than the threshold value T.

Mixing problems: know how to set up a DE of the form $q^{\prime}=$ flow rate in - flow rate out.

The DE $m \frac{d v}{d t}=m g-k v$ models a falling object, where m is the mass of the object, g is the acceleration due to gravity $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}\right)$ and $k>0$ is the constant of proportionality slowing the object down (drag). Note that this DE is set up so that downward is the positive direction. We can model similar situations with a similar DE by taking into consideration the signs of $m g$ and $k v$, and the choice of positive direction being up or down.

