
Linear maps preserving the Lorentz

spectrum: the 2× 2 case I,II

M. I. Buenoa, Susana Furtadob,∗, Aelita Klausmeierc, Joey Veltrid

aDepartment of Mathematics and College of Creative Studies
University of California Santa Barbara
Santa Barbara, CA 93106, United States

bCEAFEL and Faculdade de Economia da Universidade do Porto
Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

cDepartment of Mathematics, University of Michigan
Ann Arbor, MI 48109, United States

dDepartment of Mathematics, Purdue University
West Lafayette, IN 47906, United States

Abstract

In this paper we give a complete and non-trivial description of the linear
maps φ : Wn → Wn that preserve the Lorentz spectrum, when n = 2 and Wn

is the space Mn of n× n real matrices or the subspace Sn of Mn formed by
the symmetric matrices. In both cases, we have shown that φ(A) = PAP−1

for all A ∈ W2, where P is a matrix with a certain structure. These results
extend to n = 2 those for n ≥ 3 obtained by Bueno, Furtado, and Sivakumar
(2021). The case n = 2 has some specificities, when compared to the case
n ≥ 3, due to the fact that the Lorentz cone in R2 is polyedral, contrary to
what happens when it is contained in Rn with n ≥ 3.

Keywords: Lorentz cone, Lorentz eigenvalues, linear map preserver, 2× 2
matrices
2010 MSC: 15A18, 58C40

IThe work of the first, third, and fourth authors was partially supported by the NSF
grant DMS-1850663. This publication is also part of the “Proyecto de I+D+i PID2019-
106362GB-I00 financiado por MCIN/AEI/10.13039/501100011033”

IIThe work of the second author was partially supported by FCT-Fundação para a
Ciência e Tecnologia, under project UIDB/04721/2020.

∗Corresponding author
Email addresses: mbueno@ucsb.edu (M. I. Bueno), sbf@fep.up.pt (Susana

Furtado), aelita@umich.edu (Aelita Klausmeier), jveltri@purdue.edu (Joey Veltri)

Preprint submitted to Linear Algebra and its applications November 16, 2021



1. Introduction

Given a matrix A in Mn, the algebra of n× n matrices with real entries,
and a closed convex cone K ⊆ Rn, the eigenvalue complementarity problem
consists of finding a scalar λ ∈ R and a nonzero vector x ∈ Rn such that

x ∈ K, Ax− λx ∈ K∗, xT (A− λIn)x = 0,

where
K∗ := {y ∈ Rn : xTy ≥ 0, ∀x ∈ K}

denotes the (positive) dual cone of K. If K = Rn, then the eigenvalue
complementarity problem reduces to the usual eigenvalue problem for the
matrix A.

The eigenvalue complementarity problem originally arose in the solution
of a contact problem in mechanics and has since been used in other appli-
cations in physics, economics, and engineering, including, for example, the
stability of dynamical systems [8]. Other interesting applications can be
found, for example, in [3, 5–7, 9].

In this work we consider the complementarity eigenvalue problem associ-
ated with the Lorentz cone, defined, for n ≥ 2, by

Kn := {(x, xn) ∈ Rn−1 × R : ||x|| ≤ xn},

also known as the ice-cream cone. By ||x|| we denote the 2-norm of x. If n is
clear from the context, we may simply write K instead of Kn. The Lorentz
cone is widely used in optimization theory as an instance of a second-order
cone, which has special importance in linear and quadratic programming [1].

It is well known that the Lorentz cone is self-dual, that is, (Kn)∗ = Kn.
Therefore, for A ∈ Mn, the eigenvalue complementarity problem relative to
Kn consists of finding a scalar λ ∈ R and a nonzero vector x ∈ Rn such that

x ∈ Kn, (A− λI)x ∈ Kn, xT (A− λI)x = 0, (1.1)

where, here and throughout, I denotes the identity matrix of the appropriate
order. By Corollary 2.1 in [10], it is guaranteed that (1.1) always admits a
solution.

If a scalar λ and a nonzero vector x satisfy (1.1), we call λ a Lorentz
eigenvalue of A and x an associated Lorentz eigenvector of A. We call the
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set of all Lorentz eigenvalues of A the Lorentz spectrum of A and denote it
by σK(A). For brevity, we write L-eigenvalue, L-eigenvector, and L-spectrum
instead of Lorentz eigenvalue, Lorentz eigenvector, and Lorentz spectrum,
respectively.

The roots of the characteristic polynomial of a matrix A ∈ Mn will
be called the standard eigenvalues of A, to distinguish them from the L-
eigenvalues.

In this paper we focus on the problem of studying the linear maps φ :
Wn → Wn that preserve the L-spectrum, that is, such that σK(φ(A)) =
σK(A), for all A ∈ Wn, where Wn is a subspace of Mn. We study the
case n = 2, giving continuity to the recent paper [4], in which the authors
considered n ≥ 3 and started by characterizing such maps φ for the following
subspaces Wn of Mn: the subspace of diagonal matrices; the subspace of
block-diagonal matrices Ã ⊕ [a], where Ã ∈ Mn−1 is symmetric; and the

subspace of block-diagonal matrices Ã ⊕ [a], where Ã ∈ Mn−1 is a generic
matrix. In each of these cases, it was shown that the maps should be what
were called standard maps, that is, maps of the form φ(A) = PAQ for all
A ∈ Wn or φ(A) = PATQ for all A ∈ Wn, for some matrices P,Q ∈ Mn. In
addition, when Wn is either Mn or the subspace Sn of symmetric matrices in
Mn, the standard linear maps φ : Wn → Wn that preserve the L-spectrum
were described, and it was conjectured that linear maps that are not standard
do not preserve the L-spectrum. (See also the recent paper [12] in which the
linear preservers φ : Mn →Mn are investigated.)

The goal of this paper is to study the non-trivial problem of characterizing
the linear maps φ : W2 → W2 that preserve the L-spectrum, when W2 is
either M2 or the subspace S2 of M2 of symmetric matrices. It follows from our
characterization that such maps are standard and that, in the case W2 = M2,
their form is less restrictive than the one for n ≥ 3 (see Theorem 2.4 where
the result for n ≥ 3 is recalled). The main differentiating feature between
the cases n = 2 and n ≥ 3 is that the Lorentz cone in R2 is polyhedral,
i.e., it can be expressed as the intersection of a finite number of half-spaces.
This implies that the L-spectrum of a matrix in M2 is always finite, contrary
to what happens for matrices of order n ≥ 3, which can have infinite L-
spectrum. To our knowledge, the only polyhedral cone whose spectral linear
preservers have been studied in depth in the literature is the Pareto cone
(the first orthant in Rn) [2].

We next give the main result of this paper. Recall that M2 denotes the
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space of 2× 2 real matrices and S2 denotes the subspace of M2 of symmetric
matrices.

Theorem 1.1. Let φ : W2 → W2 be a linear map, with W2 ∈ {M2, S2}.
Then, φ preserves the L-spectrum if and only if φ(A) = PAP−1 for all A ∈
W2, or φ(A) = QAQ−1 for all A ∈ W2, where

P =

[
α β
β α

]
and Q =

[
−α −β
β α

]
, (1.2)

for some α, β ∈ R with α2 − β2 = 1, and β = 0 if W2 = S2.

The paper is organized as follows. In Section 2 we introduce some known
results in the literature and some definitions regarding the L-spectrum of a
matrix A ∈Mn and its linear preservers. In Section 3 we obtain a description
of the L-eigenvalues of a generic matrix in M2 and give some related results
that will be helpful in the proof of Theorem 1.1. In Section 4 we deduce some
conditions that should be satisfied by the images of matrices in certain bases
for S2 and M2, respectively, under an L-spectrum linear preserver. Finally,
in Section 5, we prove Theorem 1.1. We conclude the paper with some final
remarks in Section 6.

2. Background

In this section we present some results known in the literature concerning
the characterization of the L-spectrum of a matrix in Mn, and properties of
linear preservers of the L-spectrum. We also introduce some related useful
concepts and notation.

2.1. L-spectrum of a matrix

In proving our results, it will be useful to classify the L-eigenvalues of a
matrix A ∈Mn by whether they correspond to L-eigenvectors in the interior
or on the boundary of the Lorentz cone. In the first case, we call them interior
L-eigenvalues and, in the second case, we call them boundary L-eigenvalues.

Given a matrix A ∈ Mn, we denote the set of interior L-eigenvalues by
σintK (A) and the set of boundary L-eigenvalues by σbdK (A). This allows us to
write

σK(A) = σintK (A) ∪ σbdK (A),

where this union is not necessarily disjoint.
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We also note that any L-eigenvector [x xn]T of A ∈Mn, with xn ∈ R, can
be normalized to have xn = 1 while remaining in the Lorentz cone. Such a
normalized L-eigenvector corresponds to an interior L-eigenvalue if ||x|| < 1
and to a boundary L-eigenvalue if ||x|| = 1.

The next characterization of interior and boundary L-eigenvalues of a
matrix A ∈Mn is known [11].

Proposition 2.1. Let A ∈Mn. Then,

1. λ is an interior L-eigenvalue of A if and only if λ is a standard eigen-
value of A associated with an eigenvector in the interior of Kn.

2. λ is a boundary L-eigenvalue of A if and only if there is some s ≥ 0
and a vector x ∈ Rn−1, with ||x|| = 1, such that

(A− λI)

[
x
1

]
= s

[
−x
1

]
.

From Proposition 2.1, we have the following useful observation.

Corollary 2.2. Let A ∈ Mn. Then, λ ∈ σintK (A) if and only if −λ ∈
σintK (−A).

In contrast with interior L-eigenvalues, a boundary L-eigenvalue may or
may not be a standard eigenvalue. A surprising fact, compared with the clas-
sical eigenvalue problem, is that a matrix may have infinitely many boundary
L-eigenvalues, though this does not occur in the 2× 2 case since the Lorentz
cone for n = 2 is a polyhedral cone. (See [11] for a proof that there are only
finitely many complementarity eigenvalues relative to a polyhedral cone.)

2.2. Linear preservers of the L-spectrum

In [4] the following important result was shown for matrices of size n ≥ 3,
although the presented proof is also valid for 2 × 2 matrices. By Wn we
denote any of the spaces Mn or Sn, the subspace of symmetric matrices.

Proposition 2.3. [4] Let n ≥ 2. If φ : Wn → Wn is a linear map preserving
the L-spectrum, then φ is bijective and φ(I) = I.

An immediate consequence of Proposition 2.3 is that if φ : Wn → Wn

is a linear map preserving the L-spectrum, then φ−1 also preserves the L-
spectrum.
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For completeness and for purpose of comparison with our main result,
Theorem 1.1, we next state the characterization obtained in [4] of the stan-
dard linear maps φ : Wn → Wn that preserve the L-spectum, when n ≥ 3.

Theorem 2.4. [4] Let n ≥ 3 and let φ : Wn → Wn be a standard map.
Then, φ preserves the L-spectrum if and only if there exists an orthogonal
matrix Q ∈Mn−1 such that

φ(A) = (Q⊕ [1])A(QT ⊕ [1]),

for all A ∈ Wn.

3. L-spectrum of 2 × 2 matrices

In the next theorem we present a characterization of the L-eigenvalues of
2× 2 matrices and then we give some related properties.

Theorem 3.1. Let

A =

[
a b
c d

]
∈M2. (3.1)

Then,

1. a is an interior L-eigenvalue of A if and only if b = 0 and either a = d
or |a− d| < |c|;

2. λ ∈ R \ {a} is an interior L-eigenvalue of A if and only if

λ ∈
{
a+d±
√

(a−d)2+4bc

2

}
⊆ R and |b| < |a− λ|;

3. λ is a boundary L-eigenvalue of A if and only if one of the following
holds:

(a) λ = (a+d)+(b+c)
2

and a− d ≤ c− b,
(b) λ = (a+d)−(b+c)

2
and a− d ≤ b− c.

Proof. Conditions 1 and 2 follow immediately from the fact that, by Proposi-
tion 2.1, λ is an interior L-eigenvalue of A if and only if there is some x ∈ R,
with |x| < 1, such that

0 = (A− λI)

[
x
1

]
=

[
(a− λ)x+ b
cx+ (d− λ)

]
. (3.2)
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Now we show Condition 3. By Proposition 2.1, we have that λ is a boundary
L-eigenvalue of A if and only if there is some s ≥ 0 and x ∈ {−1, 1} such
that [

a− λ b
c d− λ

] [
x
1

]
= s

[
−x
1

]
⇔

[
(a− λ+ s)x+ b
cx+ (d− λ− s)

]
= 0.

When x = 1, this is equivalent to{
λ = a+ b+ s
λ = c+ d− s for some s ≥ 0,

that is,

λ =
a+ b+ c+ d

2
and a− d ≤ c− b.

When x = −1, we get{
λ = a− b+ s
λ = d− c− s for some s ≥ 0,

that is,

λ =
a+ d− b− c

2
and a− d ≤ b− c.

Based on the characterization of the boundary L-eigenvalues of a matrix
in M2 given in Theorem 3.1, we introduce the following definitions.

Definition 3.2. Let A ∈ M2. We say that λ is a type + boundary L-
eigenvalue of A (resp. a type − boundary L-eigenvalue of A) if Condition
3a (resp. Condition 3b) in Theorem 3.1 holds.

Moreover, we say that a boundary L-eigenvalue λ of A is strict if λ is of
type + and a − d < c − b, or if λ is of type − and a − d < b − c. If λ is a
boundary L-eigenvalue of both type + and type −, then λ is strict if at least
one of the previous strict inequalities holds.

We next present some immediate consequences of Theorem 3.1. We first
introduce two useful concepts.

Definition 3.3. Let A ∈ M2 be as in (3.1). The trace of A, denoted by
tr(A), is the sum of the diagonal entries of A, that is, tr(A) = a + d. The
anti-trace of A, denoted by antitr(A), is the sum of the anti-diagonal entries
of A, that is, antitr(A) = b+ c.
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Corollary 3.4. Let A ∈ M2. If A has a type + boundary L-eigenvalue λ1
and a type − boundary L-eigenvalue λ2, then

1. λ1 + λ2 = tr(A).

2. |λ1 − λ2| = | antitr(A)|.

Corollary 3.5. Let A ∈ M2 be as in (3.1) and let λ be a boundary L-
eigenvalue of A. Then, λ is a standard eigenvalue of A if and only if A has
a non-strict boundary L-eigenvalue.

Proof. By Theorem 3.1, if λ is a type + boundary L-eigenvalue of A, then

λ =
a+ d+ b+ c

2
and a− d ≤ c− b,

and if λ is a type − boundary L-eigenvalue of A, then

λ =
a+ d− b− c

2
and a− d ≤ b− c.

An elementary calculation shows that, in any case,

det(A− λI) =
1

4

(
(b− c)2 − (a− d)2

)
,

which is zero if and only if |a− d| = |b− c|. Thus, the claim follows.

The next result says that if we change the signs of both b and c in a
matrix A as in (3.1), then the interior and the boundary L-eigenvalues of A
get preserved.

Corollary 3.6. Let A ∈M2 and B = TAT , where

T = [−1]⊕ [1] . (3.3)

Then A and B have the same L-spectrum. Moreover, we have σintK (A) =
σintK (B) and σbdK (A) = σbdK (B). Additionally, λ is a type + boundary L-
eigenvalue of A if and only if λ is a type − boundary L-eigenvalue of B.

By using Theorem 3.1, we next give the explicit L-spectrum of the ma-
trices in a basis of M2 and S2, which will be used in the characterization
of the linear maps preserving the L-spectrum. In each case, the L-spectrum
is presented as the union of two sets, namely, σintK (A) ∪ σbdK (A). Here and
throughout, for i, j ∈ {1, 2}, Eij denotes the 2 × 2 matrix with all entries 0
except the one in position (i, j) which is 1.
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Corollary 3.7. We have

• σK(E11) = {0} ∪ ∅

• σK(E21) = {0} ∪ {1/2}

• σK(E22) = {1} ∪ {1/2}

• σK(E12 + E21) = ∅ ∪ {−1, 1}

4. Images of matrices in a basis of W2 under an L-spectrum pre-
server

Let us consider a linear map φ : W2 → W2 preserving the L-spectrum,
with W2 ∈ {M2, S2}. In this section we obtain a generic form that φ(A)
should have when A is a matrix in a specific basis of W2, namely, the basis
{E11, E22, E12 + E21} if W2 = S2, and the basis {E11, E22, E21, E12 + E21} if
W2 = M2. For E12+E21, the possible images under φ are exactly determined.

We begin with a result which shows that under certain conditions, a
linear preserver of the L-spectrum preserves the interior and boundary L-
eigenvalues. This will be key in proving the remaining results.

Lemma 4.1. Let φ : W2 → W2 be a linear map that preserves the L-
spectrum. If A ∈ W2 has two distinct strict boundary L-eigenvalues, then

σintK (A) = σintK (φ(A)) 6= ∅ and σbdK (A) = σbdK (φ(A)). (4.1)

Proof. Let A be as in (3.1). Since A has two distinct strict boundary L-
eigenvalues, say λ1 and λ2, by Theorem 3.1 we have a − d < c − b and
a−d < b−c. This implies that −A does not have any boundary L-eigenvalues
and, consequently, has at least one interior L-eigenvalue since every matrix
has a nonempty L-spectrum. Hence, we have

σbdK (A) = {λ1, λ2}, σintK (−A) 6= ∅, and σbdK (−A) = ∅.

Taking into account Corollary 2.2 and the fact that, by Corollary 3.5, λ1 and
λ2 are not standard eigenvalues of A, we have

σintK (A) = −σintK (−A), σintK (A) 6= ∅, and σintK (A) ∩ {λ1, λ2} = ∅.

Since φ preserves the L-spectrum, for i ∈ {1, 2} we should have λi ∈ σbdK (φ(A)),
as otherwise λi ∈ σintK (φ(A)), which implies, by Corollary 2.2, that −λi ∈
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σintK (φ(−A)), a contradiction since −λi is not an L-eigenvalue of −A. Then,
since φ(A) has two boundary L-eigenvalues, which are the boundary L-
eigenvalues of A, it follows that the interior L-eigenvalues of A are also interior
L-eigenvalues of φ(A).

Before we fulfill the main purpose of this section, we state a simple con-
sequence of Lemma 4.1 that will be used in the proof of Theorem 1.1 in the
next section.

Lemma 4.2. Let φ : W2 → W2 be a linear map that preserves the L-
spectrum. Then, φ(E11 + E21) is singular.

Proof. Let ε > 0 and Aε := (−1 − ε)E11 − E21. The matrix Aε has two
distinct strict boundary L-eigenvalues, implying, by Lemma 4.1, that φ(Aε)
has the same interior L-eigenvalues as Aε. Since 0 is an interior L-eigenvalue
of Aε, φ(Aε) is singular. By continuity, φ(−E11−E21) is singular, and hence,
so is φ(E11 + E21).

4.1. Necessary forms for the images of a basis

Lemma 4.3. Let φ : W2 → W2 be a linear map that preserves the L-
spectrum. Then,

φ(E11) =

[
1− a ∓

√
a2 − a

±
√
a2 − a a

]
, φ(E22) =

[
a ±

√
a2 − a

∓
√
a2 − a 1− a

]
for some a ≤ 0, and

φ(E12 + E21) =

[
m r

−r ± 2 −m

]
,

for some m, r ∈ R. In particular, if W2 = S2, then

φ(E11) = E11, φ(E22) = E22,

and

φ(E12 + E21) =

[
m r
r −m

]
,

for some m ∈ R and r ∈ {−1, 1}.
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Proof. For ε ∈ R \ {0}, let Gε := E22 + ε(E12 + E21), whose standard eigen-
values are (1±

√
1 + 4ε2)/2. By Theorem 3.1,

σintK (Gε) =

{
1 +
√

1 + 4ε2

2

}
and σbdK (Gε) =

{
1

2
± ε
}
,

and both boundary L-eigenvalues are strict. Thus, by Lemma 4.1, (4.1) holds
with A replaced by Gε. Let

φ(E22) :=

[
a b
c d

]
and φ(E12 + E21) :=

[
m r
p q

]
.

Then, by Corollary 3.4 applied to φ(Gε),

a+ d+ ε(m+ q) = 1, b+ c+ ε(r + p) = ±2ε.

Since ε 6= 0 is arbitrary, we have

a+ d = 1, m+ q = 0, b+ c = 0, r + p = ±2.

Hence,

φ(E22) =

[
a b
−b 1− a

]
and φ(E12 + E21) =

[
m r

−r ± 2 −m

]
.

From the obtained form of φ(E22), we conclude, by Theorem 3.1, that 1 is not
a boundary L-eigenvalue of φ(E22). Since σK(φ(E22)) = σK(E22) = {1, 1/2},
it follows that 1 is an interior L-eigenvalue of φ(E22). This implies that

det(φ(E22)− I) = b2 − a2 + a = 0.

By Theorem 3.1, b 6= 0. Moreover, |b| < |a − 1|, i.e., b2 < (a − 1)2. Since
b2 = a(a− 1) ≥ 0, we get a ≤ 0,

φ(E22) =

[
a ±

√
a2 − a

∓
√
a2 − a 1− a

]
, and

φ(E11) = φ(I − E22) = I − φ(E22) =

[
1− a ∓

√
a2 − a

±
√
a2 − a a

]
, (4.2)

where the second equality in (4.2) follows from Proposition 2.3.
The particular claim in the statement for W2 = S2 follows since φ(E11)

and φ(E12 + E21) are symmetric and a ≤ 0.
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Notice that, if φ : W2 → W2 is a linear map preserving the L-spectrum,
by Lemma 4.3, φ preserves the trace of E11, E22 and E12 +E21, and therefore
it preserves the trace of all matrices in S2. Also, observe that φ preserves the
modulus of the anti-trace of E11, E22, and E12 +E21. Moreover, if φ preserves
the anti-trace of E12 + E21, then φ preserves the anti-trace of all matrices
in S2; otherwise, the anti-traces of A and φ(A) have opposite signs for all
A ∈ S2. These results are contained in the following corollary and extended
to the case φ : M2 →M2.

Corollary 4.4. Let φ : W2 → W2 be a linear map that preserves the L-
spectrum. Then,

tr(A) = tr(φ(A)) for all A ∈ W2,

and either
antitr(A) = antitr(φ(A)) for all A ∈ W2

or
antitr(A) = − antitr(φ(A)) for all A ∈ W2.

Proof. Let A be as in (3.1) and let

φ(A) :=

[
r s
p q

]
.

Let δ be an arbitrary real number such that

a− d < δ + c− b, a− d < δ + b− c, and b+ c 6= 2δ.

Let Aδ = A + δE22 − δ(E12 + E21). Notice that Aδ has two strict boundary
L-eigenvalues, namely

λ1 =
a+ d+ b+ c− δ

2
and λ2 =

a+ d− b− c+ 3δ

2
, (4.3)

which are distinct since b+ c 6= 2δ. Thus, by Lemma 4.1, λ1 and λ2 are also
boundary L-eigenvalues of φ(Aδ). Taking into account the form of φ(δE22 −
δ(E12 + E21)) that follows from Lemma 4.3, the boundary L-eigenvalues of
φ(Aδ) are

β1 =
r + q + s+ p− δ

2
, β2 =

r + q − s− p+ 3δ

2
(4.4)
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if antitr(φ(E12 + E21)) = 2, and

β1 =
r + q + s+ p+ 3δ

2
, β2 =

r + q − s− p− δ
2

(4.5)

if antitr(φ(E12 + E21)) = −2. As {λ1, λ2} = {β1, β2}, we have

λ1 + λ2 = β1 + β2

and
λ1 − λ2 = β1 − β2 or λ1 − λ2 = −(β1 − β2).

Since λ1 +λ2 = a+d+δ and β1 +β2 = r+q+δ, we get a+d = r+q. We also
have λ1− λ2 = b+ c− 2δ. Moreover, β1− β2 = s+ p− 2δ if (4.4) holds, and
β1−β2 = s+p+2δ if (4.5) holds. In the first case, λ1−λ2 = −(β1−β2) only
for δ = b+c+s+p

4
. Thus, for δ 6= b+c+s+p

4
, we have λ1 − λ2 = β1 − β2, implying

b+c = s+p. In the second case, λ1−λ2 = β1−β2 only for δ = b+c−s−p
4

. Thus,

for δ 6= b+c−s−p
4

, we have λ1 − λ2 = −(β1 − β2), implying b + c = −(s + p).
Since δ is an arbitrary number satisfying (4.3), it ranges over an infinite set,
and hence the claim follows.

We next describe the generic structure of the image of E21 under a linear
map preserving the L-spectrum.

Lemma 4.5. Let φ : M2 → M2 be a linear map that preserves the L-
spectrum. Then,

φ(E21) =

[
±
√
b2 + b ∓b

±(b+ 1) ∓
√
b2 + b

]
, b ≥ 0.

Proof. By Corollary 4.4,

φ(E21) =

[
a b

−b± 1 −a

]
for some a, b ∈ R. By Theorem 3.1, this implies σbdK (φ(E21)) ⊆ {−1/2, 1/2}.
On the other hand, by Theorem 3.7, σK(E21) = {0, 1/2} . Thus, since φ
preserves the L-spectrum, 0 is an interior L-eigenvalue of φ(E21). Hence, by
Theorem 3.1, either a = b = 0, or |b| < |a| (i.e., b2 < a2). Since φ(E21) is
singular, we also have a2 = b2 ∓ b. Thus, a2 = b2 + b if b > 0 and a2 = b2 − b
if b < 0, implying the claim.
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4.2. Explicit image of E12 + E21

The following two lemmas will be used in determining φ(E12+E21) under
a linear L-spectrum preserver φ. By || · ||F we denote the Frobenius norm of
a matrix.

Lemma 4.6. Let A ∈M2 be as in (3.1). Suppose A has two distinct standard
real eigenvalues and at least one of them, say λA, is an interior L-eigenvalue.
Moreover, suppose that λA 6= a. Then, for any ε > 0, there is some δ > 0
such that any B ∈ M2 with ||B − A||F < δ has an interior L-eigenvalue λB
satisfying |λA − λB| < ε. That is, sufficiently small perturbations of A have
an interior L-eigenvalue arbitrarily close to λA.

Proof. Suppose that λA is an interior L-eigenvalue of A. By Theorem 3.1,
since λA 6= a, we have |b| < |a − λA|, that is, b2 − (a − λA)2 < 0. Since λA
depends continuously on the entries of A, any sufficiently small perturbation
of A, say

Aε :=

[
aε bε
cε dε

]
,

has a real eigenvalue λεA arbitrarily close to λA and such that λεA 6= aε and
|bε| < |aε − λεA|. Note that, since A has distinct real eigenvalues, for ε suffi-
ciently small, both eigenvalues of Aε are also distinct and real. By Theorem
3.1, λεA is an interior L-eigenvalue of Aε.

Lemma 4.7. Let λ ∈ {−1, 1}. Then, there is some ε > 0 such that, in any
neighborhood of E12 +E21, there is a matrix with no L-eigenvalue at distance
from λ smaller than ε.

Proof. Let H := E12 + E21. For any δ ∈ R, the matrices

Hδ := H + δ

[
1 0
0 −1

]
(4.6)

and−Hδ have standard eigenvalues β1 = −
√
δ2 + 1 and β2 =

√
δ2 + 1. Notice

that, for i ∈ {1, 2},

1 ≥ (δ − βi)2 ⇔ 1− δ2 − β2
i ≥ −2δβi ⇔ δ2 ≤ δβi, (4.7)

where the last inequality follows from the second one by noting that β2
i =

δ2 + 1.
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Suppose that λ = 1 and let δ > 0. From (4.7), |1| ≥ |δ − β2|, implying
by Theorem 3.1 that β2 is not an interior L-eigenvalue of Hδ. On the other
hand, Hδ has no boundary L-eigenvalues. Hence, the only L-eigenvalue of
Hδ is β1 whose distance from 1 is at least 2, regardless of the value of δ > 0.

With a similar argument, we can see that, for δ < 0, the only L-eigenvalue
of −Hδ is β2 whose distance from −1 is at least 2, regardless of the value of
δ < 0.

Thus, for each λ ∈ {1,−1}, there is some δ ∈ R such that one of the
matrices Hδ or −Hδ has no L-eigenvalues arbitrarily close to λ.

Lemma 4.8. Suppose that φ : W2 → W2 is a linear map that preserves the
L-spectrum. Then

φ(E12 + E21) = E12 + E21 or φ(E12 + E21) = −(E12 + E21).

Proof. Let H := E12 + E21. By Theorem 3.7 and Theorem 3.6, we have
σK(H) = σK(−H) = {−1, 1}.

We start by proving that 1 and −1 are not interior L-eigenvalues of φ(H).
To show this fact, suppose first that λ ∈ {−1, 1} is an interior L-eigenvalue
of φ(H). Then, since by Corollary 4.4, tr(φ(H)) = tr(H) = 0, and interior L-
eigenvalues are standard eigenvalues, φ(H) has distinct standard eigenvalues
1 and −1.

We first show that the entry in position (1,1) of φ(H) is different from
λ. This is clear by Theorem 3.1, if the entry in position (1, 2) of φ(H) is
nonzero. If the entry in position (1, 2) of φ(H) is zero, then φ(H) is a lower
triangular matrix with main diagonal entries 1 and −1, and the (2, 1) entry
of φ(H) has modulus 2 (since by Corollary 4.4, the modulus of the anti-trace
is preserved). Then, the entry in position (1, 1) of φ(H) is different from
λ, as otherwise, by Theorem 3.1, λ would not be an interior L-eigenvalue of
φ(H).

By Lemma 4.6, any matrix B in a sufficiently small neighborhood of
φ(H) has an interior L-eigenvalue arbitrarily close to λ. By the continuity
of φ−1, and since φ−1 preserves the L-spectrum, any matrix in a sufficiently
small neighborhood of H has an L-eigenvalue arbitrarily close to λ, which is
impossible by Lemma 4.7.

Thus, 1 and −1 are not interior L-eigenvalues of φ(H). By Corollary
2.2, neither 1 nor −1 is an interior L-eigenvalue of −φ(H). Since σK(H) =
σK(−H) = {1,−1}, we conclude that 1 and −1 are boundary L-eigenvalues
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of both φ(H) and −φ(H). By Theorem 3.4, there are x, y ∈ R such that

1) φ(H) =

[
x y

2− y −x

]
or 2) φ(H) =

[
x y

−2− y −x

]
.

Suppose that Case 1 holds. Then, by Condition 3 of Theorem 3.1, applied
to both φ(H) and −φ(H), we have

x+ y = −x+ 2− y and

x− y = −x− (2− y),

implying that
x = 0 and y = 1.

A similar argument applied to Case 2 yields x = 0 and y = −1. Thus, the
claim follows.

5. Proof of Theorem 1.1

Let φ : W2 → W2 be a linear map that preserves the L-spectrum. By
Corollary 4.4, either A and φ(A) have the same anti-trace for all A ∈ W2, or
A and φ(A) have opposite anti-traces for all A ∈ W2. When proving Theorem
1.1, we only consider the case in which φ preserves the anti-trace. The case
when the anti-trace of A and φ(A) are opposite for all A ∈ W2 can be obtained
by considering the orthogonal similarity via the matrix T = [−1] ⊕ [1] .
More precisely, assume that A and φ(A) have opposite anti-traces. Then,
π(A) = Tφ(A)T, for A ∈ W2, is a linear map that preserves the anti-trace
and symmetry, and, taking into account Corollary 3.6, π preserves the L-
spectrum if and only if φ does. Hence, by the result that we next show, π
preserves the L-spectrum if and only if there is some P ∈ M2, as in (1.2),
such that π(A) = PAP−1 for any A ∈ W2, that is, φ(A) = (TP )A(TP )−1

for any A ∈ W2. Thus, the claim follows with Q = TP.

Proof. Necessity: Suppose that φ preserves the anti-trace. For u, v ∈ R, let

P (u, v) :=

[
u v
v u

]
.

Case 1: Assume that W2 = S2. By Lemmas 4.3 and 4.8, φ(E11) = E11,
φ(E22) = E22, and φ(E12 +E21) = E12 +E21. Thus, we have φ(A) = PAP−1

for all A ∈ S2, where P = P (1, 0) = I.
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Case 2: Assume now that W2 = M2. By Lemma 4.3, for some a ≤ 0, we
have

φ(E11) =

[
1− a ∓

√
a2 − a

±
√
a2 − a a

]
=:

[
α2 −αβ
αβ −β2

]
= P (α, β)E11P

−1(α, β).

Without loss of generality, we assume α ≥ 0, implying α ≥ 1 since α2 = 1−a
and a ≤ 0.

By Lemma 4.5 and taking into account that φ preserves the antitrace, for
some b ≥ 0, we have

φ(E21) =

[
±
√
b2 + b −b

b+ 1 ∓
√
b2 + b

]
=:

[
γδ −δ2
γ2 −γδ

]
= P (γ, δ)E21P

−1(γ, δ).

As above, we assume γ ≥ 0, implying γ ≥ 1.
Then

φ(E11 + E21) =

[
α2 −αβ
αβ −β2

]
+

[
γδ −δ2
γ2 −γδ

]
=

[
α2 + γδ −αβ − δ2
αβ + γ2 −β2 − γδ

]
.

Since, by Lemma 4.2, φ(E11 + E21) is singular, we have

det(φ(E11 + E21)) = (αγ − βδ) (βγ − αδ) = 0.

Note that αγ−βγ 6= 0, as otherwise (αγ)2 = (βδ)2, or equivalently, a = 1+b,
a contradiction since a ≤ 0 and 1 + b > 0. Thus,

βγ = αδ, (5.1)

implying
0 = (αδ)2 − (βγ)2 = (1− a)b+ a(1 + b) = a+ b.

Hence, a = −b which yields α = γ. Since α and γ are nonzero, from (5.1) we
get β = δ. Now let P := P (α, β). Then,

φ(E11) = PE11P
−1 and φ(E21) = PE21P

−1,
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implying

φ(E22) = I − φ(E11) = I − PE11P
−1

= P (I − E11)P
−1 = PE22P

−1.

Moreover, taking into account Lemma 4.8 and the fact that φ preserves the
antitrace, we have

φ(E12 + E21) = E12 + E21 = P (E12 + E21)P
−1.

Thus, since φ(A) = PAP−1 for all the matrices A in a basis for M2, we have
φ(A) = PAP−1 for all A ∈M2.

Sufficiency: Let A ∈ W2 and let P be as in (1.2) with α2 − β2 = 1. We
assume that α > 0 as, otherwise, since PAP−1 = (−P )A(−P )−1, we may
consider −P instead of P . It is enough to prove that σK(A) ⊆ σK(φ(A)),
since by applying this result to φ−1, we get σK(φ(A)) ⊆ σK(A) . (Note that
φ−1(A) = P−1AP, where P−1 still has the form of P in (1.2), with β replaced
by −β.)

We show that if (λ, x) is an L-eigenpair of A, then (λ, Px) is an L-eigenpair
of φ(A) = PAP−1. For this purpose, we start by proving two facts. First,
P preserves the Lorentz cone, that is, if x ∈ K, then Px ∈ K. Second,
P preserves orthogonality, that is, if xTy = 0, then (Px)T (Py) = 0, for
x, y ∈ K.

Let x = [x1 x2]
T ∈ K and

[z1 z2]
T := Px = [x1α + x2β, x1β + x2α]T . (5.2)

Then, Px ∈ K if and only if

|z1| = |x1α + x2β| ≤ x1β + x2α = z2.

Since |β| < α and |x1| ≤ x2, it follows that z2 = x1β+x2α ≥ 0. Also, because
of

z21 − z22 = x21 − x22 ≤ 0, (5.3)

we get that Px ∈ K.
Now note that, if x and y are nonzero orthogonal vectors in K, then they

lie on the boundary of K. More specifically, one is a positive multiple of [1
1]T and the other one is a positive multiple of [−1 1]T . Since

P [1, 1]T = [α + β, α + β]T and P [−1, 1]T = [−α + β, α− β]T

18



are orthogonal, it follows that P also preserves orthogonality.
Suppose that (λ, x) is an L-eigenpair of A, that is,

x 6= 0, x ∈ K, (A− λI)x ∈ K, and xT (A− λI)x = 0.

Since P is invertible, we have Px 6= 0. Moreover, as P preserves the Lorentz
cone, we have y := Px ∈ K and

(φ(A)− λI)y = P (A− λI)P−1Px = P [(A− λI)x] ∈ K.

From the orthogonality of x and (A − λI)x and the fact that P preserves
orthogonality, it follows that yT (φ(A) − λI)y = 0. Thus, (λ, Px) is an L-
eigenpair of φ(A).

The proof of the sufficiency part of Theorem 1.1 shows that the linear
maps φ : W2 → W2 that preserve the L-spectrum also preserve the nature
(interior or boundary) of the L-eigenvalues. More precisely, we have the
following result.

Corollary 5.1. Let φ : W2 → W2 be a linear map. If φ preserves the L-
spectrum, then, for all A ∈ W2,

σintK (A) = σintK (φ(A)) and σbdK (A) = σbdK (φ(A)).

Proof. By Theorem 1.1, and arguing as in its proof, we may assume that
φ preserves the anti-trace, that is, φ(A) = PAP−1 for P as in (1.2) with
α2− β2 = 1. Moreover, we may assume that α > 0, as otherwise we consider
−P instead of P .

Assume that (λ, x) is an L-eigenpair of A, with x = [x1 x2]
T . Let z =

[z1 z2]
T be as in (5.2). It was shown in the sufficiency part of the proof of

Theorem 1.1 that (λ, z) is an L-eigenpair of φ(A). Since, by (5.3), |x1| < x2
if and only if |z1| < z2, it follows that z is an L-eigenvector of φ(A) in the
interior of K if and only if x is an L-eigenvector of A in the interior of K.
Since A and φ(A) have the same L-spectrum, the claim follows.

6. Conclusions

Let Mn be the space of n × n real matrices and Sn be the subspace of
Mn formed by the symmetric matrices. In this paper, for W2 ∈ {M2, S2}, we
described the linear maps φ : W2 → W2 that preserve the Lorentz spectrum
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(L-spectrum for short), that is, those maps φ for which A and φ(A) have
the same L-spectrum for all A ∈ W2. We have shown that φ(A) = PAP−1,
where P is a matrix with a certain possible structure. In the case W2 = S2,
P is a diagonal orthogonal matrix.

In [4], a characterization of the standard linear maps φ : Wn → Wn that
preserve the L-spectrum when n ≥ 3 was given. (See [12] in which the case
Wn = Mn was also studied.) Additionally, a conjecture was made that all
maps φ : Wn → Wn that preserve the L-spectrum are standard. Recall that
a linear map φ : Wn → Wn is said to be standard if there exist matrices
P,Q ∈ Mn such that φ(A) = PAQ for all A ∈ Wn or φ(A) = PATQ for
all A ∈ Wn. The results in this paper confirm that, for n = 2, all linear
maps φ : Wn → Wn that preserve the L-spectrum are standard. Moreover,
these preservers on W2 = S2 have the same form as those on Sn for n ≥ 3.
However, if W2 = M2, they have a more general form than those on Mn for
n ≥ 3. This is due to the fact that the Lorentz cone Kn is polyhedral for
n = 2, unlike what happens for n > 2.

Though many of the results in this manuscript depend on the properties
of the L-spectrum of 2 × 2 matrices, we hope the overall approach may be
generalizable to n×n matrices. In particular, we expect that the techniques
developed in this paper will aid in proving the conjecture stated in [4] that
any linear preservers of the L-spectrum on Sn or Mn for n ≥ 3 are standard
maps, which would complete the description of such linear preservers.
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