If A is not diagonalizable, maybe we can write $A=P J P^{-1}$ for an "almost diagonal" matrix J. This leads to the following theorem.

Theorem. Suppose that A is a 2×2 matrix with repeated eigenvalue λ whose eigenspace is only one-dimensional, say $E_{\lambda}=\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}\right\}$. Let $\mathbf{v}_{\mathbf{2}}$ be a solution to $(A-\lambda I) \mathbf{x}=\mathbf{v}_{\mathbf{1}}$.
Let $J=\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]$ and $P=\left[\begin{array}{ll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]$. Then $A=P J P^{-1}$.

Proof:

The proof that P is invertible is left for the reader. Note that
$A=P J P^{-1} \Leftrightarrow A P=P J \Leftrightarrow A\left[\begin{array}{ll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]=\left[\begin{array}{ll}\mathbf{v}_{\mathbf{1}} & \mathbf{v}_{\mathbf{2}}\end{array}\right]\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]$.
Thus the columns of P must satisfy $A \mathbf{v}_{\mathbf{1}}=\lambda \mathbf{v}_{\mathbf{1}}$ and $A \mathbf{v}_{\mathbf{2}}=\lambda \mathbf{v}_{\mathbf{2}}+\mathbf{v}_{\mathbf{1}}$.
Rearranging, this becomes $A \mathbf{v}_{\mathbf{1}}-\lambda \mathbf{v}_{\mathbf{1}}=\mathbf{0}$ and $A \mathbf{v}_{\mathbf{2}}-\lambda \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}$,
or $(A-\lambda I) \mathbf{v}_{\mathbf{1}}=\mathbf{0}$ and $(A-\lambda I) \mathbf{v}_{\mathbf{2}}=\mathbf{v}_{\mathbf{1}}$.
The first equation says that $\mathbf{v}_{\mathbf{1}}$ is an eigenvalue for A and the second equation says that $\mathbf{v}_{\mathbf{2}}$ is a solution to $(A-\lambda I) \mathbf{x}=\mathbf{v}_{\mathbf{1}}$, as assumed.

