In section we showed that $A = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix}$ is diagonalizable, and $A = PDP^{-1}$, where $D = \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix}$, $P = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$, and $P^{-1} = \begin{bmatrix} 3/10 & 1/10 \\ -1/10 & 3/10 \end{bmatrix}$. The columns of P form a basis for \mathbb{R}^2 we'll call B, so $B = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right\}$.

The mappings $\mathbf{x} \mapsto A\mathbf{x}$ and $\mathbf{u} \mapsto D\mathbf{u}$ describe the same linear transformation, relative to the bases S and B respectively.

Let's see what this means by considering the vector $\mathbf{x} = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$.

First note that $A\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \begin{bmatrix} 32 \\ -36 \end{bmatrix}$

Next, we know that the coordinate vector of \mathbf{x} relative to the basis B is

$$[\mathbf{x}]_B = P^{-1}\mathbf{x} = \begin{bmatrix} 3/10 & 1/10 \\ -1/10 & 3/10 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

If we compute $D[\mathbf{x}]_B$ we have $D[\mathbf{x}]_B = \begin{bmatrix} 3 & 0 \\ 0 & -7 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ -14 \end{bmatrix}$.

Notice that $\begin{bmatrix} 6\\-14 \end{bmatrix}$ is the coordinate vector of $A\mathbf{x} = \begin{bmatrix} 32\\-36 \end{bmatrix}$ relative to the basis B, since $A\mathbf{x} = P[A\mathbf{x}]_B = \begin{bmatrix} 3 & -1\\1 & 3 \end{bmatrix} \begin{bmatrix} 6\\-14 \end{bmatrix} = \begin{bmatrix} 32\\-36 \end{bmatrix}.$

Thus the output of $\mathbf{x} \mapsto A\mathbf{x}$ and $\mathbf{u} \mapsto D\mathbf{u}$ are the same, relative to different bases.

Note that $D = P^{-1}AP$, and observe that P is the change-of-coordinate matrix that converts vectors from B to S, and P^{-1} converts vectors from S to B.

This means we can see how $\mathbf{u} \mapsto D\mathbf{u} = P^{-1}AP\mathbf{u}$ works in three steps: P converts the vector from B to S, then we multiply by A, and lastly P^{-1} converts the resulting vector from S back to B, as follows:

First,
$$P$$
 converts $[\mathbf{x}]_B = \begin{bmatrix} 2\\ 2 \end{bmatrix}$ from B to S : $P[\mathbf{x}]_B = \begin{bmatrix} 3 & -1\\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2\\ 2 \end{bmatrix} = \begin{bmatrix} 4\\ 8 \end{bmatrix} = \mathbf{x}$ as above.

Next multiply the result by A: $A\mathbf{x} = \begin{bmatrix} 2 & 3 \\ 3 & -6 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \end{bmatrix} = \begin{bmatrix} 32 \\ -36 \end{bmatrix}$ as above.

Lastly, P^{-1} converts $A\mathbf{x}$ from S to B: $P^{-1}A\mathbf{x} = \begin{bmatrix} 3/10 & 1/10 \\ -1/10 & 3/10 \end{bmatrix} \begin{bmatrix} 32 \\ -36 \end{bmatrix} = \begin{bmatrix} 6 \\ -14 \end{bmatrix}$.