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Abstract. In this paper we completely characterize the linear maps φ :
M→M that preserve the Lorentz-cone spectrum, whenM is one of the
following subspaces of the spaceMn of n×n real matrices: the subspace

of diagonal matrices, the subspace of block-diagonal matrices Ã ⊕ [a],

where Ã ∈Mn−1 is symmetric, and the subspace of block-diagonal ma-

trices Ã ⊕ [a], where Ã ∈ Mn−1 is a generic matrix. In particular, we
show that φ should be what we call a standard map, namely, a map of
the form φ(A) = PAQ for all A ∈ M or φ(A) = PATQ for all A ∈ M,
for some matrices P,Q ∈Mn. We then characterize the standard maps
preserving the Lorentz-cone spectrum, when M is the subspace Sn of
symmetric matrices. The caseM =Mn was considered in a recent paper
by Seeger (LAA 2020). We include it here for completeness. We conjec-
ture that in both casesM =Mn andM = Sn, the linear preservers of
the Lorentz-cone spectrum should be standard maps.
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1. Introduction

Given a matrix A ∈Mn, the algebra of n× n matrices with real entries, and
a closed convex cone K, the eigenvalue complementarity problem looks for a
scalar λ ∈ R and an n× 1 nonzero vector x ∈ Rn such that

x ∈ K, Ax− λx ∈ K∗, 〈x,Ax− λx〉 = 0,
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e Tecnologia, under project UID/MAT/04721/2020.
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where
K∗ := {y ∈ Rn : 〈x, y〉 ≥ 0, ∀x ∈ K}

denotes the (positive) dual cone of K. If K = Rn, then the problem reduces to
the usual eigenvalue problem for the matrix A. There are, however, a number
of interesting applications arising in practice for which K 6= Rn.

Here, we assume n ≥ 3 and consider the Lorentz cone

Kn := {(x, xn) ∈ Rn−1 × R : ‖x‖ ≤ xn},
also known as the ice-cream cone. By ‖x‖ we denote the 2-norm of x. In
what follows, the context will make clear what the dimension of the ambient
space is and so we omit the superscript n and simply denote Kn by K. The
Lorentz cone is an example of what is called a second-order cone, an object
of intense study, especially in optimization theory. The second-order cone is
important in linear programming problems, convex quadratic programs and
quadratically constrained convex quadratic programs, which in turn, model
applications from a variety of fields including engineering, control and finance,
as well as in robust optimization and combinatorial optimization. The Lorentz
cone is also important from the point of view of understanding certain special
linear maps on them, especially the so-called Z-transformations. We refer the
reader to [1] for applications of the Lorentz cone in optimization, while [5] is
a recent work with applications to nonnegative matrix theory.

It is well-known that the Lorentz cone K is self-dual, that is, K∗ = K.
Therefore, for A ∈ Mn, the eigenvalue complementarity problem associated
to K consists of finding a scalar λ ∈ R and a nonzero vector x ∈ Rn such that

x ∈ K, (A− λI)x ∈ K, xT (A− λI)x = 0, (1.1)

where I denotes the identity matrix of the appropriate order. We call the
scalar λ a Lorentz eigenvalue of A and we call x an associated Lorentz eigen-
vector of A. We denote by σK(A) the set of all Lorentz eigenvalues of A
and we call it the Lorentz-cone spectrum of A. By Corollary 2.1 in [6], it is
guaranteed that (1.1) admits always a solution.

This article was motivated by the recent work [2], where the authors
consider the problem of characterizing the linear preservers of the Pareto-
eigenvalues, which is associated with the eigenvalue complementarity problem
when the convex cone K is the nonnegative orthant Rn+. Here we consider the
characterization of the linear preservers of the Lorentz-cone spectrum. Let us
recall that a linear map φ is said to be a linear preserver of the Lorentz-cone
spectrum if σK(φ(A)) = σK(A), for all A ∈M.

Our manuscript consists of two parts. The first part focusses its atten-
tion on determining the Lorentz-cone spectrum of some classes of matrices
that are relevant in proving the results in the second part, which focusses
on characterizing the linear maps φ : M → M that preserve the Lorentz-
cone spectrum, for some subspacesM of Mn. We first consider the following
subspaces M : the subspace of diagonal matrices; the subspace of block-

diagonal matrices Ã⊕ [a], where Ã ∈ Mn−1 is symmetric; and the subspace

of block-diagonal matrices Ã ⊕ [a], where Ã ∈ Mn−1 is a generic matrix. In
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each of these cases, we completely characterize the linear preservers of the
Lorentz-cone spectrum. In particular, we show that they should be what we
call standard maps, that is, maps of the form φ(A) = PAQ for all A ∈ M
or φ(A) = PATQ for all A ∈ M, for some matrices P,Q ∈ Mn. (By AT we
denote the transpose of A.) We then characterize the Lorentz-cone spectrum
preservers that are standard maps whenM is the subspace Sn of symmetric
matrices in Mn andM is Mn. Very recently, we found the paper [8], in which
the result for Mn is proven using different techniques. For completeness we
include it here with our proof, hoping that it provides tools that may be
helpful in proving our conjecture that all Lorentz-cone spectrum preservers
in Mn are standard maps.

2. Properties of Lorentz eigenvalues

We next give some simple facts related to the Lorentz-cone and the Lorentz-
cone spectrum of a matrix A ∈ Mn. The proofs of these results are easy
and, therefore, are omitted. The first result can be helpful in the proof of the
second one. See also [8], in which some of these properties appear.

Proposition 2.1. Let x ∈ K. Then:

1. Px ∈ K for any matrix P of the form

P =

[
P̃ 0
0 1

]
, (2.1)

where P̃ ∈Mn−1 is orthogonal.
2. Dx ∈ K for any diagonal matrix D = diag(d1, d2, . . . , dn) ∈ Mn, with
dn ≥ 0 and |di| ≤ dn, i = 1, 2, . . . , n− 1. In particular, γx ∈ K for any
γ ≥ 0.

Proposition 2.2. Let A ∈Mn. Then,

1. σK(γA) = γσK(A), for all γ ≥ 0.
2. σK(A+ γI) = σK(A) + γ, for all γ ∈ R.
3. σK(PAP−1) = σK(A), for any invertible matrix P ∈ Mn of the form

(2.1), where P̃ ∈Mn−1 is an orthogonal matrix.
4. σK(A) ⊆ σK(DAD−1), for any diagonal matrix D = diag(d1, . . . , dn)

with dn > 0 and |di| ≤ dn, i = 1, 2, . . . , n − 1. Moreover, equality holds
in the inclusion above, if D is a positive multiple of a signature matrix
with dn = 1.

5. σKm(A2) ⊆ σKn(A), for any matrix A of the form A = A1 ⊕ A2 with
A1 ∈Mn−m and A2 ∈Mm.

We next give a characterization of Lorentz eigenvalues, alternative to
the definition, which has shown to be very convenient in practice. Notice
that, using the standard topology in Rn, a vector x = [zT xn]T ∈ K, where
z ∈ Rn−1, is in the interior of K if and only if ‖z‖ < xn. Also, for any
λ ∈ σK(A), there is an associated Lorentz eigenvector with the last entry
equal to 1.
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The Lorentz-cone spectrum of A ∈Mn can be seen as the union of two
(not necessarily disjoint) sets:

σK(A) = σint(A,K) ∪ σbd(A,K),

where σint(A,K) contains the Lorentz eigenvalues for which there exists an
associated Lorentz eigenvector in the interior of K and σbd(A,K) contains the
Lorentz eigenvalues for which there exists an associated Lorentz eigenvector
on the boundary of K.

It is known [7] that λ ∈ σint(A,K) if and only if λ is a standard eigen-
value of A (that is, λ ∈ σ(A)), which, however, is associated with an eigen-
vector in the interior of K.

By [7, Proof of Theorem 4.2], we have that λ ∈ σbd(A,K) if and only
if there exists z ∈ Rn−1, with ‖z‖ = 1, and s, µ ∈ R, with s > 0, such that
λ = µ+ s and [

Ã− µI u
vT a− µ− 2s

] [
z
1

]
= 0, (2.2)

with Ã ∈Mn−1.

For our purposes, it will be convenient to distinguish between the Lorentz
eigenvalues of a matrix that are also eigenvalues in the usual sense, and those
that are not. We say that λ ∈ σK(A) is a standard Lorentz eigenvalue of
A ∈ Mn if λ ∈ σ(A). We say that λ is a nonstandard Lorentz eigenvalue of
A otherwise.

Note that in the characterization of boundary Lorentz eigenvalues given
above, if s = 0, then λ = µ is a standard Lorentz eigenvalue.

An interesting feature of the Lorentz-cone spectrum of a matrix A ∈Mn,
or, more precisely, of σbd(A,K), is that it may be infinite, in stark contrast
with the standard spectrum. Observe that σint(A,K) is always finite, since it
is a subset of the standard spectrum of A. The next lemma gives necessary
conditions for a matrix to have infinitely many Lorentz eigenvalues. Its proof
follows from [7, Theorem 4.2 and the proof of Corollary 4.4].

Lemma 2.3. Let

A =

[
Ã u
vT a

]
∈Mn.

If A has infinitely many Lorentz eigenvalues, then there exist µ ∈ σ(Ã) with
geometric multiplicity at least 2 and s > 0 such that:

1. u ∈ Im(Ã− µI),

2. v /∈ Im(ÃT − µI),

3.

∥∥∥∥∥
[
Ã− µI
vT

]† [
u

a− µ− 2s

]∥∥∥∥∥ ≤ 1,

where B† denotes the Moore-Penrose inverse of the matrix B.
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3. Lorentz eigenvalues of special matrices.

In this section, we determine the Lorentz-cone spectrum of some structured
matrices. These results will be used in the sequel.

Theorem 3.1. Let

A = Ã⊕ [a] ∈Mn,

with a ∈ R. Then,

σK(A) = {a} ∪
{
µ+ a

2
: µ ∈ σ(Ã), µ < a

}
.

Moreover, a is the only standard Lorentz eigenvalue of A.

Proof. It can be easily verified that there exists λ ∈ R and a vector x ∈ Rn−1
such that (

Ã⊕ [a]− λI
)[ x

1

]
= 0, (3.1)

if and only if, λ = a. Moreover, (3.1) holds for x = 0 and λ = a. Thus, a is
the only standard Lorentz eigenvalue of A.

Next, suppose that λ is a nonstandard Lorentz eigenvalue of A. Then,
there are µ, s ∈ R, with s > 0 and λ = µ + s, and a vector z ∈ Rn−1, with
‖z‖ = 1, such that [

Ã− µI 0
0 a− µ− 2s

] [
z
1

]
= 0. (3.2)

This implies that a−µ
2 = s > 0 and (Ã − µI)z = 0. Thus, µ < a, µ is an

eigenvalue of Ã and λ = s+ µ = µ+a
2 . Conversely, suppose that λ = µ+a

2 , in

which µ is an eigenvalue of Ã and µ < a. Let z ∈ Rn−1 be a unit eigenvector

of Ã associated with µ. Thus, for s = λ−µ = a−µ
2 > 0, (3.2) holds, implying

that λ is a nonstandard Lorentz eigenvalue of A. �

Note that, if A is the zero matrix, then 0 is the only Lorentz eigenvalue
of A.

Corollary 3.2. Let

A = Ã⊕ [a] ∈Mn

and

B = B̃ ⊕ [a] ∈Mn,

with a ∈ R. If Ã and B̃ are similar matrices, then σK(A) = σK(B).

Corollary 3.3. Let D = diag(d1, d2, . . . , dn) ∈Mn be a diagonal matrix. Then,

σK(D) = {dn} ∪
{
di + dn

2
: di < dn

}
.

In the next result, we study the Lorentz-cone spectrum of another class
of matrices, obtained by bordering the zero matrix, which does not include
diagonal matrices.
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Theorem 3.4. Let

A =

[
0 u
vT a

]
,

with u, v ∈ Rn−1 not both zero, and a ∈ R. Then,

1. 0 is a standard Lorentz eigenvalue of A if, and only if, u = 0 and
|a| ≤ ‖v‖.

2. If λ 6= 0, then λ is a standard Lorentz eigenvalue of A if, and only if,
|λ| ≥ ‖u‖ and λ2 − aλ− vTu = 0.

3. If u 6= 0, then λ is a nonstandard Lorentz eigenvalue of A if, and only
if, one of the following holds:

(i) vTu+ a‖u‖ − ‖u‖2 > 0 and λ = 1
2‖u‖ [a‖u‖+ ‖u‖2 + vTu].

(ii) ‖u‖2 + a‖u‖ − vTu > 0 and λ = 1
2‖u‖ [a‖u‖ − ‖u‖

2 − vTu].

4. If u = 0 (v 6= 0), then λ is a nonstandard Lorentz eigenvalue of A if
and only if

λ ∈
[
a− ‖v‖

2
,
a+ ‖v‖

2

]
∩ (0,∞).

Proof. To prove 1. and 2., we observe that a constant λ is a standard Lorentz
eigenvalue of A if, and only if, there exists a vector x ∈ Rn−1 such that
‖x‖ ≤ 1 and [

−λ u
vT a− λ

] [
x
1

]
= 0. (3.3)

Claim 1: From the equation as above, λ = 0 is a standard eigenvalue of
A if, and only if, u = 0 and vTx+a = 0 has a solution in the unit disk. This,
in turn, is equivalent to |a| ≤ ‖v‖.

Claim 2: A scalar λ 6= 0 is a standard eigenvalue of A if, and only if,
there is a solution x in the unit disk for the system

x =
u

λ
, vTx+ a− λ = 0.

The requirement that ‖x‖ ≤ 1, is equivalent to ‖u‖ ≤ |λ|. Replacing the value
of x in the second condition, one obtains the required inequality.

To prove 3. and 4., we observe that a constant λ is a nonstandard
Lorentz eigenvalue of A if, and only if, λ = µ+ s, with s > 0, and[

−µ u
vT a− µ− 2s

] [
x
1

]
= 0, (3.4)

for some vector x ∈ Rn−1 with ‖x‖ = 1. The identity (3.4) is equivalent to

−µx+ u = 0 and vTx+ a− µ− 2s = 0. (3.5)

Claim 3: The conditions in (3.5) are equivalent to x = u
µ and s =

vT x+a−µ
2 . Note that, since u 6= 0, also µ 6= 0. We have ‖x‖ = 1 if, and

only if, |µ| = ‖u‖ and so one has µ = ‖u‖ or µ = −‖u‖. By replacing the
corresponding vectors x in the expression for s, conclusions (i) and (ii) follow.
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Claim 4: When u = 0, so that µ = 0, one has λ = s > 0. Moreover,
there exists a vector x, with ‖x‖ = 1, for which vTx+ a− 2s = 0 if, and only

if, |a−2s|‖v‖ = |a−2λ|
‖v‖ ≤ 1. Thus,

λ ∈
[
a− ‖v‖

2
,
a+ ‖v‖

2

]
∩ (0,∞).

�

As a consequence of Corollary 3.3 and Theorem 3.1, we have the follow-
ing result:

Corollary 3.5. Let Eij := eTi ej ∈Mn, where ei denotes the ith standard basis
vector in Rn. We then have the following:
(i) For each i = 1, 2, · · · , n− 1,

σK(Eni) = [0, 1/2], σK(Ein) = {−1/2}.

and

σK(Eni + Ein) = {−1, 1}.

(ii) For i, j ∈ {1, 2, . . . , n− 1}, with i 6= j,

σK(Enj + Ein) = {−1/2}.

(iii) For each i = 1, 2, . . . , n− 1,

σK(Eii) = {0}, and σK(Enn) = {1, 1/2}.

Next, we describe the Lorentz-cone spectrum of symmetric rank-one
matrices. First, we recall a well-known result for the inverse of a rank-one
perturbed invertible matrix, that will be used in its proof.

Lemma 3.6. (Sherman-Morrison Formula) Suppose A ∈ Mn is an invertible
matrix and u, v ∈ Rn are column vectors. Then, A+ uvT is invertible if and
only if 1 + vTA−1u 6= 0. In this case

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Theorem 3.7. Let α, a ∈ R with α 6= 0, and let 0 6= y = [ŷT a]T ∈ Rn be a
unit vector. Let

A = αyyT =

[
αŷŷT αaŷ
αaŷT αa2

]
.

Then, the Lorentz-cone spectrum of A is given as follows:

1. if a = 0 and ŷ 6= 0, then σK(A) =

{
{0}, if α > 0
{0, α‖ŷ‖2/2}, if α < 0

;

2. if a 6= 0 and ŷ = 0, then σK(A) =

{
{αa2}, if α < 0
{αa2, αa2/2}, if α > 0

;
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3. if a 6= 0 and ŷ 6= 0, then

σK(A) =



{0, α}, if |a|= ‖ŷ‖
{0}, if |a| < ‖ŷ‖ and α > 0

{0, α (a±‖ŷ‖)2
2 }, if |a| < ‖ŷ‖ and α < 0

{α}, if |a| > ‖ŷ‖ and α < 0

{α, α (a±‖ŷ‖)2
2 }, if |a| > ‖ŷ‖ and α > 0

.

Proof. When a = 0 and ŷ 6= 0, or when a 6= 0 and ŷ = 0, the conclusions
follow from Theorem 3.1.
Next, assume that a 6= 0 and ŷ 6= 0.

Case 1 (Standard Lorentz eigenvalues): Since the (standard) eigenval-
ues of A are 0 and α, these are the only candidates for standard Lorentz
eigenvalues of A.

Zero is a standard Lorentz eigenvalue of A if, and only if, there exists a
vector x ∈ Rn−1 with ‖x‖ ≤ 1 such that

0 = ŷŷTx+ aŷ = ŷ(ŷTx+ a) and 0 = aŷTx+ a2 = a(ŷTx+ a). (3.6)

Since ŷ 6= 0 and a 6= 0, (3.6) is equivalent to ŷTx+a = 0, which has a solution
in the unit disk if, and only if, |a| ≤ ‖ŷ‖.

Similarly, α is a standard Lorentz eigenvalue of A if and only if there
exists a vector x ∈ Rn−1 with ‖x‖ ≤ 1 such that

(ŷŷT − I)x+ aŷ = 0 and aŷTx+ a2 − 1 = 0. (3.7)

Since ‖y‖ = 1, we have ‖ŷ‖2 + a2 = 1, and (3.7) is equivalent to

(ŷŷT − I)x+ aŷ = 0 and aŷTx− ŷT ŷ = 0. (3.8)

Note that the second equation in (3.8) has a solution x in the unit disk if,

and only if, ‖ŷ‖ ≤ |a|, and that x = ŷ
a is one of those solutions. Taking into

account that ‖y‖ = 1, it can be easily seen that such x is also a solution of
the first equation in (3.8).

Case 2 (Nonstandard Lorentz eigenvalues): We have that λ is a non-
standard Lorentz eigenvalue of A if, and only if, there exist w ∈ Rn−1, with
‖w‖ = 1, and µ, s ∈ R, with s > 0, such that λ = µ+ s and

(αŷŷT − µI)w + αaŷ = 0 and αaŷTw + αa2 − µ− 2s = 0. (3.9)

Note that the matrix αŷŷT − µI is invertible if, and only if, µ /∈ {0, α‖ŷ‖2}.
Now, we claim that µ /∈ {0, α‖ŷ‖2}.
Proof of the claim: Suppose that µ = 0. The second condition in (3.9) is
equivalent to

ŷTw =
2s− αa2

αa
.

Replacing this expression in the first equation in (3.9), we have

0 = ŷ
2s− αa2

αa
+ aŷ =

2s

αa
ŷ,

a contradiction, since s 6= 0, proving that, µ 6= 0.
If, on the other hand, one has µ = α‖ŷ‖2, then, multiplying on the left
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both sides of the first equation in (3.9) by ŷT , we get αa‖ŷ‖2 = 0, which is
impossible, by the hypothesis. This completes the proof of the claim.

Hence, the matrix αŷŷT − µI is invertible and, by Lemma 3.6, the first
condition in (3.9) is equivalent to

w = (µI − αŷŷT )−1αaŷ =
1

µ
(I +

αŷŷT

µ− α‖ŷ‖2
)αaŷ =

αaŷ

µ− α‖ŷ‖2
.

Thus, ‖w‖ = 1 if and only if µ − α‖ŷ‖2 = αa‖ŷ‖ or µ − α‖ŷ‖2 = −αa‖ŷ‖.
Replacing the obtained formula for w in the second condition in (3.9), we
have

α2a2‖ŷ‖2

µ− α‖ŷ‖2
+ αa2 − µ− 2s = 0.

For both values of µ, we get s = αa
2−‖ŷ‖2

2 . We have s > 0 if, and only if,

α > 0 and a2 > ‖ŷ‖2; or α < 0 and a2 < ‖ŷ‖2. The corresponding eigenvalues

λ = µ+ s are α (a+‖ŷ‖)2
2 and α (a−‖ŷ‖)2

2 . �

We finally state a result that will be used in Section 4.4 concerning
rank-one nilpotent matrices.

Lemma 3.8. Let A ∈ Mn be a nilpotent rank-one matrix. If A has infinitely
many Lorentz eigenvalues, then there exists a nonzero vector v ∈ Rn−1 such
that

A =

[
0 0
vT 0

]
.

Proof. Since A is a rank-one matrix, there exist vectors pT = [p̂T a] and
qT = [q̂T b] ∈ Rn, with a, b ∈ R, such that

A = pqT =

[
p̂q̂T bp̂
aq̂T ab

]
.

Since A has infinitely many eigenvalues, by Lemma 2.3, there exist µ, s ∈ R,
with s > 0, such that (i) µ is an eigenvalue of p̂q̂T with geometric multiplicity
at least 2 and (ii) aq̂ /∈ Im(q̂p̂T −µI). Since p̂q̂T is a rank one matrix, the first
requirement implies that µ = 0. Since Im(q̂p̂T ) = span{q̂}, it follows from
the second requirement that p̂ = 0, a 6= 0 and q̂ 6= 0. Moreover, since A is
nilpotent, one has tr(A) = 0 and so b = 0. �

4. Lorentz-cone spectrum linear preservers

In this section, we use the following notation:

• Dn denotes the space of n× n diagonal matrices in Mn,

• Ln := {Ã⊕ [a] ∈Mn: Ã ∈Mn−1 is symmetric},
• Wn := {Ã⊕ [a] ∈Mn : Ã ∈Mn−1},
• Sn denotes the space of n× n symmetric matrices in Mn.
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In this section, we characterize linear maps φ : M → M that pre-
serve the Lorentz-cone spectrum, when M ∈ {Dn, Ln,Wn, Sn,Mn}. For
M∈ {Dn, Ln,Wn} we give a complete characterization of such maps φ, while
for M ∈ {Sn,Mn} we will restrict our attention to Lorentz-cone spectrum
preservers that are standard maps, according to the next definition.

Definition 4.1. Let φ : S → S be a linear map, where S is a subspace of Mn.
If there exist matrices P,Q ∈Mn such that

φ(A) = PAQ for all A ∈Mn (4.1)

or
φ(A) = PATQ for all A ∈Mn, (4.2)

then, we say that φ is a standard linear map. If, in addition, φ preserves the
Lorentz-cone spectrum, we say that φ is a standard Lorentz-cone spectrum
preserver.

Note that, if, in Definition 4.1, S ⊆ Sn, then (4.1) and (4.2) coincide.

4.1. General properties

In this section we state and prove some important lemmas that will allow us
to obtain our main results.

Lemma 4.2. Let M be any subspace of Mn and φ :M→M be a linear map
preserving the Lorentz-cone spectrum. Assume that φ is bijective. Then, φ−1

also preserves the Lorentz-cone spectrum.

Proof. Let A ∈M. Then,

σK(φ−1(A)) = σK(φ(φ−1(A))) = σK(A).

�

Our next goal is to show that linear maps φ : M → M, with M ∈
{Dn, Ln,Wn, Sn,Mn}, preserving the Lorentz-cone spectrum are bijective.
For this purpose, we need the following result, which is a particular case of
the so called ”cancellation law” (see [8, Definition 1]). We notice that, when
the considered space M is Mn, this result has already been obtained in [8],
although using different techniques.

Lemma 4.3. Let M∈ {Dn, Ln,Wn, Sn,Mn} and A ∈M. If

σK(A+B) = σK(B), for all B ∈M (4.3)

then A = 0.

Proof. Let A ∈M satisfy (4.3). Then,

σK(A) = σK(A+ 0) = σK(0) = {0}, (4.4)

where the second equality follows from our assumption and the last equality
follows from Theorem 3.1.

Case 1: Suppose thatM∈ {Dn, Ln,Wn}. By Theorem 3.1, (4.4) implies

that A = Ã ⊕ [0] and the real eigenvalues of Ã are nonnegative. If Ã has a
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positive real eigenvalue α, then, for the choice B = −Ã ⊕ [0], we have that
−α
2 ∈ σK(B) and −α

2 /∈ σK(A + B) = {0}, a contradiction. Thus, the real

eigenvalues of Ã ∈ Mn−1 are zero. If M ∈ {Dn, Ln} then A = 0, as desired.
Now, consider M = Wn. Then, there is an orthogonal matrix Q ∈ Mn−1
such that

C̃ := QT ÃQ =

[
C11 C12

0 C22

]
,

where C11 ∈Mp1 , if nonempty, is upper triangular with 0 main diagonal, and
C22 ∈Mp2 , if nonempty, has no real eigenvalues.

Suppose that p2 > 0. Let B̃ = QT (0p1×p1 ⊕ δIp2)Q, with δ < 0. Then,

by Theorem 3.1, σK(A + (B̃ ⊕ [0])) = {0} and σK(B̃ ⊕ [0]) = {− δ2 , 0}, a
contradiction.

Now suppose that p2 = 0, that is, Ã is nilpotent, and Ã 6= 0. In this

case there is a 2× 2 principal submatrix of C̃ of the form[
0 x
0 0

]
,

with x 6= 0. Let F̃ be the matrix obtained from C̃ by replacing this 2 × 2
submatrix by [

0 0
x 0

]
and all the other entries by 0. Thus, σK(A+ (QF̃QT ⊕ [0])) = {0,− |x|2 } and

σK(QF̃QT ⊕ [0]) = {0}, a contradiction. Thus, A = 0.
Case 2: Suppose that M∈ Sn. Let

A =

[
Ã u
uT a

]
∈ Sn,

with u ∈ Rn−1. Suppose that u 6= 0 and a 6= −2‖u‖. Let

B1 =

[
0 −u
−uT −a

]
By Theorem 3.1, 0 ∈ σK(A + B1) and, by Theorem 3.4, 0 /∈ σK(B1), a
contradiction. Now suppose that u 6= 0 and a = −2‖u‖. Let

B2 =

[
0 −u
−uT 0

]
By Theorem 3.1, a ∈ σK(A + B2) and, by Theorem 3.4, a /∈ σK(B2), a
contradiction.

Thus, u = 0 implying that A ∈Wn and the proof follows as in Case 1.
Case 3: Suppose thatM∈Mn. This case can be proved using Theorems

3.1 and 3.4, with arguments similar to those in Case 2. Also, it is shown in
[8] using a different approach. Therefore, we omit the proof here. �

The next theorem is a consequence of Lemma 4.3 and provides special
properties of the linear maps preserving the Lorentz-cone spectrum. We omit
its proof since the deduction from Lemma 4.3 is similar to the one in [8,
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Proposition 9] (see also [2]). Let us recall that a map η : M→M is called
unital if η(I) = I.

Theorem 4.4. Let M ∈ {Dn, Ln,Wn, Sn,Mn}. If φ : M → M is a linear
map that preserves the Lorentz-cone spectrum, then φ is bijective and unital.

4.2. The block-diagonal case

In this section we focus on linear preservers φ : M → M of the Lorentz-
cone spectrum, with M ∈ {Dn, Ln,Wn}. The next lemma will be crucial in
characterizing such maps φ, which will be done in Sections 4.2.1 and 4.2.2.
It compares the real spectra of A ∈ M and φ(A), as well as those of their
(n− 1)× (n− 1) leading principal submatrices. Since the claim is valid when
M is any subspace of Wn, we state it in this more general form.

Lemma 4.5. Let M be a subspace of Wn and φ : M → M be a linear

map that preserves the Lorentz-cone spectrum. Let A = Ã ⊕ [a] ∈ M and

φ(A) = B̃ ⊕ [b] . Then, a = b and σR(Ã) = σR(B̃), counting multiplicities.

Proof. Let A and φ(A) be as in the statement. By item (2) of Proposition
2.2, we may assume a = 0. First, we show that b = 0. Assume b 6= 0. Since
0 is a Lorentz eigenvalue of A, and therefore of φ(A), by Theorem 3.1, we

have that 0 = γ+b
2 for some γ ∈ σ(B̃) such that γ < b. Analogously, since 0

is also a Lorentz eigenvalue of −A, we have that 0 = δ−b
2 , where δ < −b and

−δ ∈ σ(B̃). Thus, we have

γ = −b = −δ and γ < b < −δ,
a contradiction. Thus, b = 0.

Suppose that Ã has s ≤ n− 1 real eigenvalues (counting multiplicities).

Let T̃ = ZT ÃZ be the real Schur’s form of Ã, where Z ∈Mn−1 is orthogonal

and T̃ is quasi-upper triangular, that is, T̃ is a block upper-triangular matrix
with 1× 1 and 2× 2 blocks on the main diagonal. Without loss of generality,
suppose that the s 1 × 1 blocks (which correspond to the real eigenvalues)
occur in the first s main diagonal positions. Let ε = (ε1, . . . , εs) be a sequence

of distinct positive real numbers. Let us denote by T̃ε the matrix obtained

from T̃ by adding to T̃ii (the main diagonal entry of T̃ in position (i, i))
the real number εi, i = 1, 2, . . . , s. Then, if ‖ε‖ is small enough, the real

eigenvalues of T̃ε are nonzero and distinct. Moreover, limε→0 T̃ε = T̃ . Let

Ãε = ZT̃εZ
T and Aε = Ãε⊕[0] ∈Mn. Then, limε→0 Ãε = Ã and limε→0Aε =

A.
By Theorem 3.1, σK(Aε) = {0, 12σ−(Ãε)} and σK(−Aε) = {0,− 1

2σ+(Ãε)},
where σ−(Ãε) and σ+(Ãε) denote the subsets of σR(Ãε) of negative and pos-
itive numbers, respectively.

Let φ(Aε) = B̃ε ⊕ [0] and let σ−(B̃ε) and σ+(B̃ε) denote the subsets of

σR(B̃ε) of negative and positive numbers, respectively.

By Theorem 3.1 again, σK(φ(Aε)) = {0, 12σ−(B̃ε)} and σK(φ(−Aε)) =

{0,− 1
2σ+(B̃ε)}. Since σK(Aε) = σK(φ(Aε)), this implies σ−(Ãε) = σ−(B̃ε)



Lorent-cone linear preservers 13

and σ+(Ãε) = σ+(B̃ε), that is, σR(Ãε) ⊆ σR(B̃ε). Note that it could happen

that, although 0 is not an eigenvalue of Ãε, it is an eigenvalue of B̃ε. Moreover,

since the eigenvalues of Ãε are all distinct, B̃ε must have the same (nonzero)

real eigenvalues as Ãε and these must have multiplicity larger than or equal
to 1.

Since φ is continuous, limε→0 φ(Aε) = φ(A) and, in particular, limε→0 B̃ε =

B̃. Since the eigenvalues of a matrix depend continuously on its entries, we

deduce that σR(Ã) ⊆ σR(B̃) and that the multiplicity of an eigenvalue λ of

Ã is less than or equal to the multiplicity of λ as an eigenvalue of B̃. Since
φ is invertible and its inverse also preserves the Lorentz-cone spectrum (see
Lemma 4.2), by interchanging the roles of A and φ(A) and considering φ−1

instead of φ, we obtain that σR(B̃) ⊆ σR(Ã), counting multiplicities, which
completes the proof. �

4.2.1. The symmetric block-diagonal case. Utilizing the fact that any ma-
trix A ∈ Ln is diagonalizable by similarity, we get the following immediate
consequence of Lemma 4.5.

Corollary 4.6. Let M ∈ {Dn, Ln} and let φ :M→M be a linear map that
preserves the Lorentz-cone spectrum. Then φ preserves the rank, that is, for
any A ∈M, A and φ(A) have the same rank. Moreover, the (n−1)× (n−1)
leading principal submatrices of A and φ(A) also have the same rank.

From Theorem 2.6 in [3], we obtain the following proposition, which
will be used to prove the main result in this section. We denote by rank(A)
the rank of a matrix A ∈ Mp. Recall that Sp denotes the subspace of Mp of
symmetric matrices.

Proposition 4.7. Let ψ : Sp → Sp be a bijective linear map preserving rank-
one matrices, that is, for every A ∈ Sp, it holds that rank(ψ(A)) = 1 when-
ever rank(A) = 1. Then, there is a nonsingular matrix Q ∈ Mp such that
ψ(A) = QAQT for any A ∈ Sp.

We next give the characterization of the Lorentz-cone spectrum pre-
servers defined on M∈ {Dn, Ln}.

Theorem 4.8. Let M ∈ {Dn, Ln}. A linear map φ : M →M preserves the
Lorentz-cone spectrum if, and only if, there is an orthogonal matrix Q ∈Mn−1
such that

φ(A) = (Q⊕ [1])A(QT ⊕ [1]),

for all A ∈ M. Moreover, if M = Dn, then Q may be taken to be a permu-
tation matrix.

Proof. Sufficiency follows from item (3) of Proposition 2.2. Now, we show
necessity.
Assume that φ preserves the Lorentz-cone spectrum. By Lemma 4.5, for any

A = Ã⊕ [a] ∈M, we have

φ(Ã⊕ [a]) = B̃ ⊕ [a] ∈M,
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for some B̃ ∈Mn−1. Thus, φ defines a linear map

ψ : M̃ → M̃

given by ψ(Ã) = B̃, where M̃ = Dn−1, if M = Dn and M̃ = Sn−1, if
M = Ln. Hence, it is enough to show that there is Q as claimed such that

ψ(Ã) = QÃQT for any Ã ∈ M̃. From Theorem 4.4, φ is a bijective unital
map, implying that so is ψ.

Case 1: Suppose that M = Dn. Denote by Ẽii the (n − 1) × (n − 1)
leading principal submatrix of Eii, i = 1, . . . , n − 1. By Lemma 4.5, for

i < n, ψ(Ẽii) = Ẽjj , for some j < n. Hence, since ψ is bijective, there

is a permutation matrix Q ∈ Mn−1 such that ψ(Ẽii) = QẼiiQ
T , for all

i = 1, . . . , n − 1. Since Ẽii, i = 1, . . . , n − 1, is a basis of Dn−1, we have

ψ(Ã) = QÃQT for any Ã ∈ Dn−1.
Case 2: Suppose that M = Ln. Since, by Theorem 4.4, φ is bijective,

it follows that so is ψ. By Corollary 4.6, ψ preserves the rank of any matrix

Ã ∈ Sn−1. Hence, by Proposition 4.7, there exists an invertible matrix P ∈
Mn−1 and α ∈ R\{0} such that

B̃ = ψ(Ã) = αPÃPT

for any Ã ∈Mn−1. Since φ(I) = I, we have αPPT = I, which implies α > 0.
The conclusion follows by taking Q =

√
αP. �

4.2.2. The general block-diagonal case. The next result is proved in [4].

Proposition 4.9. Let T : Mp →Mp be a bijective linear map with the property
T (S) ⊆ S, where S denotes the set of singular matrices in Mp. Then, T is a
standard linear map.

We next give the characterization of the Lorentz-cone spectrum pre-
servers defined on Wn.

Theorem 4.10. A linear map φ : Wn → Wn preserves the Lorentz-cone spec-
trum if, and only if, there exists an invertible matrix P ∈Mn−1 such that

φ(A) = (P ⊕ [1])A(P−1 ⊕ [1])

for all A ∈Wn, or

φ(A) = (P ⊕ [1])AT (P−1 ⊕ [1])

for all A ∈Wn.

Proof. Necessity: Assume that φ preserves the Lorentz-cone spectrum. Then,

by Lemma 4.5, for any A = Ã⊕ [a], we have

φ(Ã⊕ [a]) = B̃ ⊕ [a]

for some B̃ ∈Mn−1. Thus, φ defines a linear map

ψ : Mn−1 →Mn−1
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given by ψ(Ã) = B̃ which, by Lemma 4.5, preserves singularity. Since φ
is bijective, so is ψ and, by Proposition 4.9, there exist invertible matrices
P,Q ∈Mn−1 such that

B̃ = ψ(Ã) = PÃQ

for all Ã ∈Mn−1, or

B̃ = ψ(Ã) = PÃTQ

for all Ã ∈Mn−1. Since φ is unital, we have that ψ is unital and so, PQ = I,
completing the proof.

Sufficiency: Assume that φ has one of the claimed forms and let A =

Ã ⊕ [a]. By hypothesis we have φ(A) = B̃ ⊕ [a], with B̃ being similar to A.
Recall that any square matrix is similar to its transpose. Now, the conclusion
follows from Theorem 3.1. �

4.3. Standard Lorentz-cone spectrum preservers on Sn

In this section, we restrict our attention to standard linear maps φ : Sn → Sn
and characterize those that preserve the Lorentz-cone spectrum. We conjec-
ture that, in fact, the family of standard maps includes all the Lorentz-cone
spectrum linear preservers on Sn.

Lemma 4.11. Let A = uvT , with u, v ∈ Rn, be a nonzero matrix. Then A is
symmetric if, and only if, v = αu for some nonzero scalar α.

Proof. The sufficiency part is trivial. Let A be symmetric. Denote by xi the
ith coordinate of a given vector x. Since A is nonzero, it follows that uivj 6= 0
for at some indices i, j. In particular, ui 6= 0. Then,

viu = uvT ei = Aei = AT ei = vuT ei = uiv.

So, v = vi
ui
u, completing the proof. �

We next give the characterization of the standard maps defined on Sn
that preserve the Lorentz-cone spectrum.

Theorem 4.12. Let φ : Sn → Sn be a standard linear map. Then, φ preserves
the Lorentz–cone spectrum if and only if there exists and orthogonal matrix
Q ∈Mn−1 such that

φ(A) = (Q⊕ [1])A(QT ⊕ [1]),

for all A ∈Mn.

Proof. The “if” claim follows from Proposition 2.2. Now we show the “only
if” claim. By hypothesis, there exist matrices P,Q ∈ Mn such that (4.1)
holds. Since φ preserves the Lorentz-cone spectrum, by Theorem 4.4, φ is
unital and so Q = P−1.

For i ∈ {1, . . . , n} we have

φ(Eii) = PEiiP
−1,
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implying that φ(Eii) = piq
T
i , where pi and qTi denote, respectively, the ith

column of P and the ith row of P−1. Since, by assumption, φ(Eii) is sym-
metric, by Lemma 4.11, we have qi = αipi for some αi ∈ R. Thus,

φ(Eii) = αipip
T
i = (αi‖pi‖2)

pi
‖pi‖

pTi
‖pi‖

= βi

[
r̂ir̂

T
i air̂i

air̂
T
i a2i

]
,

where rTi = 1
‖pi‖p

T
i := [r̂Ti ai], with ai ∈ R, and βi = αi‖pi‖2. Since 1 ∈

σ(Eii) = σ(φ(Eii)), we have βi = 1. Thus, αi = 1
‖pi‖2 > 0.

For i < n, we have σK(−φ(Eii)) = σK(−Eii) = {0,−1/2}, where the
last equality follows from Theorem 3.1. By Theorem 3.7 and taking into
account that βi = 1, it follows that ai = 0 (and ‖r̂i‖ = 1). Thus, the last row
of P is a scalar multiple of eTn , the last row of In.

For i = n, we have σK(φ(Enn)) = σK(Enn) = {1, 1/2}, where the last
equality follows from Theorem 3.1 or Corollary 3.5. By Theorem 3.7, we
deduce that r̂n = 0 and βna

2
n = 1. Since βn = 1, then |an| = 1. By a possible

multiplication of P and P−1 by −1, we assume an = 1. Thus, the last column
of P equals en, the last column of In.

Hence, we have shown that P = P̃ ⊕ [1], where P̃ ∈Mn−1 and

q̃i = αip̃i, with αi =
1

‖pi‖2
=

1

‖p̃i‖2
, (4.5)

where p̃i and q̃Ti denote the ith column and the ith row of P̃ and P̃−1,
respectively.

For i ∈ {1, 2, . . . , n− 1}, we have

φ(Eni + Ein) =

[
0 p̃i
q̃Ti 0

]
=

[
0 p̃i

αip̃
T
i 0

]
.

Since φ(Eni +Ein) is symmetric and p̃i is nonzero, we have αi = 1, implying

P̃−1 = P̃T . �

4.4. Standard Lorentz-cone spectrum preservers on Mn

As mentioned in the introduction, the standard linear maps φ : Mn → Mn

that preserve the Lorentz-cone spectrum were very recently characterized in
[8]. When we became aware of that paper, we already had a proof of this result
using the techniques developed in this manuscript. So, for completeness and
hoping that our approach give some light in proving our conjecture that the
family of standard linear maps includes all the Lorentz-cone spectrum linear
preservers on Mn, we include our proof in this manuscript.

Lemma 4.13. Let φ : Mn → Mn be a standard linear map preserving the
Lorentzcone spectrum. Then, there is no invertible matrix P ∈Mn such that
φ(A) = PATP−1 for all A ∈Mn.
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Proof. Suppose that there is an invertible matrix P ∈Mn such that φ(A) =
PATP−1 for all A ∈Mn. Let i ∈ {1, 2, . . . , n− 1}. Then,

φ(Eni) = PEinP
−1 = piq

T
n =

[
p̂iq̂

T
n bnp̂i

aiq̂n
T aibn

]
,

where pi = [p̂Ti ai]
T and qTn = [q̂Tn bn] denote, respectively, the ith column of

P and the nth row of P−1. We have σK(φ(Eni)) = σK(Eni) = [0, 1/2], where
the second equality follows from Corollary 3.5. Since Ein is nilpotent, we
have that φ(Eni) is a nilpotent rank-one matrix with infinitely many Lorentz
eigenvalues. By Lemma 3.8, q̂n 6= 0 and p̂iq̂

T
n = 0, which implies p̂i = 0. Since

i ∈ {1, 2, . . . , n−1} is arbitrary and P is invertible, we get a contradiction. �

We next give the characterization of the standard maps defined on Mn

that preserve the Lorentz-cone spectrum.

Theorem 4.14. Let φ : Mn →Mn be a standard linear map. Then, φ preserves
the Lorentz–cone spectrum if and only if there exists an orthogonal matrix
Q ∈Mn−1 such that

φ(A) = (Q⊕ [1])A(QT ⊕ [1]),

for all A ∈Mn.

Proof. The “if” claim follows from Proposition 2.2. Now we show the “only
if” claim. By hypothesis, there exist matrices P,Q ∈ Mn such that (4.1) or
(4.2) hold. Since φ preserves the Lorentz-cone spectrum, by Theorem 4.4, φ
is unital and so P and Q are invertible and Q = P−1. Then, by Lemma 4.13,
(4.1) holds.

For i = 1, 2, . . . , n, let pi = [p̂Ti ai]
T and qTi = [q̂Ti bi] denote, respec-

tively, the ith column of P and the ith row of P−1. For i < n, we have

φ(Eni) = pnq
T
i =

[
p̂nq̂

T
i bip̂n

anq̂i
T anbi

]
.

Moreover, φ(Eni) is a rank-one nilpotent matrix, as it is similar to Eni.
Taking into account Corollary 3.5, σK(φ(Eni)) = σK(Eni) = [0, 1/2]. Thus,
by Lemma 3.8, bi = 0, p̂n = 0 and an 6= 0, implying that the last column of
P and, thus, the last column of P−1, is a multiple of en, the last column of
In. Moreover, bn = 1/an.

Then, we have

φ(Enn) = pnq
T
n =

[
0 0

anq̂
T
n 1

]
.

If q̂n 6= 0, by Theorem 3.4, σK(φ(Enn)) is infinite, which contradicts the fact,
given by Theorem 3.1, that σK(φ(Enn)) = σK(Enn) = {1, 1/2}. Thus, q̂n = 0

and P = P̃ ⊕ [an] , for some invertible P̃ ∈Mn−1.
Let u ∈ Rn−1. For

A =

[
0 u
0 0

]
∈Mn,
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we have

φ(A) =

[
0 anP̃ u
0 0

]
.

Since σK(φ(A)) = σK(A), by Theorem 3.4, ‖anP̃ u‖ = ‖u‖. As u is arbitrary,

it follows that anP̃ is an orthogonal matrix.

Finally, we show that |an| = 1. For i, j ∈ {1, 2, . . . , n − 1}, with i 6= j,
we have

φ(Enj + Ein) =

[
0 1

an
p̂i

anp̂
T
j 0

]
.

Also, σK(φ(Enj +Ein)) = σK(Enj +Ein) = {−1/2}, where the last equality
follows from Corollary 3.5. By Theorem 3.4, taking into account that p̃Tj p̃i =

0, it follows that ‖ 1
an
p̃i‖ = 1 (note that part 3. (ii) in the theorem applies).

Since ‖anp̃i‖ = 1, we get |an| = 1. Then the result in the statement holds

with Q = P̃ if an = 1 and Q = −P̃ otherwise. �

5. Conclusions

In this paper we study linear maps φ : M→M that preserve the Lorentz-
cone spectrum of any matrix A ∈M, for some subspacesM of Mn = Mn(R),
n ≥ 3. We characterize such maps φ when (i)M is the subspace of Mn formed
by the block-diagonal matrices that are a direct-sum of an (n− 1)× (n− 1)
block and a 1 × 1 block, which we denote by Wn; (ii) M is the subspace
of Wn formed by the diagonal matrices; and (iii) M is the subspace of Wn

of symmetric matrices. In all three cases, we show that these functions are
standard linear maps (see Definition 4.10) of some particular form. We then
focus on the case M = Sn, the subspace of Mn consisting of the symmetric
matrices, and characterize the linear maps φ : Sn → Sn that are standard and
preserve the Lorentz-cone spectrum. An analogous analysis is presented when
M =Mn using our techniques, though this study was performed recently in
[8], in a more general context. In contrast with the block-diagonal case, the
characterization is the same for both subspaces Sn and Mn and is analogous
to the one for the subspace of Wn of symmetric matrices. We conjecture that
if a linear map φ :M→M, withM∈ {Sn,Mn}, preserves the Lorentz-cone
spectrum, then it must necessarily be a standard linear map. We hope the
techniques developed in this paper can give, in the future, some light on a
proof of this conjecture.

As a subproduct of our research, we describe the Lorentz-cone spectrum
of some important classes of matrices in Mn.
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