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Abstract In the literature it is common to use the first and last pencils D1(λ, P )
andDk(λ, P ) in the “standard basis” for the vector space DL(P ) of block-symmetric
pencils to solve the symmetric/Hermitian polynomial eigenvalue problem P (λ)x =
0. When the polynomial P (λ) has odd degree, it was proven in recent years that
the use of an alternative linearization TP is more convenient because it has better
numerical properties and its use is more universal since TP is a strong linearization
of any matrix polynomial P (λ), while D1(λ;P ) and Dk(λ;P ) are not. However,
TP is not defined for even degree matrix polynomials. In this paper we consider
the case when P (λ) has even degree. It is believed that the backward errors of
eigenpairs computed with the use of D1(λ;P ) and Dk(λ;P ) are “small” based on
the computed theoretical bounds for the backward errors of eigenpairs of P (λ)
computed from eigenpairs of these linearizations. We show that this is not the
case, even when the polynomial P (λ) is well-scaled because of the ill-conditioning
of the eigenvectors of D1(λ;P ) and Dk(λ;P ). We introduce two block-symmetric
linearizations for even degree matrix polynomials that overcome this problem and
become an appropriate alternative to the traditional use ofD1(λ;P ) andDk(λ;P ).
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1 Introduction

A square matrix polynomial takes the form

P (λ) = λkAk + · · ·+ λA1 +A0, A0, . . . , Ak ∈ Fn×n, (1.1)

where F denotes any field. In this paper, we consider the field of real or complex
numbers. We say that P (λ) has degree k if Ak 6= 0 and we say that P (λ) has grade
k, otherwise. In this work, we are interested in symmetric and Hermitian matrix
polynomials. We say that P (λ) is symmetric if ATi = Ai, for i = 0, 1, . . . , k, and
we say that P (λ) is Hermitian if F = C and A∗i = Ai, for i = 0, 1, . . . , k, where
(·)∗ denotes the complex conjugate transpose operation.

Throughout this paper, we assume that the matrix polynomial P (λ) in (1.1)
is regular, this is, the scalar polynomial detP (λ) is not the zero polynomial. We
also assume Ak 6= 0 and A0 6= 0 in order to avoid some trivialities. The polyno-
mial eigenvalue problem (PEP) associated with a regular matrix polynomial P (λ)
consists in finding scalars λ0 for which the equations

P (λ0)x = 0 and y∗P (λ0) = 0 (1.2)

have nontrivial solutions x, y ∈ Fn. The scalar λ0 is called an eigenvalue of P (λ),
and the vectors x and y are associated right and left eigenvectors. The set of
all eigenvalues of the matrix polynomial P (λ) is called the spectrum of P (λ). The
eigenvalue/eigenvector pair (λ0, x) (resp. (y, λ0)) is called a right (resp. left) eigen-
pair of P (λ). When the matrix polynomial P (λ) is symmetric (resp. Hermitian),
we refer to (1.2) as the symmetric (resp. Hermitian) polynomial eigenvalue prob-
lem. When P (λ) is symmetric or Hermitian, the sets of left and right eigenvectors
coincide.

Structured PEPs, that is, PEP in which the matrix coefficients of the matrix
polynomial present some type of structure, arise from many applications. For in-
stance, symmetric and Hermitian PEPs arise in the classical problem of vibration
analysis [9,15,23]. When solving numerically a structured PEP it is well-recognized
the importance of using structure preserving eigenvalue algorithms [13]. For exam-
ple, symmetric or Hermitian matrix polynomials have a spectrum that is symmet-
ric with respect to the real axis. In a finite precision environment, an algorithm
that ignores the structure of the polynomial may lose this symmetry [16]. For this
reason, one of the most common approaches for numerically solving structured
PEPs is to use structure-preserving linearizations (see Section 2.1 for the defini-
tion of linearization). This process replaces the original structured PEP with a
generalized eigenvalue problem with the same structure. Standard methods for
structured generalized eigenvalue problems can then be applied; see, e.g., [11] and
the references therein.

The landmark paper [16] introduced a family of candidate linearizations for
matrix polynomials as in (1.1), the so-called DL(P ) vector space. It was proved in
[16] that almost all matrix pencils in DL(P ) are linearizations of the matrix polyno-
mial P (λ), and that DL(P ) is a rich source of structure-preserving linearizations for
structured matrix polynomials. Moreover, among all the linearizations in DL(P ),
the pencils D1(λ;P ) and Dk(λ;P ) (see (4.1) and (4.2)) were identified in [?,10]
as those with almost optimal numerical properties (in terms of eigenvalue condi-
tioning and backward errors). These optimality results have led several authors
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to propose the use of D1(λ;P ) and Dk(λ;P ) (or small variations of D1(λ;P ) and
Dk(λ;P )) in the task of solving numerically structured PEPs from applications.
These structure-preserving linearizations have been used, for example, to solve
palindromic and even PEPs [14], Hamiltonian (alternating) PEPs [18], to solve
complex-symmetric PEPs [8], to solve symmetric or Hermitian rational eigenvalue
problems [24], as the starting point to build trimmed linearizations for structured
matrix polynomials [6], to develop a backward stable algorithm for symmetric or
Hermitian quadratic eigenvalue problems [25], to estimate the distance to uncon-
trollability of higher order dynamical systems [20], to compute the H∞ norm [3],
and to solve nonlinear eigenvalue problems by using the infinity Lanczos method
[19], to name some recent works.

Although the numerical properties of D1(λ;P ) and Dk(λ;P ) are good enough
for certain applications, one of the key findings of this work is the extreme sensitiv-
ity of the eigenvectors of D1(λ;P ) and Dk(λ;P ) to small perturbations. Hence, the
computation of accurate eigenvalues and eigenvectors of structured matrix poly-
nomials requires to find structure-preserving linearizations with better numerical
properties. Steps in this direction can be found in [4], where the authors compare
the numerical properties of D1(λ;P ) and Dk(λ;P ) with the block-tridiagonal lin-
earization introduced in [2], in the case when the matrix polynomial has odd degree.
Their analysis reveals that the block-symmetric linearization from [2] has much
better numerical properties than the linearizations in DL(P ). In this work, we
address the case when the matrix polynomial has even degree. This case is dif-
ferent from the odd degree case because there are symmetric (resp. Hermitian)
matrix polynomials of even degree that do not have symmetric (resp. Hermitian)
linearizations while they always exist for odd degree polynomials. To guarantee the
existence of structure-preserving linearizations for even degree matrix polynomi-
als, one has to impose some conditions on the matrix polynomial coefficients. For
example, symmetric and Hermitian matrix polynomials with nonsingular leading
and/or trailing matrix coefficients always present structure-preserving lineariza-
tions. These conditions make the numerical analysis more challenging.

In this paper we analyze different strategies for solving PEPs associated with
even-degree structured matrix polynomials and propose the combined use of two
linearizations HAk

P and GAk

P introduced in (5.6) and (5.9) (using S = Ak) as an
alternative to the use of the linearizations D1(λ;P ) and Dk(λ;P ) because it is nu-
merically superior and avoids the problem with the sensitivity of the eigenvectors.

The structure of the paper is as follows: In Section 2 we introduce the math-
ematical background necessary for the rest of the paper. In Section 3 we recall
the definition of (normwise) eigenvalue condition number and backward error of
an eigenpair of a matrix polynomial as well as convenient formulas to compute
these quantities. In Section 4, we recall the definition and properties of D1(λ;P )
and Dk(λ;P ) and provide theoretical and numerical evidence of the sensitivity of
the eigenvectors of these pencils to small perturbations in the coefficients of the
polynomial P (λ). In Section 5, we show how to use the pencil TP (λ) to construct
a family of pencils HSP (resp. GSP ) that are strong linearizations of an even degree
matrix polynomial P (λ) as in (1.1) with nonsingular Ak (resp. A0). In Sections
6 and 7, we provide a numerical analysis of the eigenvalue condition number and
backward errors of the pencils in the families HSP and GSP , and show that optimal
behavior is attained when S = Ak. Finally, in Section 8, we present the proofs of
the main results in Sections 6 and 7.
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2 Definitions and technical results

We review in this section the notions of linearization and strong linearization of a
matrix polynomial. For a more detailed introduction on these concepts, we refer
the reader to the classical book [9] and to the more recent reference [7].

Additionally, we present some technical results that will be used in the proofs
of the main theorems of this manuscript.

2.1 Linearizations of matrix polynomials

A matrix polynomial U(λ) is said to be unimodular if detU(λ) is a nonzero con-
stant (i.e., independent of λ). A grade-1 matrix polynomial L(λ) = λB + A is
called a matrix pencil, or pencil for short. A matrix pencil L(λ) = λB+A is called
a linearization of a matrix polynomial P (λ) if there exist unimodular matrix poly-
nomials U(λ) and V (λ) such that

L(λ) = U(λ)

[
Is 0
0 P (λ)

]
V (λ),

for some s, where Is denotes de s× s identity matrix. Linearizations preserve the
finite eigenvalues of the polynomial P (λ) and their multiplicities.

Given a matrix polynomial P (λ) as in (1.1), its reversal matrix polynomial is
defined by

revP (λ) = λkP (λ−1) = λkA0 + · · ·+ λAk−1 +Ak.

We say that P (λ) has an eigenvalue at infinity if 0 is an eigenvalue of revP (λ). A
linearization L(λ) of P (λ) is said to be strong if rev(L) is a linearization of rev(P ).
Strong linearizations preserve both the finite and infinite eigenvalues of P (λ) and
their multiplicities.

2.2 Some auxiliary results

If a and b are two positive integers such that a ≤ b, we denote

a : b := a, a+ 1, . . . , b.

The following result is an immediate consequence of the Cauchy-Schwarz in-
equality when the standard inner product is considered in Cn.

Lemma 2.1 Let m be a positive integer and let a be a positive real number. Then, m∑
j=0

aj

2

≤ (m+ 1)
m∑
j=0

a2j .

Next we provide an upper and lower bound on the norm of a block-matrix in
terms of the norms of its blocks.

Proposition 2.1 [10, Lemma 3.5] For any complex `×m block-matrix B = (Bij)
we have

max
i,j
‖Bij‖2 ≤ ‖B‖2 ≤

√
`m max

i,j
‖Bij‖2. (2.1)
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Some of our main results require the systematic use of the Horner shifts of a
matrix polynomial P (λ).

Definition 2.1 (Horner shifts) Given a matrix polynomial P (λ) of degree k as
in (1.1), the ith Horner shift of P (λ), for i = 0 : k, is given by

Pi(λ) := λiAk + λi−1Ak−1 + · · ·+ λAk−i+1 +Ak−i. (2.2)

Notice that P0(λ) = Ak and Pk(λ) = P (λ). Moreover, Horner shifts satisfy the
recurrence relation

Pi+1(λ)−Ak−i−1 = λPi(λ), for i = 0 : k − 1. (2.3)

We also denote

P i(λ) := λiAi + · · ·+ λA1 +A0, for i = 0 : k. (2.4)

Notice that P 0(λ) = A0 and P k(λ) = P (λ). Furthermore, the two families of
polynomials (2.2) and (2.4) are related as follows

P (λ) = λk−iPi(λ) + P k−i−1(λ), i = 0 : k − 1. (2.5)

Lemma 2.2 provides another relation between the two families of Horner shifts.

Lemma 2.2 [4, Lemma 3.2] Let P (λ) be a regular matrix polynomial of degree k
as in (1.1). Let Pi(λ) and P i(λ), i = 0 : k, be the matrix polynomials defined in
(2.2) and (2.4), respectively. Let λ0 be a nonzero and finite eigenvalue of P (λ),
and let x and y be, respectively, a right and a left eigenvector of P (λ) associated
with λ0. Then, for i = 0 : k − 1,

Pi(λ0)x = −λi−k0 P k−i−1(λ0)x and y∗Pi(λ0) = −λi−k0 y∗P k−i−1(λ0).

The proof of Lemma 2.3 can be easily verified.

Lemma 2.3 Let P (λ) be a matrix polynomial of degree k as in (1.1), let λ0 ∈ C,
and let Pi(λ) and P i(λ), i = 0 : k, be the matrix polynomials defined in (2.2) and
(2.4), respectively. Then, for any n× n matrix M and for i = 0 : k, we have

‖MPi(λ0)‖2 ≤ max
j=0:k

{‖MAj‖2}
i∑

j=0

|λ0|j ,

‖MP i(λ0)‖2 ≤ max
j=0:k

{‖MAj‖2}
i∑

j=0

|λ0|j , and

‖Pi(λ0)‖2 ≥ max
j=0:i
{|λ0|j‖Aj‖2}.
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3 Eigenvalue condition numbers and backward errors of approximate
eigenpairs

In this section, we review the notions of relative eigenvalue condition number and
backward error of approximate eigenpairs of a matrix polynomial, and state some
of their basic properties.

Definition 3.1 (Eigenvalue condition number) [22] Let P (λ) be a regular
matrix polynomial of degree k as in (1.1). If λ0 is a simple, finite, nonzero eigen-
value of P (λ) with corresponding right eigenvector x, then the relative condition
number of λ0 is defined by

κr(λ0;P ) := lim
ε→0

sup

{
|∆λ0|
ε|λ0|

: (P (λ0 +∆λ0) +∆P (λ0 +∆λ0)) (x+∆x) = 0,

with ‖∆Ai‖2 ≤ ε ωi, for i = 0 : k

}
,

where ωi are some previously selected nonnegative weights.

Definition 3.2 (Backward error of an approximate eigenpair) [22] Let
P (λ) be a regular matrix polynomial of degree k as in (1.1). For a given approxi-

mate right eigenpair (λ̃0, x̃) of P (λ), the backward error of (λ̃0, x̃) is

η(λ̃0, x̃;P ) := min
{
ε : (P (λ̃0) +∆P (λ̃0))x̃ = 0, with ‖∆Ai‖2 ≤ ε ωi,

for i = 0 : k, } ,

where ωi are some previously selected nonnegative weights.

Explicit formulas for the condition number κr(λ0;P ) and the backward error

η(λ̃0, x̃;P ) were obtained in [22].

Theorem 3.1 [22, Theorem 5] Let P (λ) be a regular matrix polynomial of degree k
as in (1.1). If λ0 is a simple, finite, nonzero eigenvalue of P (λ) with corresponding
right and left eigenvectors x and y, then

κr(λ0;P ) =

(∑k
i=0 |λ0|

iωi
)
‖y‖2‖x‖2

|λ0| · |y∗P ′(λ0)x| , (3.1)

where P ′(λ) denotes the derivative of P (λ) with respect to λ.

Theorem 3.2 [22, Theorem 1] Let P (λ) be a regular matrix polynomial of degree

k as in (1.1). For a given approximate right eigenpair (λ̃0, x̃) of P (λ), the backward

error of (λ̃0, x̃) is given by

η(λ̃0, x̃;P ) =
‖P (λ̃0)x̃‖2(∑k
i=0 |λ̃0|iωi

)
‖x̃‖2

. (3.2)

The following two lemmas will be useful in later sections. Before stating them,
we recall that if λ0 is a simple, finite, nonzero eigenvalue of a matrix polyno-
mial P (λ) with associated right eigenvector x, then λ−1

0 is a simple eigenvalue of
revP (λ) with associated right eigenvector x.

The immediate proofs of Lemmas 3.1 and 3.2 are omitted.
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Lemma 3.1 Let P (λ) be a regular matrix polynomial of degree k as in (1.1). Let
λ0 be a simple, finite, nonzero eigenvalue of P (λ). Then, κr(λ0;P ) = κr(λ

−1
0 ; revP ),

when the weights used for revP (λ) are equal to those used for P (λ) but in reversed
order.

Lemma 3.2 Let P (λ) be a regular matrix polynomial of degree k as in (1.1). Let

(λ̃0, x̃) be an approximate right eigenpair of P (λ). If we consider (λ̃−1
0 , x̃) as an

approximate eigenpair of revP (λ), then we have η(λ̃0, x̃;P ) = η(λ̃−1
0 , x̃; revP ),

when the weights used for revP (λ) are those used for P (λ) but in reversed order.

The nonnegative weights ωi in the definitions of κr(λ0;P ) and η(λ0, x;P ) allow
flexibility in how perturbations of P (λ) are measured. Typically, one is interested
in either coefficient-wise or norm-wise perturbations of P (λ). Norm-wise pertur-
bations are obtained by choosing

ωi := max
i=0:k

{‖Ai‖2} for i = 0 : k.

Coefficient-wise perturbations are obtained by choosing

ωi := ‖Ai‖2 for i = 0 : k.

In this work, we study both norm-wise and coefficient-wise perturbations.
When norm-wise perturbations are considered, we write

κra(λ0;P ) :=
maxi=0:k{‖Ai‖2}

(∑k
i=0 |λ0|

i
)
‖x‖2‖y‖2

|λ0| |y∗P ′(λ0)x| , and

ηra(λ̃0, x̃;P ) :=
‖P (λ̃0)x̃‖2

maxi=0:k{‖Ai‖2}
(∑k

i=0 |λ̃0|i
)
‖x̃‖2

,

and refer to κra(λ0;P ) and ηra(λ̃0, x̃;P ), respectively, as the relative-absolute
eigenvalue condition number and backward error. When coefficient-wise pertur-
bations are considered, we write

κrr(λ0;P ) :=

(∑k
i=0 |λ0|

i‖Ai‖2
)
‖x‖2‖y‖2

|λ0| |y∗P ′(λ0)x| , and

ηrr(λ̃0, x̃;P ) :=
‖P (λ̃0)x̃‖2(∑k

i=0 |λ̃0|i‖Ai‖2
)
‖x̃‖2

,

and refer to κrr(λ0;P ) and ηrr(λ̃0, x̃;P ), respectively, as the relative-relative eigen-
value condition number and backward error.

Remark 3.1 When the matrix polynomial P (λ) is symmetric (resp. Hermitian), it
is natural to consider symmetric (resp. Hermitian) perturbations in the definition
of condition numbers and backward errors. This leads to the notions of structured
condition numbers and structured backward errors. However, as it has been shown
in [1], the structured and unstructured condition numbers and backward errors are
nearly the same. This is why we only focus on the unstructured ones.
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3.1 Sensitivity of the eigenvectors of a matrix pencil

In the next section we will explore the sensitivity of the eigenvectors of the block-
symmetric linearizations D1(λ;P ) and Dk(λ;P ) to small perturbations of their
matrix coefficients. Theorem 3.3 in this section will be used to provide some intu-
ition behind the fact that the eigenvectors of these two linearizations can be very
ill-conditioned even when the corresponding eigenvalue is well-conditioned.

We first introduce an auxiliary lemma that generalizes a well-known result for
eigenvectors of matrices.

Lemma 3.3 Let L(λ) = λB−A be a regular matrix pencil. Let λ1 and λ2 be two
distinct finite eigenvalues of L(λ) and let z1 and w2 be a right and a left eigenvector
of L(λ) associated with λ1 and λ2, respectively. Then, w∗2Bz1 = 0.

Proof By definition of right and left eigenvector, we have

λ1Bz1 = Az1 and w∗2λ2B = w∗2A.

Multiplying the first equality by w∗2 on the left, multiplying the second equality
by z1 on the right and subtracting both expressions, we get (λ1 − λ2)w∗2Bz1 = 0.
Since λ1 6= λ2, the result follows.

Theorem 3.3 Let L(λ) = λB −A and L(λ) +∆L(λ) = λ(B +∆B)− (A+∆A)
be two m ×m regular matrix pencils, where ‖∆B‖ ≤ ε‖B‖2 and ‖∆A‖ ≤ ε‖A‖2
for some ε > 0 so that L and ∆L have the same number of eigenvalues. Assume
that all the eigenvalues of L(λ) are simple and finite. Let λ1, . . . , λm denote the
eigenvalues of L(λ), and, for i = 1 : m, let zi be a right eigenvector associated
with the eigenvalue λi. Let λ1 + ∆λ1, . . . , λm + ∆λm denote the eigenvalues of
L(λ) + ∆L(λ). If z̃i = zi + ∆zi denotes a right eigenvector of L(λ) + ∆L(λ)
associated with λi +∆λi, then, to first order in ε, we have

dist (z̃i, spam{zi}) ≤

ε∑
6̀=i

|λ`|
1 + |λ`|

1 + |λi|
|λi − λ`|

κra(λ`;L)

 ‖zi‖2, (3.3)

where dist denotes the Euclidean distance, and κra(λ`;L) denotes the relative-
absolute eigenvalue condition number of λ`.

Proof Since the vectors z1, . . . , zm form a basis for Fm (where F = R or F = C, we
have z̃i = zi+

∑m
`=1 c`z`, for some constants c`. Then, notice that dist (z̃i, spam{zi}) ≤

‖z̃i − v‖2, for any vector v ∈ spam{zi}. Hence, taking v = zi + cizi, we get

dist (z̃i, spam{zi}) ≤ ‖
∑
6̀=i

c`z`‖2 ≤
∑
6̀=i

|c`| ‖z`‖2. (3.4)

To finish the proof, we need to bound the scalars |c`|. By Lemma 3.3, denoting by
w` a left eigenvector of L(λ) associated with λ`,

w∗`Bzi = 0 for ` 6= i.

The B-orthogonality of left and right eigenvectors implies that the scalars c` are
given by

c` =
w∗`B∆zi
w∗`Bz`

for ` = 1 : m,
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where w∗`Bz` 6= 0 because the eigenvalues of L(λ) are simple.

Expanding to first order in ε the equality

(λi +∆λi)(B +∆B)(zi +∆zi) = (A+∆A)(zi +∆zi),

we find

∆λiBzi + λi∆Bzi + λiB∆zi = A∆zi +∆Azi. (3.5)

Multiplying (3.5) on the left by w∗` , with ` 6= i, and taking into account that
w∗`A = λ`w

∗
`B and w∗`Bzi = 0, yields

λiw
∗
`∆Bzi + λiw

∗
`B∆zi = λ`w

∗
`B∆zi + w∗`∆Azi.

Hence,

w∗`B∆zi =
λiw

∗
`∆Bzi − w∗`∆Azi

λ` − λi
,

and, so,

w∗`B∆zi
w∗`Bz`

=
1

λ` − λi
λiw

∗
`∆Bzi − w∗`∆Azi

w∗`Bz`
. (3.6)

Plugging (3.6) into (3.4), taking norms, using the triangle inequality, and using
‖∆B‖ ≤ ε‖B‖2 and ‖∆A‖ ≤ ε‖A‖2, we get

∑
6̀=i

|c`| ‖z`‖2 ≤ ε
∑
` 6=i

1

|λ` − λi|
‖w`‖2‖z`‖2‖zi‖(|λi| ‖B‖2 + ‖A‖2)

|w∗`Bz`|
.

The result now readily follows from the formula for the relative-absolute condition
number κra(λ`;L) taking into account that

(|λi| ‖B‖2 + ‖A‖2)

max{‖A‖2, ‖B‖2}(1 + |λ`)
≤ 1 + |λi|

1 + |λ`|
.

Remark 3.2 We note that Theorem 3.3 implies that the relative error

dist (z̃i, spam{zi})
‖zi‖2

in the eigenvector zi associated with the eigenvalue λi can potentially be large
when λi is close to be a multiple eigenvalue or if any of the eigenvalues other
than λi is ill-conditioned. It is well-known that the eigenvalues of D1(λ;P ) (resp.
Dk(λ;P )) with small modulus (resp. large modulus) tend to be very ill-conditioned
which can potentially be a reason why, as we will show numerically in the next
section, the eigenvectors of D1(λ;P ) (resp. Dk(λ;P )) associated with eigenvalues
of large modulus (resp. small modulus) can be very ill-conditioned.

We would like to mention that there have been other attempts in the literature
to study the sensitivity of the eigenvectors of a matrix polynomial to small changes
in its matrix coefficients. See for example [21].
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4 Using the linearizations D1(λ;P ) and Dk(λ;P ).

In this section we debunk the common belief that the pencilsD1(λ;P ) andDk(λ;P )
in the vector space DL(P ) [16] given by

D1(λ;P ) := λ



Ak 0 · · · · · · 0
0 −Ak−2 −Ak−3 · · · −A0

... −Ak−3 · · · −A0 0

...
... . .

.
. .
. ...

0 −A0 0 · · · 0

+



Ak−1 Ak−2 · · · A1 A0

Ak−2 · · · A1 A0 0
... . .

.
. .
.
. .
. ...

A1 A0 0 · · · 0
A0 0 · · · · · · 0

 (4.1)

and

Dk(λ;P ) := λ



0 · · · · · · 0 Ak
0 · · · 0 Ak Ak−1

... . .
.

. .
.

. .
. ...

0 Ak Ak−1 · · · A2

Ak Ak−1 · · · A2 A1

+



0 · · · 0 −Ak 0
... . .

.
. .
. ...

...

0 −Ak · · · −A3

...
−Ak · · · −A3 −A2 0

0 · · · · · · 0 A0

 (4.2)

are “good” linearizations of a symmetric (resp. Hermitian) matrix polynomial P (λ)
as in (1.1). This belief is based on the following two results for the relative-absolute
conditioning of eigenvalues and backward errors of approximate eigenpairs, as well
as on analogous results for the relative-relative case that can be obtained just
multiplying the bounds in Theorems 4.1 and 4.2 by the constant

ρ :=
maxi=0:k{‖Ai‖2}

min{‖A0‖2, ‖Ak‖2}
. (4.3)

Theorem 4.1 (Conditioning of D1(λ;P ) and Dk(λ;P )) [4, Theorem 6.1] Let
P (λ) be a regular matrix polynomial of degree k as in (1.1). Assume λ0 is a sim-
ple, finite, nonzero eigenvalue of P (λ). Let ` ∈ {1, k} and suppose that A0 is
nonsingular if ` = 1, and Ak is nonsingular if ` = k. Then,

max{1, |λ0|k−1}, if ` = k

max{1, |λ0|1−k}, if ` = 1

}
≤ κra(λ0;D`)

κra(λ0;P )
≤
{
k2 max{1, |λ0|k−1}, if ` = k

k2 max{1, |λ0|1−k}, if ` = 1.

Remark 4.1 As we mentioned in Remark 3.2, the eigenvalues of D1(λ;P ) (resp.
Dk(λ;P )) with small modulus (resp. large modulus) tend to be very ill-conditioned.
The previous theorem shows that if |λ0| < 1, then

κra(λ0;D1) ≥ |λ0|1−kκra(λ0;P )

and if |λ0| > 1, then

κra(λ0;Dk) ≥ |λ0|k−1κra(λ0;P ).

Thus, even if the condition number of λ0 as an eigenvalue of P is relatively small,
the condition number of λ0 as an eigenvalue of D1(λ;P ) (resp. Dk(λ;P )) can grow
significantly.
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Theorem 4.2 (Backward errors of D1(λ;P ) and Dk(λ;P )) [4, Theorem 6.2]
Let P (λ) be a regular matrix polynomial of degree k as in (1.1). Let ` ∈ {1, k} and

suppose that A0 is nonsingular if ` = 1, and Ak is nonsingular if ` = k. Let (λ̃0, z̃)

be an approximate right eigenpair of D`(λ, P ), with λ̃0 nonzero and finite, and let

z̃` := (eT` ⊗ In)z̃. If (λ̃0, z̃`) is considered an approximate right eigenpair for P (λ),
then

ηra(λ̃0, z̃`;P )

ηra(λ̃0, z̃;D`)
≤ k3/2 ‖z̃‖2‖z̃`‖2

.

Remark 4.2 It is well-known that any (right) eigenvector of D1(λ;P ) or Dk(λ;P )
associated with λ0 is of the form

z =
[
λk−1
0 · · · λ0 1

]T
x, (4.4)

for some (right) eigenvector x of P (λ) associated with λ0. This implies that for
exact z and z`, we get

‖z‖2
‖z`‖2

≤
{√

kmax{1, |λ0|1−k} if ` = 1, and√
kmax{1, |λ0|k−1} if ` = k.

(4.5)

Assuming that (4.5) holds for the computed eigenpairs in Theorem 4.2, we get the
following upper bounds

ηra(λ0, z`;P )

ηra(λ0, z;D`)
≤
{
k5/2 max{1, |λ0|k−1} if ` = k, and

k5/2 max{1, |λ0|1−k} if ` = 1.

which are in accordance with the conditioning results in Theorem 4.1.

Based on the ideas discussed in Remark 4.2, the following strategy for comput-
ing eigenpairs of a matrix polynomial P (λ) with small backward errors (at least in
the relative-absolute sense, or in the relative-relative sense when the polynomial
is well-scaled, i.e., ρ ≈ 1) has been proposed.

1 Apply a backward stable eigenvalue algorithm, like the QZ algorithm, to the
linearizations D1(λ;P ) and Dk(λ;P ).

2 For the computed eigenvalues with modulus less than or equal to one, recover
the eigenvectors of P (λ) from the kth block zk of the corresponding eigenvec-
tors of Dk(λ;P ).

3 For the computed eigenvalues with modulus greater than one, recover the eigen-
vectors of P (λ) from the first block z1 of the corresponding eigenvectors of
D1(λ;P ).

Next, we argue that this strategy does not always guarantee small backward errors
due to the extreme sensitivity of the eigenvectors of D1(λ;P ) and Dk(λ;P ) to
small perturbations of the coefficients of these pencils. Our explanation focuses
on Dk(λ;P ) (since similar comments can be made for D1(λ;P )). We will also
illustrate these facts with numerical experiments.

Let us assume that a polynomial eigenvalue problem associated with a sym-
metric/Hermitian matrix polynomial P (λ) is solved by using the linearization
Dk(λ;P ) = λB −A. Assume P (λ) has been scaled so that maxi=0:k{‖Ai‖2} = 1.
Theorem 4.2 and Remark 4.2 suggest that, if |λ0| ≤ 1, one should be able to com-

pute an approximate eigenpair (λ̃0, z̃k) of P (λ) from a computed eigenpair (λ̃0, z̃)
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of Dk(λ;P ) with a small backward error ηra(λ̃0, z̃k;P ). However, in the numerical
examples that we show next, we will see that this is not necessarily true. This
does not imply that there is something wrong with the results in Theorem 4.2 and
Remark 4.2. The problem is that, in floating point arithmetic, we cannot assume
that the ratio ‖z̃‖2/‖z̃k‖2 is bounded by a moderate constant, the reason being
the potentially large sensitivity of the eigenvectors of Dk(λ;P ) to small perturba-
tions in the coefficients of the linearization. We give an intuitive explanation for
this sensitivity to perturbations as follows. Let z and zk denote, respectively, the
exact eigenvector of Dk(λ0;P ) associated with the eigenvalue λ0 and its kth block.
Let z̃ denote the computed eigenvector of Dk(λ;P ) associated with the computed

eigenvalue λ̃0. Then, there exists a positive constant α such that

ηra(λ̃0, z̃k;P )

ηra(λ̃0, z̃;Dk)
≤ k3/2 ‖z̃‖2‖z̃k‖2

≤ k3/2α ‖z‖2‖z̃k‖2
≤ αk2 ‖zk‖2‖z̃k‖2

, (4.6)

where the last inequality follows from (4.5).

As the numerical experiments will show, the ratio µ := ‖zk‖2
‖z̃k‖2 is very large for

some eigenvectors and, surprisingly, it is a very accurate predictor of ηra(λ̃0,z̃k;P )

ηra(λ̃0,z̃;D`)

when |λ0| ≤ 1. We must point out that both zk and z̃k in our experiments are
the eigenvectors computed by Matlab. The exact eigenvector was computed trans-
forming the constructed matrix polynomial to a symbolic object. Moreover, we
have observed that, in the cases when the ratio µ is very large, z̃k is very close
to 0. This implies that the small backward errors introduced by the QZ algorithm
may destroy the exact structure (4.4) of the eigenvectors of Dk(λ;P ). Conclusively,
in floating point arithmetic we cannot assume computed eigenvectors of the form
(4.4) and, thus, we cannot assume that ‖z̃‖2‖z̃k‖2 is small.

Next we present two numerical examples illustrating that the strategy of solv-
ing a PEP with the combined use of D1(λ;P ) and Dk(λ;P ) is potentially unstable.
In particular, we show that using Dk(λ;P ) for computing the eigenvalues with
modulus less than 1 can increase the backward error of a computed eigenpair up
to the point in which most of the accuracy is lost.

In the first numerical experiment, we consider a random matrix polynomial of
degree 4 and size n = 20. The matrix polynomial is constructed in MATLAB as
follows:

A0 = 1e2 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A1 = 1e1 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A2 = 1e2 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A3 = 1e7 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A4 = 1e1 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

(4.7)

and then, we computed A′i := Ai+A
T
i so that the matrix polynomial is symmetric.

This matrix polynomial has 60 out of its 80 eigenvalues with modulus between 1
and 10−2 while the rest of the eigenvalues have modulus larger than 102. Moreover,
the eigenvalues with modulus larger than one have condition number larger than
1023 (recall Remark 3.2).

In Figure 4.1, we plot the ratio of backward errors ηra(λ̃0,z̃k;P )

ηra(λ̃0,z̃;Dk)
for all the eigen-

values λ0 of P (λ) ordered in increasing order of modulus. This graph is denoted
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Fig. 4.1 Relative-absolute ratio of backward errors using Dk(λ;P ) and bound when P is not
well scaled

by “Pk/Dk” in the legend of the figure. We also plot the ratio ‖zk‖2‖z̃k‖2 , denoted
by “Ratio” in the legend. We observe that the exact ratio of backward errors for
the eigenvalues of modulus less than 1 range between 107 and 1013. Moreover, we
observe that the function“Ratio” fully predicts the values of these ratios. This in-
dicates that, in the computation of the right eigenvectors of P (λ) associated with
the “small” eigenvalues, the norm of the last block of the exact eigenvector is very
sensitive to changes in the coefficients of P (λ) and therefore, using Dk(λ;P ) to
compute these eigenvalues is not a good strategy.

The problems in the backward errors observed in this numerical experiment
could be attributed to the fact that the polynomial P (λ) is not well scaled. In our
second numerical experiment, we show that this problem can be observed also in
the case in which P (λ) is well scaled although in this case fewer eigenvalues have
large ratio of backward errors. In this example, we consider again a random matrix
polynomial of degree 4 and size n = 20. The matrix polynomial is constructed in
MATLAB as follows:

A0 = (randn(n) + sqrt(−1) ∗ randn(n));

A1 = (randn(n) + sqrt(−1) ∗ randn(n));

A2 = (randn(n) + sqrt(−1) ∗ randn(n));

A3 = (randn(n) + sqrt(−1) ∗ randn(n));

A4 = (randn(n) + sqrt(−1) ∗ randn(n));

(4.8)
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and then, we computed A′i := Ai+A
T
i so that the matrix polynomial is symmetric.

Moreover, we changed the singular values of A′0 and A′k so that these two matrix
coefficients keep their norm but so that the matrix polynomial has 6 eigenvalues
with modulus between 10−7 and 10−5. The first 46 eigenvalues have modulus less
than or equal to 1 and all the eigenvalues have modulus less than 10. In this case,
six of the eigenvalues with modulus larger than 1 have condition number larger
than 1021.

0 10 20 30 40 50 60 70 80
10

0

10
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10
10

10
15

Pk/Dk

Ratio

Fig. 4.2 Relative-absolute ratio of backward errors using Dk(λ;P ) and bound when P is well
scaled.

In Figure 4.2, we plot the functions “Pk/Dk”, and “Ratio” as we did in the first
numerical experiment. We observe that, for some of the eigenvalues with modulus
less than one, the ratio of backward errors is of order 1015 and that the behavior
of the ratio of backward errors can also be fully predicted by the value of the ratio
‖zk‖2
‖z̃k‖2 , as happened in the first experiment. We must point out that this behavior
is not unique to the two numerical experiments presented here but that it was
observed in a multitude of different numerical experiments.

In conclusion, we cannot guarantee that the eigenpairs associated with eigen-
values of small modulus of a matrix polynomial can be computed accurately from
Dk(λ;P ), specially when P (λ) is not well scaled. Similar conclusions can be ob-
tained for eigenvalues of large modulus when the linearization D1(λ;P ) is used.

We also want to point out that, when Dk(λ;P ) (resp. D1(λ;P )) does not com-
pute eigenpairs associated with small (resp. large) modulus eigenvalues accurately,
D1(λ;P ) (resp. Dk(λ;P )), in general, does not either, as we show next. In Fig-
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ures 4.3 and 4.4 we present two examples in which the ratio of backward errors
is plotted when D1(λ;P ) is used as a linearization of a matrix polynomial P (λ)
(blue graph) and when Dk(λ;P ) is used as a linearization of P (λ) (red graph).
In both cases, there are eigenvalues that are not accurately computed by neither
D1(λ;P ) nor by Dk(λ;P ). In Figure 4.3, the eigenvalues of small modulus are not
accurately computed while in Figure 4.4, the eigenvalues of large modulus are not
accurately computed.

For Figure 4.3, we constructed a matrix polynomial using the same strategy
as in the first experiment but using the coefficients:

A0 = 1e1 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A1 = 1e2 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A2 = 1e− 1 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A3 = 1e8 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A4 = 1e1 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

(4.9)

For Figure 4.4, we used the coefficients

A0 = 1e1 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A1 = 1e11 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A2 = 1e18 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A3 = 1e10 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

A4 = 1e12 ∗ (randn(n) + sqrt(−1) ∗ randn(n));

(4.10)

We have not observed such pathological behavior from the alternative lineariza-
tions that we propose in this work. As an illustration, we show in Figures 4.5 and
4.6 the relative-absolute backward error ratios for the linearizations Dk(λ;P ),
D1(λ;P ) and the linearizations that we denote for now as DH and DG but we
formally introduce in (5.7) and (5.9), with S = Ak. The two experiments are the
same as those presented in Figures 4.3 and 4.4 but adding now the ratios for DH
and DG. Note that the combined used of the linearizations DH and DG allow to
compute all eigenpairs accurately.

5 Using TP (λ) for even-degree matrix polynomials.

A well-known block-symmetric strong linearization for odd degree matrix polyno-
mials P (λ) as in (1.1) is the pencil

T kP (λ) :=



λAk +Ak−1 −In
−In 0 λIn

λIn λAk−2 +Ak−3 −In
−In 0

. . .

0 λIn
λIn λA1 +A0


, (5.1)

introduced in [2]. The missing blocks in this matrix and in any other matrices
in the sequel, as usual, represent zero blocks. The pencil T kP (λ) was proven to
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Fig. 4.3 Relative-absolute ratio of backward errors using Dk and D1, and small eigenvalues
cannot be accurately computed.

enjoy excellent numerical properties in terms of conditioning of eigenvalues and
backward errors in [4]. Our goal in this paper is to find structured linearizations of
even-degree matrix polynomials and, unfortunately, this pencil cannot be used as
a linearization of such matrix polynomials since its structure requires odd degree.

One possible strategy to construct a (symmetric or Hermitian) strong lineariza-
tion of an even-degree (symmetric or Hermitian) matrix polynomial and, at the
same time, try to take advantage of the good numerical properties of T kP is to trans-
form our matrix polynomial of even degree k into an odd grade matrix polynomial
by adding the term 0 · λk+1, that is, to consider the matrix polynomial

P̃ (λ) = 0 · λk+1 + λkAk + · · ·+ λA1 +A0.

By applying the linearization (5.1) to P̃ (λ), we obtain the pencil

HP (λ) := T k+1
P (λ) =



Ak −In
−In 0 λIn

λIn λAk−1 +Ak−2 −In
−In 0

. . .

0 λIn
λIn λA1 +A0


, (5.2)

which is a strong linearization of the matrix polynomial P (λ) when seen as a
polynomial of grade k + 1. We must observe though that the linearization (5.2)
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Fig. 4.4 Relative-absolute ratio of backward errors using Dk and D1, and large eigenvalues
cannot be accurately computed.

has n eigenvalues at infinity that were not present in the original polynomial
eigenvalue problem. Therefore, before we try to compute the eigenvalues of P (λ)
from T k+1

P (λ), it is necessary to deflate the n extra eigenvalues at infinitiy. In the
following section, we show how the deflation can be done.

5.1 Deflating the spurious eigenvalues of HP (λ)

Next we show how to deflate the n spurious eigenvalues at infinity of HP (λ),
assuming that Ak is nonsingular and symmetric/Hermitian. In Section 5.2 we
present an alternative to HP (λ) when Ak is singular but A0 is not.

In order to deflate the n spurious eigenvalues of HP (λ) while preserving the
symmetric or Hermitian structure, we need to find a nonsingular matrix U such
that

U∗HP (λ)U =

[
H1(λ) 0

0 H2(λ)

]
,

where H1(λ) is a pencil whose eigenvalues are exactly the n extra eigenvalues
at infinity, (recall that, for any matrix A, A∗ denotes the conjugate transpose of
A). Note that, since HP (λ) and U∗HP (λ)U are strictly equivalent, both matrices
have the same eigenvalues. Thus, H2(λ) is a pencil with the same eigenvalues as
P (λ). Moreover, since HP (λ) and U∗HP (λ)U are congruent, one of these pencils
is symmetric (resp. Hermitian) if and only if the other is.
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Fig. 4.5 Relative-absolute ratio of backward errors using Dk, D1, DH and DG.

As we will show, in order to construct the nonsingular matrix U , we only need
to find a matrix whose columns form a basis for the nullspace of

M =
[
Ak −In

]
.

Notice that dim(null(M)) = n because M has full row rank. Obvious choices for
matrices whose columns span the nullspace of M are[

In
Ak

]
or

[
A−1
k

In

]
. (5.3)

Another alternative for constructing a basis for the nullspace of M is via a rank
revealing factorization of M (via the QR factorization with column pivoting or the
SVD, for example).

Let V = [ TS ] be any 2n × n full-column-rank matrix such that MV = 0, or
equivalently, AkT − S = 0. Since Ak is nonsingular, the product by Ak preserves
the linearly independency of the columns of T , that is, the set of indices corre-
sponding to the linearly independent columns of T is the same as that of S. Since
V has full rank, it follows that the matrix S is nonsingular. Hence, the following
pencil is strictly equivalent and congruent to HP (λ), and therefore, has the same
eigenvalues as HP (λ): In 0

T ∗ S∗

I(k−1)n

HP (λ)

 In T0 S

I(k−1)n

 . (5.4)
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Fig. 4.6 Relative-absolute ratio of backward errors using Dk, D1, DH and DG.

Moreover, since AkT − S = 0 and T ∗Ak − S∗ = 0, the pencil in (5.4) can be
expressed as 

Ak
−S∗A−1

k S λS∗

λS λAk−1 +Ak−2 −In
−In 0

. . .

0 λIn
λIn λA1 +A0


. (5.5)

We note that the pencil Ak = 0 · λ + Ak has exactly n eigenvalues at infinity
since rev1(Ak) = Akλ+0 has n zero eigenvalues. Conclusively, the deflation of the
spurious eigenvalues at infinity produces the pencil

HSP (λ) :=



−S∗A−1
k S λS∗

λS λAk−1 +Ak−2 −In
−In 0

. . .

0 λIn
λIn λA1 +A0


, (5.6)

for any nonsingular matrix S.
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Remark 5.1 When any of the matrices in (5.3) are employed in the deflation pro-
cedure (i.e. when we choose T = In and S = Ak, or when we choose T = A−1

k

and S = In), the corresponding pencil HSP has already appeared in the literature.

More precisely, for V =
[
In
Ak

]
, we get

HAk

P =



−Ak λAk
λAk λAk−1 +Ak−2 −In

−In 0
. . .

0 λIn
λIn λA1 +A0


, (5.7)

which is a permuted version of the extended block Kronecker pencil EP2 (λ) in [5,

Section 4.4]. For V =
[
A−1

k

In

]
, we get

HInP (λ) =



−A−1
k λIn

λIn λAk−1 +Ak−2 −In
−In 0

. . .

0 λIn
λIn λA1 +A0


,

which was originally introduced in [2].

Remark 5.2 When V is chosen so that its columns are an orthonormal basis for
the nullspace of

[
Ak −In

]
, we refer to the resulting matrix S as SMX . The reason

for this is that our structured deflation procedure coincides with the structured
deflation procedure proposed by Mehrmann and Xu [17] when their method is
applied to the pencil HP (λ).

In the next result we show that the pencil HSP (λ) is a strong linearization of
even degree matrix polynomials P (λ) even if Ak is not symmetric/Hermitian.

Theorem 5.1 Let P (λ) be an even-degree regular matrix polynomial as in (1.1)
with nonsingular Ak and let S be a nonsingular matrix. Then, the pencil HSP (λ)
as in (5.6) is a strong linearization of P (λ).

Proof First, we note that the pencil HAk

P (λ) is permutationally equivalent to the
pencil EP2 (λ) defined in [5, Section 4.4]. More precisely, there exists a block per-
mutation matrix

Π1 := Π(1,2, k
2
+2,3, k

2
+3,..., k

2
,k, k

2
+1)

such that HAk

P (λ) = Π1EP2 (λ)ΠB1 . Since the pencil EP2 (λ) is a strong linearization

of P (λ) if Ak is nonsingular (see [5, Theorem 4.15]), we deduce that HAk

P (λ) is a
strong linearization of P (λ) as well. Second, observe that

HSP (λ) =

[
S∗A−1

k 0
0 In(k−1)

]
HAk

P (λ)

[
A−1
k S 0
0 In(k−1)

]
.

Since both Ak and S are nonsingular, this is an equivalence transformation. Thus,
the pencil HSP (λ) is a strong linearization of P (λ). ut
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Theorem 5.2 establishes two right-sided factorizations of the linearizationHSP (λ).
These factorizations will be key for studying the numerical properties (condition-
ing and backward errors) of this pencil.

Theorem 5.2 Let P (λ) be an even degree matrix polynomial as in (1.1), let S be
an n × n nonsingular matrix, let HSP (λ) be as in (5.6), and let Pi(λ) and P i(λ),
i = 0 : k, be the matrix polynomials defined in (2.2) and (2.4). Define the kn× n
matrix polynomials

∆1(λ) :=



λ
k
2 S−1Ak

λ
k−2
2 In

λ
k−2
2 P2(λ)
...

λ2Pk−4(λ)
λIn

λPk−2(λ)
In


and ∆2(λ) :=



λk−1S−1Ak
λk−2In
−P k−3(λ)

λk−3In
−λP k−5(λ)

...

λ
k−4
2 P 1(λ)

λ
k−2
2 In


. (5.8)

Then, the following right-sided factorizations hold

HSP (λ)∆1(λ) = ek ⊗ P (λ) and HSP (λ)∆2(λ) = e2 ⊗ P (λ),

where ei denotes the ith column of the k × k identity matrix.

Proof For simplicity, we omit the dependence on λ in the Horner polynomials
Pi(λ) and P i(λ). Let HSP (λ) =: λH1 −H0. A direct computation shows that

H1∆1(λ) =



λ
k−2
2 S∗

λ
k
2Ak + λ

k−2
2 Ak−1

λ
k−4
2 In

λ
k−2
2 P2 + λ

k−4
2 Ak−3

...
In

λPk−2 +A1


and H0∆1(λ) =



−λ
k
2 S∗

λ
k−2
2 Ak−2 − λ

k−2
2 P2

−λ
k−2
2 In

λ
k−4
2 Ak−4 − λ

k−4
2 P4

...
−λIn
A0


.

It is clear that the first claim follows for the block entries of HSP (λ)∆1(λ) in odd
positions. In order to prove that the claim also follows for the block entries in even
positions, we notice that, for i = 0, 2, . . . , k − 2,

λ[λ
k−i
2 Pi + λ

k−i−2
2 Ak−i−1] + λ

k−i−2
2 Ak−i−2 − λ

k−i−2
2 Pi+2] =

λ
k−i
2 [λPi +Ak−i−1] + λ

k−i−2
2 [Ak−i−2 − Pi+2] =

λ
k−i
2 Pi+1 + λ

k−i−2
2 [Ak−i−2 − Pi+2] =

λ
k−i−2

2 [λPi+1 +Ak−i−2 − Pi+2] = 0,

where the second and fourth equalities follow from λPi + Ak−i−1 = Pi+1, i = 0 :
k − 1. Recall that Ak = P0. Moreover, for the kth block-entry of HSP∆1 we have

λ(λPk−2 +A1) +A0 = λPk−1 +A0 = Pk = P (λ).

which proves the first claim. The second claims can be proven similarly.
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Theorem 5.3 provides explicit formulas for the eigenvectors of the pencilHSP (λ)
in terms of the eigenvectors of the matrix polynomial P (λ). Its proof is similar to
the proof of [4, Theorem 4.1], so we omit it.

Theorem 5.3 Let P (λ) be a regular matrix polynomial of even degree k as in
(1.1) whose leading coefficient Ak is nonsingular, and let S be a nonsingular n×n
matrix. Let λ0 be a finite eigenvalue of P (λ). Then, v is a right eigenvector of
HSP (λ) with eigenvalue λ0 if and only if v = ∆1(λ0)x, for some right eigenvector
x of P (λ) with eigenvalue λ0.

5.2 The case when Ak is singular but A0 is not

In Section 5.1, we assumed in all our discussions that the leading coefficient Ak
of P (λ) was nonsingular. In this section we consider the case in which A0 is
nonsingular. The case when both Ak and A0 are singular is an open question.

As an alternative to the linearizationHSP (λ) in (5.6), we can consider the pencil
GSP (λ) := revHSrevP (λ), which takes the form

GSP (λ) :=



−λS∗A−1
0 S S∗

S λA2 +A1 −λIn
−λIn 0

. . .

0 In
In λAk +Ak−1


. (5.9)

Theorem 5.4 Let P (λ) be an even-degree matrix polynomial as in (1.1) with
nonsingular matrix coefficient A0, and let S be a nonsingular matrix. Then, the
pencil GSP (λ) as in (5.9) is a strong linearization of P (λ).

Proof Noticing that the pencil GSP (λ) when S = A0 is permutationally equivalent
to the pencil EP1 (λ) defined in [5, Section 4.3], the proof is identical to that of
Theorem 5.1. ut

The following lemma is easy to prove. Note that the claim follows from the
definition of GSP (λ) and the definition of reversal of a matrix polynomial.

Lemma 5.1 Let P (λ) be an even degree regular matrix polynomial as in (1.1)
with nonsingular A0. Let S be a nonsingular matrix. If λ0 is a nonzero eigenvalue
of P (λ), then the vectors z and w are, respectively, right and left eigenvectors of
GSP (λ) associated with λ0 if and only if z and w are, respectively, right and left
eigenvectors of HSrevP (λ) associated with 1

λ0
.

6 Eigenvalue condition numbers ratio bounds

In this section, we compare the eigenvalue condition numbers of a matrix polyno-
mial P (λ) and its linearization HSP (λ) for different nonsingular matrices S. The
comparison is done by providing upper and lower bounds on the ratios of the two
condition numbers. In all our results, we assume that the leading coefficient Ak of
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P (λ) is nonsingular as this condition guarantees that HSP (λ) is a strong lineariza-
tion of P (λ). We also assume that P (λ) is symmetric/Hermitian, although many
of our results don’t require this assumption, for simplicity.

Theorem 6.1 will allow us to address the case when Ak is singular but A0 is
nonsingular, by translating all the results obtained for HSP (λ) to GSP (λ) just by
replacing P (λ) by revP (λ) and λ0 by 1

λ0
.

Theorem 6.1 [4, Lemmas 2.1 and 2.2] Let P (λ) be an even degree regular matrix
polynomial as in (1.1) and let λ0 be a finite, nonzero, and simple eigenvalue of
P (λ). Assume that A0 is nonsingular. Then,

κra(λ0;GSP ) = κra

(
1

λ0
;HSrevP

)
and κrr(λ0;GSP ) = κrr

(
1

λ0
;HSrevP

)
.

Moreover, if (z̃, λ̃0) is an approximate right eigenpair of GSP (λ), then (z̃, 1

λ̃0
) is an

approximate eigenpair of HSrevP (λ) and

ηra(z̃, λ̃0;GSP ) = ηra(z̃,
1

λ̃0
;HSrevP ) and ηrr(z̃, λ̃0;GSP ) = ηrr(z̃,

1

λ̃0
;HSrevP ).

In what follows we will use the following notation

ζ := max{1, ‖S‖2, ‖S∗A−1
k S‖2}, (6.1)

µa := ζ max{1, ‖S−1Ak‖22}, (6.2)

µb := ζ min{1, ‖A−1
k S‖−2

2 }, and (6.3)

µc := ζ max{1, max
i=0:k

{‖S−1Ai‖22}}. (6.4)

Next we include the main result of this section. Its proof will be presented in
Section 8 since it is very involved.

Theorem 6.2 (Relative-absolute conditioning bounds) Let P (λ) be a regu-
lar n×n symmetric/Hermitian matrix polynomial of even degree k as in (1.1) with
nonsingular Ak and maxi=0:k{‖Ai‖2} = 1. Assume that λ0 is a simple, finite, and
nonzero eigenvalue of P (λ). Let S be an n× n nonsingular matrix and let HSP (λ)
be as in (5.6).

(i) If |λ0| ≤ 1, then

max

{
µb,

ζ

2

}
≤ κra(λ0;HSP )

κra(λ0;P )
≤ k3µa;

Moreover, if |λ0| is close to 0, then

max

{
µb,

ζ

2

}
≤ κra(λ0;HSP )

κra(λ0;P )
/ kµa.

(ii) If |λ0| > 1, then

max

{(
1 +

|λ0|
k + 1

)
µb,

ζ

2|λ0|

}
≤ κra(λ0;HSP )

κra(λ0;P )
≤ 2 min

{
k3|λ0|µa,

k + k3

|λ0|
µc

}
;
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where the constants ζ, µa, µb and µc have been defined in (6.1)–(6.4).

We note that, for HSP (λ) to be a “good” linearization of P (λ) in terms of
conditioning, we would like the upper bounds on the ratios of condition numbers
provided in Theorem 6.2 to be “small”. This will happen if µa and µc are “small”.
Notice that these constants depend on our selection of the matrix S. Next we
consider the particular cases S = Ak, S = In and S = SMX , where SMX is the
matrix from the Mehrmann-Xu deflation process discussed in Remark 5.2. As in
Theorem 6.2, the factor k3 in the upper bounds for the ratios of condition numbers
can be replaced by k when |λ0| is close to zero.

Theorem 6.3 Let P (λ) be a regular n× n symmetric/Hermitian matrix polyno-
mial of even degree k as in (1.1) with nonsingular Ak and maxi=0:k{‖Ai‖2} = 1.
Assume that λ0 is a simple, finite, and nonzero eigenvalue of P (λ).

(i) If S = Ak, then

1 if |λ0| ≤ 1

1 + |λ0|
k+1 if |λ0| > 1

}
≤ κra(λ0;HSP )

κra(λ0;P )
≤
{
k3 if |λ0| ≤ 1
2k3|λ0| if |λ0| > 1.

(ii) If S = In, then

max{1,‖A−1
k ‖2}

2 if |λ0| ≤ 1
max{1,‖A−1

k ‖2}
2|λ0| if |λ0| > 1

}
≤ κra(λ0;HSP )

κra(λ0;P )
≤

{
k3 max{1, ‖A−1

k ‖2} if |λ0| ≤ 1

4k3
max{1,‖A−1

k ‖2}
|λ0| if |λ0| > 1.

(iii) If S = SMX , then

1 if |λ0| ≤ 1

1 + |λ0|
k+1 if |λ0| > 1

}
≤ κra(λ0;HSP )

κra(λ0;P )
≤
{

2k3 if |λ0| ≤ 1
4k3|λ0| if |λ0| > 1.

Proof Observe that µa = µb = 1 when S = Ak since ‖Ak‖2 ≤ 1, and ζ = µa =
µc = max{1, ‖A−1

k ‖2} when S = In. Then, when S = Ak or S = In, the lower and
upper bounds follow immediately from Theorem 6.2.

Next, we obtain the bounds when S = SMX . Recall that this matrix is obtained
from an orthonormal basis for the nullspace of M =

[
Ak −In

]
. Let V =

[
T

SMX

]
be

one such basis. From MV = 0, we obtain AkT = SMX . Since Ak is nonsingular,
we have A−1

k SMX = T . Hence,

µb = max{1, ‖SMX‖2, ‖S∗MXT‖2}min{1, ‖T‖−2
2 }.

Since V has orthonormal columns, we have ‖T‖2 ≤ 1, ‖SMX‖2 ≤ 1, and ‖S∗MXT‖2 ≤
1. This readily implies µb = 1. Then, observe that

W =

[
In
Ak

]
(In +A2

k)−1/2, (6.5)

where (In +A2
k)1/2 denotes the unique positive definite square root of In +A2

k, is
another orthonormal basis for the nullspace of M =

[
Ak −In

]
. Thus, V = WU ,

for some n × n unitary matrix U . Hence, T = (In + A2
k)−1/2U and, so, T−1 =

U∗(In +A2
k)1/2. Finally, notice

‖T−1‖2 = ‖(In +A2
k)‖1/22 ≤

√
2 max{1, ‖Ak‖2} =

√
2,
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which implies

µa = max{1, ‖SMX‖2, ‖S∗MXT‖2}max{1, ‖T−1‖22} ≤ 2.

Conclusively, if S = SMX , then µa ≤ 2 and µb = 1, and, thus, the bounds readily
follow from Theorem 6.2. ut

Remark 6.1 From the previous theorem, we conclude that, from the relative-
absolute condition number point of view, HAk

P and HSMX

P are comparable and
have an optimal behavior for matrix polynomials P (λ) with “small” degree and
for eigenvalues λ0 with “small” modulus.

The optimality in this context means that the sensitivity of λ0 as an eigenvalue
of P is approximately the same as the sensitivity of λ0 as an eigenvalue of HSP .

Note that the lower bounds for these two linearizations show that if |λ0| � 1,
then neither of the two linearizations will be a good choice.

If Ak is a matrix whose absolute condition number ‖A−1
k ‖2 is “small”, then

HInP has optimal condition number regardless of the modulus of λ0 for moderate
k. Nonetheless, every eigenvalue of P (λ) satisfies

|λ0| ≤ 1 + ‖A−1
k ‖2

k−1∑
i=0

‖Ai‖2 ≤ 1 + k‖A−1
k ‖2,

see [12, Lemma 2.2]. Hence, if ‖A−1
k ‖2 is moderate, then P (λ) does not have eigen-

values with large modulus and, so, HAk

P and HSMX

P also have optimal condition
numbers for all eigenvalues of P (λ).

Now, using Theorem 6.1, we can also conclude that, when A0 is nonsingular,
GAk

P and GSMX

P are comparable and have an optimal behavior for matrix polyno-
mials P (λ) with “small” degree and for eigenvalues with “large” modulus. Thus, if
P (λ) is a matrix polynomial with Ak and A0 nonsingular, in order to compute all
the eigenvalues accurately, the use of two linearizations ( HAk

P and GAk

P , for exam-
ple) would be necessary. This strategy is similar to the one used in the literature
with the linearizations D1(λ;P ) and Dk(λ;P ) given in (4.1) and (4.2), respectively.
We note that the linearizations DH and DG used in the numerical experiments
in Section 4 are precisely the linearizations HAk

P and GAk

P , respectively, discussed
here.

Remark 6.2 So far we have shown that the combined used of HAk

P and GAk

P en-
sures optimal eigenvalue conditioning for eigenvalues of any modulus. But the
same holds for Dk(λ;P ) and D1(λ;P ). So, what is the advantage of using these
two linearizations compared to Dk(λ;P ) and D1(λ;P )? In Remark 3.2 we argued
that one of the possible reasons why the eigenvectors of Dk(λ;P ) and D1(λ;P )
are so sensitive to changes in the coefficients of these two pencils is the fact that
both linearizations tend to have very ill-conditioned eigenvalues. In Remark 4.1
we showed that this is due to the fact that the condition number of the eigenval-
ues λ0 with large (resp. small) modulus of Dk(λ;P ) (resp. D1(λ;P )) is bounded
below by the product of the corresponding condition number when λ0 is seen as
an eigenvalue of P (λ) and |λ0|k−1 (resp. |λ0|1−k). Theorems 6.3 and 6.1 show,
however, that the condition number of the eigenvalues λ0 with large (resp. small)
modulus of HAk

P (resp. GAk

P ) is bounded above by a multiple of the product of the
corresponding condition number when λ0 is seen as an eigenvalue of P and |λ0|
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(resp. |λ0|−1). Thus, if the eigenvalue is well-conditioned in P (λ), its condition
number in the linearization is not much worse as long as |λ0| is moderate. This
might be the reason for the good behavior of the backward error ratios when HAk

P

and GAk

P were used in the numerical experiments showed in Section 4.

The next theorem provides bounds for the relative-relative condition numbers
ratio. Its proof will also be presented in Section 8. We note that, when finding the
bounds presented in this theorem, our main goal was to obtain bounds as sharp
as possible. For less tight but easier to interpret bounds, see Remark 6.3.

Theorem 6.4 (Relative-relative conditioning bounds) Let P (λ) be a regular
n × n symmetric/Hermitian matrix polynomial of even degree k as in (1.1) with
nonsingular Ak and maxi=0:k{‖Ai‖2} = 1. Assume that λ0 is a simple, finite, and
nonzero eigenvalue of P (λ). Let S be an n× n nonsingular matrix and let HSP (λ)
be as in (5.2).

(i) If |λ0| ≤ 1, then

max{1, ‖S∗A−1
k S‖2}

(k + 1) max
i=0:k

{|λ0|i‖Ai‖2}
≤ κrr(λ0;HSP )

κrr(λ0;P )
≤ 2k3µa

max
i=0:k

{|λ0|i‖Ai‖2}
;

(ii) If |λ0| > 1, then

|λ0|k max {1, ‖S‖2}max
{
|λ0| ‖A−1

k S‖−2
2 , 1

|λ0|

}
(k + 1) max

i=0:k
{|λ0|i‖Ai‖2}

≤

κrr(λ0;HSP )

κrr(λ0;P )
≤

2|λ0|k min
{
k3|λ0|µa, (k+k

3)µc

|λ0|

}
max
i=0:k

{|λ0|i‖Ai‖2}
,

where the constants ζ, µa, µb and µc are as in (6.1)–(6.4).

As with Theorem 6.2, the upper bounds presented in the previous theorem
depend on µa and µc. However, in this case, the bounds also depend on the norm
of each monomial of the polynomial P (λ). Theorem 6.5 interprets these bounds in
the cases when S = Ak, S = In, and S = SMX .

Theorem 6.5 Let P (λ) be a regular n× n symmetric/Hermitian matrix polyno-
mial of even degree k as in (1.1) with nonsingular Ak and maxi=0:k{‖Ai‖2} = 1.
Assume that λ0 is a simple, finite, and nonzero eigenvalue of P (λ).

(i) If S = Ak, then

1
(k+1)maxi=0:k{|λ0|i‖Ai‖2} if |λ0| ≤ 1

|λ0|k+1

(k+1)maxi=0:k{|λ0|i‖Ai‖2} if |λ0| > 1

}
≤

κrr(λ0;HSP )

κrr(λ0;P )
≤

{
2k3

maxi=0:k{|λ0|i‖Ai‖2} if |λ0| ≤ 1
2k3|λ0|k+1

maxi=0:k{|λ0|i‖Ai‖2} if |λ0| > 1.
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(ii) If S = In, then

max{1,‖A−1
k ‖2}

(k+1)maxi=0:k{|λ0|i‖Ai‖2} if |λ0| ≤ 1
|λ0|k−1

(k+1)maxi=0:k{|λ0|i‖Ai‖2} if |λ0| > 1

 ≤
κrr(λ0;HSP )

κrr(λ0;P )
≤


2k3 max{1,‖A−1

k ‖2}
maxi=0:k{|λ0|i‖Ai‖2} if |λ0| ≤ 1
2k3|λ0|k−1 max{1,‖A−1

k ‖2}
maxi=0:k{|λ0|i‖Ai‖2} if |λ0| > 1.

(iii) If S = SMX , then

1
(k+1)maxi=0:k{|λ0|i‖Ai‖2} if |λ0| ≤ 1

|λ0|k+1

(k+1)maxi=0:k{|λ0|i‖Ai‖2} if |λ0| > 1

}
≤

κrr(λ0;HSP )

κrr(λ0;P )
≤

{
4k3

maxi=0:k{|λ0|i‖Ai‖2} if |λ0| ≤ 1
4k3|λ0|k+1

maxi=0:k{|λ0|i‖Ai‖2} if |λ0| > 1.

Proof Recall from the proof of Theorem 6.3 that µa = µb = 1 when S = Ak, µa =
µc = max{1, ‖A−1

k ‖2} when S = In, and µa ≤ 2, ‖A−1
k S‖2 ≤ 1 and ‖S∗A−1

k S‖2 ≤
1 when S = SMX . All the bounds, then, readily follow from Theorem 6.4.

Remark 6.3 In order to give an easy interpretation of the upper bounds obtained
in Theorem 6.5, we use the following fact

max{‖A0‖2, |λ0|k‖Ak‖2} ≤ max
i=0:k

{|λ0|i‖Ai‖2} ≤
{

1 if |λ0| ≤ 1

|λ0|k if |λ0| > 1.

Then, from Theorem 6.5, we get the following simpler bounds for the relative-
relative condition numbers ratio.
If S = Ak, then

1
(k+1) if |λ0| ≤ 1
|λ0|

(k+1) if |λ0| > 1

}
≤ κrr(λ0;HSP )

κrr(λ0;P )
≤

{
2k3

‖A0‖2 if |λ0| ≤ 1
2k3|λ0|
‖Ak‖2 if |λ0| > 1.

If S = In, then

max{1,‖A−1
k ‖2}

(k+1) if |λ0| ≤ 1
1

(k+1)|λ0| if |λ0| > 1

}
≤ κrr(λ0;HSP )

κrr(λ0;P )
≤


2k3 max{1,‖A−1

k ‖2}
‖A0‖2 if |λ0| ≤ 1

2k3 max{1,‖A−1
k ‖2}

|λ0|‖Ak‖2 if |λ0| > 1.

If S = SMX , then

1
(k+1) if |λ0| ≤ 1
|λ0|

(k+1) if |λ0| > 1

}
≤ κrr(λ0;HSP )

κrr(λ0;P )
≤

{
4k3

‖A0‖2 if |λ0| ≤ 1
4k3|λ0|
‖Ak‖2 if |λ0| > 1.

These bounds are less tight than those in Theorem 6.5 but easier to interpret.
From these bounds we conclude that HAk

P and HSMX

P have also a comparable
behavior in terms of relative-relative conditioning. The behavior is optimal if
|λ0| ≤ 1, k is moderate and ‖A0‖2 ≈ 1 (recall that we have scaled P (λ) so that
maxi=0:k{‖Ai‖2} = 1); or if |λ0| > 1 is moderate, k is moderate, and ‖Ak‖2 ≈ 1.
The lower bounds for these two linearizations show that if |λ0| � 1, then neither
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of the two linearizations will be a good choice. In this case, HInP could potentially
be a good choice if both ‖Ak‖2 and ‖A−1

k ‖2 have approximately the same norm.
But in this case, as we argued in Remark 6.1, P (λ) does not have eigenvalues with
large modulus and, thus, HAk

P , HSMX

P and HInP are all optimally conditioned.
A comment regarding GSP similar to that in Remark 6.1 is appropriate here as

well.

7 Backward errors ratio bounds

In this section, we compare the backward errors of approximate eigenpairs of a ma-
trix polynomial P (λ) and its linearizationHSP (λ) for different nonsingular matrices
S. The comparison is done by providing upper on the ratio of the two backward
errors. In all our results, we assume that the leading coefficient Ak of P (λ) is
nonsingular as this condition guarantees that HSP (λ) is a strong linearization of
P (λ).

Theorem 6.1 allows us to address the case when Ak is singular but A0 is
nonsingular, by translating all the results obtained for HSP (λ) to GSP (λ) just by
replacing P (λ) by revP (λ) and λ0 by 1

λ0
.

The proof of Theorem 7.1 is omitted because it is very involved but similar to
the proof of Theorems 6.2 and 6.4. It is also similar to the proof of Theorem 5.2
in [4]. The block-vector ∆2(λ) defined in Theorem 5.2 would be necessary in this
case.

Theorem 7.1 (Backward error bounds) Let P (λ) be a regular n×n symmet-
ric/Hermitian matrix polynomial of even degree k as in (1.1) with nonsingular Ak
and maxi=0:k{‖Ai‖2} = 1. Let S be an n × n nonsingular matrix and let HSP (λ)

be as in (5.6). Let (z̃, λ̃0) be an approximate right eigenpair of HSP (λ), and define
the vector

x̃ :=

{
(ek ⊗ In)z̃ if |λ̃0| ≤ 1, and

(e2 ⊗ In)z̃ if |λ̃0| > 1.
(7.1)

Then,

ηra(x̃, λ̃0;P )

ηra(z̃, λ̃0;HSP )
≤ 4k3/2 ζ max{1, ‖S−1Ak‖2}

‖z̃‖2
‖x̃‖2

,

and

ηrr(x̃, λ̃0;P )

ηrr(z̃, λ̃0;HSP )
≤ 4k3/2 ζ max{1, ‖S−1Ak‖2}

max{1, |λ̃0|k}
maxi=0:k{|λ̃0|i‖Ai‖2}

‖z̃‖2
‖x̃‖2

,

where ζ is as in (6.1).

The following result follows from Theorem 7.1 and the fact that ‖SMX‖2,
‖S∗MXA

−1
k SMX‖2 ≤ 1 and ‖S−1

MXAk‖2 =
√

2 as shown in the proof of Theorem
6.3.

Corollary 7.1 Let P (λ) be a regular n× n symmetric/Hermitian matrix polyno-
mial of even degree k as in (1.1) with nonsingular Ak and maxi=0:k{‖Ai‖2} = 1.
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Let (z̃, λ̃0) be an approximate right eigenpair of HSP (λ), and let x̃ be as in (7.1).
Then

ηra(x̃, λ̃0;P )

ηra(z̃, λ̃0;HSP )
≤ 4k3/2

‖z̃‖2
‖x̃‖2

×

 21/2 if S = SMX ,
1 if S = Ak,

max{1, ‖A−1
k ‖2} if S = In.

and

ηrr(x̃, λ̃0;P )

ηrr(z̃, λ̃0;HSP )
≤ 4k3/2

max{1, |λ̃0|k}
maxi=0:k{|λ̃0|i‖Ai‖2}

‖z̃‖2
‖x̃‖2

× 21/2 if S = SMX ,
1 if S = Ak,

max{1, ‖A−1
k ‖2} if S = In.

Remark 7.1 From the previous theorem, we conclude that, from the relative-
absolute backward error point of view, HAk

P and HSMX

P are comparable and have
an optimal behavior for matrix polynomials P (λ) with “small” degree and for
eigenvalues λ0 with “small” modulus, as happened with the eigenvalue condition
number.

The optimality in this context means that the backward error of approximate
eigenpairs (λ̃0, x̃) of P is not much worse than the backward error of approximate

eigenpairs (λ̃0, z̃) of HSP when x̃ is recovered from z̃ as explained in Corollary 7.1.

Moreover, if λ0 (with |λ0| ≤ 1) is an exact eigenvalue of HSP (λ) with corre-
sponding right eigenvector z, then according to Theorem 5.3, z = ∆1(λ0)x for
some eigenvector x of P (λ). Because of the structure of ∆1(λ), we have that
x = (ek ⊗ In)z. This implies, as we will show in (8.16), that

‖z‖2
‖x‖2

=
‖∆1(λ0)x‖2
‖x‖2

≤
(
k3

2

)1/2

max{1, ‖S−1Ak‖2}.

Thus, for S ∈ {Ak, In, SMX} and |λ0| ≤ 1, we have

‖z‖2
‖x‖2

≤ k3/2.

So, if the computed eigenvector z̃ has the same structure as the exact eigen-

vector z, we know that the upper bound for ηra(x̃,λ̃0;P )

ηra(z̃,λ̃0;HS
P )

is moderate for moderate

values of k, for eigenvalues |λ̃0| ≤ 1 and for S ∈ {Ak, SMX}. Although we cannot
guarantee that this is the case, in all our numerical experiments this seems to
be the case, in stark contrast with what happened with D1(λ;P ) and Dk(λ;P ).
Recall our comments in Remark 6.2 for a possible explanation.

As with the eigenvalue condition number, in order to guarantee small backward
errors for |λ̃0| > 1, it is necessary to assume that A0 is also nonsingular and use
the linearization GAk

P or GSMX

P .
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8 Proof of the eigenvalue condition bounds

The next lemma is the key result that leads to the proofs of Theorems 6.2 and 6.4.

Lemma 8.1 Let P (λ) be a regular n×n symmetric/Hermitian matrix polynomial
of even degree k as in (1.1). Assume that λ0 is a simple, finite, and nonzero
eigenvalue of P (λ) with corresponding right eigenvector x. Let S be an n × n
nonsingular matrix and let HSP (λ) =: λH1 −H0. Then,

κra(λ0;HSP ) =
(|λ0|+ 1) max{‖H1‖2, ‖H0‖2}‖∆1(λ0)x‖22

|λ0| · |x∗P ′(λ0)x| and

κrr(λ0;HSP ) =
(|λ0|‖H1‖2 + ‖H0‖2)‖∆1(λ0)x‖22

|λ0| · |x∗P ′(λ0)x| ,

where ∆1(λ) is as in (5.8).

Proof By Theorem 5.3, the vector ∆1(λ0)x is a right eigenvector of HSP (λ) with
eigenvalue λ0. Since P (λ) is symmetric, so is HSP (λ). Hence, ∆1(λ0)x is also a left
eigenvector of HSP (λ) with eigenvalue λ0. By Theorem 5.2, we have the following
right-sided factorization

HSP (λ)∆1(λ) = ek ⊗ P (λ).

Differentiating this expression with respect to λ, we get

HSP (λ)′∆1(λ) +HSP (λ)∆′1(λ) = ek ⊗ P ′(λ).

Now, we evaluate this expression at λ0 and multiply it by x on the right and by
(∆1(λ0)x)∗ on the left. We get

(∆1(λ0)x)∗HSP (λ0)′∆1(λ0)x = (∆1(λ0)x)∗(ek ⊗ P ′(λ0))x = x∗P ′(λ0)x,

and the results readily follow from the eigenvalue condition number formulas in
Theorem 3.1.

Next we bound the norm of the matrix coefficients of the linearization HSP (λ)
in terms of the norms of the matrix coefficients of the matrix polynomial P (λ) and
the marix S.

Lemma 8.2 Let P (λ) be an n × n symmetric/Hermitian matrix polynomial of
even degree k as in (1.1) with max{‖Ai‖2} = 1, let S be an n × n nonsingular
matrix and let HSP (λ) =: λH1 −H0. Then,

‖H1‖2 ≤ 2 max{1, ‖S‖2},

‖H0‖2 ≤ 2 max{1, ‖S∗A−1
k S‖2}.

Proof When k = 2, we have

HSP (λ) =

[
−S∗A−1

2 S λS∗

λS λA1 +A0

]
= λ

[
0 S∗

S A1

]
−
[
S∗A−1

2 S 0
0 −A0

]
,

and the result thus follows from Proposition 2.1.
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Next, assume k ≥ 4. Let z =
[
zT1 · · · zTk

]T
be a nonzero vector partitioned

into k blocks of size n× 1. Then, defining z0 := 0, we have

‖H1z‖22 = ‖S∗z2‖22 +‖Sz1 +Ak−1z2‖22 +

k
2∑
i=2

‖z2i‖22 +

k−2
2∑
i=1

‖z2i+1 +Ak−2i−1z2i+2‖22.

Using the triangle inequality, we get

‖H1z‖22 ≤ ‖S‖22‖z2‖22+(‖S‖2‖z1‖2 + ‖Ak−1‖2‖z2‖2)2+

k
2∑
i=2

‖z2i‖22 +

k−2
2∑
i=1

(‖z2i+1‖2 + ‖Ak−2i−1‖2‖z2i+2‖2)2.

Finally, some simple inequalities and manipulations yield

‖H1z‖22 ≤max{1, ‖S‖22}

 k
2∑
i=1

‖z2i‖22+

k−2
2∑
i=0

‖z2i+1‖22 +

k−2
2∑
i=0

‖z2i+2‖22 + 2

k−2
2∑
i=0

‖z2i+1‖2‖z2i+2‖2


≤ max{1, ‖S‖22}

[
2

k∑
i=1

‖zi‖22+ 2

k−2
2∑
i=0

max{‖z2i+1‖22, ‖z2i+2‖22}


≤ 4 max{1, ‖S‖22}}‖z‖22,

which implies the result for H1. The result for H0 can be obtained similarly.

We now need to prove some technical lemmas.

Lemma 8.3 Let P (λ) be an n × n symmetric/Hermitian matrix polynomial of
even degree k as in (1.1), let S be an n × n nonsingular matrix, and let ∆1(λ)be
as in (5.8). Define the following three functions

d1(λ) =

k
2∑

r=0

|λ|2r +

k−2
2∑

r=1

|λ|2r(k − 2r + 1)

k−2r∑
j=0

|λ|2j
 , (8.1)

d2(λ) =

k
2∑

r=0

|λ|2r +

k−2
2∑

r=1

(2r)

r−1∑
i=−r

|λ|2i, and (8.2)

d3(λ) =

k−2
2∑

r=0

|λ|2r +

k
2∑

r=1

(2r)

r−1∑
i=−r

|λ|2i. (8.3)

Then, the following inequality holds

‖∆1(λ)‖2 ≤
√
d1(λ) max{1, ‖S−1Ak‖2, max

i=0:k
‖Ai‖2}, (8.4)
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for any λ ∈ C. Moreover, if λ0 is a finite eigenvalue of P (λ) with corresponding
right eigenvector x, then the following inequalities hold

‖∆1(λ0)x‖2
‖x‖2

≤ min{
√
d1(λ0),

√
d2(λ0)}max{1, ‖S−1Ak‖2, max

i=0:k
‖Ai‖2}, (8.5)

‖∆1(λ0)x‖2
‖x‖2

≤
√
d3(λ0) max{1, max

i=0:k
{‖Ai‖2}, max

i=0:k
{‖S−1Ai‖2}}. (8.6)

Proof Let x be an arbitrary nonzero vector conformable with ∆1(λ) for multipli-
cation. From (5.8), together with the first inequality in Lemma 2.3, we get

‖∆1(λ)x‖22 = |λ|k‖S−1Akx‖22 +

k−2
2∑

r=0

|λ|2r‖x‖22 +

k−2
2∑

r=1

|λ|2r‖Pk−2r(λ)x‖22 (8.7)

≤ |λ|k‖S−1Ak‖22‖x‖22 +

k−2
2∑

r=0

|λ|2r‖x‖22+

k−2
2∑

r=1

|λ|2r max
i=0:k

{‖Ai‖22}

k−2r∑
j=0

|λ|j
2

‖x‖22

≤ max{1, ‖S−1Ak‖22, max
i=0:k

{‖Ai‖22}}

|λ|k +

k−2
2∑

r=0

|λ|2r +

k−2
2∑

r=1

|λ|2r
k−2r∑
j=0

|λ|j
2 ‖x‖22.

Using Lemma 2.1, we obtain

‖∆1(λ)x‖22 ≤ max{1, ‖S−1Ak‖22, max
i=0:k

{‖Ai‖22}}

 k
2∑

r=0

|λ|2r+

k−2
2∑

r=1

|λ|2r(k − 2r + 1)

k−2r∑
j=0

|λ|2j
 ‖x‖22.

Thus, we have found the upper bound

‖∆1(λ)x‖2
‖x‖2

≤
√
d1(λ) max{1, ‖S−1Ak‖2, max

i=0:k
{‖Ai‖2}},

which does not depend on x. Since ‖∆1(λ)‖2 = maxx 6=0
‖∆1(λ)x‖2
‖x‖2 , this is also an

upper bound for ‖∆1(λ)‖2, which establishes the inequality (8.4).
Now let us consider an eigenvalue λ0 of P (λ) with corresponding right eigen-

vector x. The computations above give

‖∆1(λ0)x‖2
‖x‖2

≤
√
d1(λ0) max{1, ‖S−1Ak‖22, max

i=0:k
{‖Ai‖22}}.
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Furthermore, by (8.7) and Lemma 2.2, we also have

‖∆1(λ0)x‖22
‖x‖22

≤|λ0|k‖S−1Ak‖22 +

k−2
2∑

r=0

|λ0|2r +

k−2
2∑

r=1

|λ0|−2r‖P 2r−1(λ0)‖22. (8.8)

From Lemma 2.1 and the second inequality in Lemma 2.3, we thus obtain

‖∆1(λ0)x‖22
‖x‖22

≤ |λ0|k‖S−1Ak‖22 +

k−2
2∑

r=0

|λ0|2r+

max
i=0:k

{‖Ai‖22}

k−2
2∑

r=1

|λ0|−2r

(
2r−1∑
i=0

|λ0|i
)2

≤ |λ0|k‖S−1Ak‖22 +

k−2
2∑

r=0

|λ0|2r + max
i=0:k

{‖Ai‖22}

k−2
2∑

r=1

2r

r−1∑
i=−r

|λ0|2i

≤ d2(λ0) max{1, ‖S−1Ak‖22, max
i=0:k

{‖Ai‖22}}.

This establishes inequality (8.5).
We now prove inequality (8.6). Recall Ak = P0(λ). Hence, from (8.7) and

Lemma 2.2, we get

‖∆1(λ0)x‖22 ≤ |λ0|−k‖S−1P k−1(λ0)x‖22+

k−2
2∑

r=0

|λ0|2r‖x‖22+

k−2
2∑

r=1

|λ0|−2r‖P 2r−1(λ0)x‖22.

Using the second inequality in Lemma 2.3, we get

‖∆1(λ0)x‖22
‖x‖22

≤max{1, max
i=0:k

{‖Ai‖22}, max
i=0:k

{‖S−1Ai‖22}}

|λ0|−k
k−1∑
j=0

|λ0|j
2

+

k−2
2∑

r=0

|λ0|2r +

k−2
2∑

r=1

|λ0|−2r

(
2r−1∑
i=0

|λ0|i
)2
 .

Using Lemma 2.1, we finally obtain

‖∆1(λ0)x‖22
‖x‖22

≤max{1, max
i=0:k

{‖Ai‖22}, max
i=0:k

{‖S−1Ai‖22}}

 k−2
2∑

r=0

|λ0|2r+

k
2∑

r=1

2r

r−1∑
i=−r

|λ0|2i


≤d3(λ) max{1, max
i=0:k

{‖Ai‖22}, max
i=0:k

{‖S−1Ai‖22}},

which is the desired result. ut

Lemma 8.4 Let λ0 ∈ C be nonzero and let k ≥ 2 be a positive even integer. Let
d1(λ), d2(λ) and d3(λ) be the functions in (8.1), (8.2) and (8.3).
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(a) If |λ0| ≤ 1, then

d1(λ0) ≤ k + 2

2
+
k(k2 − 1)

6
|λ0|2. (8.9)

(b) If |λ0| > 1, then

d2(λ0) ≤
(
k

2
+ 1

)
|λ0|k +

k(k − 1)(k − 2)

6
|λ0|k−4, and (8.10)

d3(λ0) ≤ k(k + 3)2

6
|λ0|k−2. (8.11)

Proof We first prove inequality (8.9). So, assume |λ0| ≤ 1. Using |λ0|i ≤ |λ0|j
when i ≥ j, we get from (8.1)

d1(λ0) ≤k
2

+ 1 + |λ0|2
k−2
2∑

r=1

(k − 2r + 1)2

=
k + 2

2
+ |λ0|2

k(k2 − 1)

6

where the equality follows from 12 + 32 + · · ·+ (2n− 1)2 = n(2n+1)(2n−1)
3 , which

implies (8.9).
Next, assume |λ0| ≥ 1. Let us prove (8.10) and(8.11). Using |λ0|i ≤ |λ0|j when

i ≤ j, we get from (8.2)

d2(λ0) ≤
(
k

2
+ 1

)
|λ0|k + |λ0|k−4

k−2
2∑

r=1

(2r)2

=

(
k

2
+ 1

)
|λ0|k +

k(k − 1)(k − 2)

6
|λ0|k−4.

where the equality follows from

22 + · · ·+ (2n)2 =
2n(n+ 1)(2n+ 1)

3
. (8.12)

Analogously, from (8.3), we obtain

d3(λ0) ≤ k

2
|λ0|k−2 + |λ0|k−2

k
2∑

r=1

(2r)2

=
k

2
|λ0|k−2 +

k(k + 1)(k + 2)

6
|λ0|k−2,

where the equality follows also from (8.12), which are the desired results. ut

We are finally in a position to prove Theorems 6.2 and 6.4.

Proof (of Theorem 6.2) By Lemma 8.1 and the definition of κra(λ0, P ), we have

κra(λ0;HSP )

κra(λ0;P )
= max{‖H0‖2, ‖H1‖2}

|λ0|+ 1∑k
i=0 |λ0|i

‖∆1(λ0)x‖22
‖x‖22

, (8.13)
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where we have used maxi=0:k{‖Ai‖2} = 1.
We start by proving the relative-absolute upper bounds. Notice that

|λ0|+ 1∑k
i=0 |λ0|i

≤
{

1, if |λ0| ≤ 1, and
2

|λ0|k−1 , if |λ0| > 1.
(8.14)

Moreover, by Lemma 8.2, we have

max{‖H0‖2, ‖H1‖2} ≤ 2ζ, (8.15)

where ζ has been defined in (6.1). Hence, to finish the proof, we need to bound
the square of the ratio ‖∆1(λ0)x‖2/‖x‖2.

If |λ0| ≤ 1, by inequalities (8.5) and (8.9), we have

‖∆1(λ0)x‖22
‖x‖22

≤ d1(λ0) max{1, ‖S−1Ak‖22}

≤
(
k + 2

2
+
k(k2 − 1)

6
|λ0|2

)
max{1, ‖S−1Ak‖22}

≤ k3

2
max{1, ‖S−1Ak‖22}.

(8.16)

We notice that, if |λ0| is close to 0, then the previous upper bound is close to

k + 2

2
max{1, ‖S−1Ak‖22}.

If |λ0| > 1, then, by the inequalities (8.5) and (8.10), we get

‖∆1(λ0)x‖22
‖x‖22

≤ d2(λ0) max{1, ‖S−1Ak‖22}

≤
((

k

2
+ 1

)
|λ0|k +

k(k − 1)(k − 2)

6
|λ0|k−4

)
max{1, ‖S−1Ak‖22}

≤ |λ0|
k

2

(
k + 2 +

k(k − 1)(k − 2)

3

)
max{1, ‖S−1Ak‖22}

≤ |λ0|k
k3

3
max{1, ‖S−1Ak‖22},

(8.17)

and, by the inequalities (8.6) and (8.11),

‖∆1(λ0)x‖22
‖x‖22

≤d3(λ0) max{1, max
i=0:k

{‖S−1Ai‖22}}

≤k + k3

2
|λ0|k−2 max{1, max

i=0:k
{‖S−1Ai‖22}}.

(8.18)

Hence, if |λ0| > 1,

‖∆1(λ0)x‖22
‖x‖22

≤ |λ0|k×

min

{
k3

3
max{1, ‖S−1Ak‖22},

k + k3

2|λ0|2
max{1, max

i=0:k
{‖S−1Ai‖22}}

}
.

(8.19)
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The desired upper bounds are obtained by combining the inequalities (8.14), (8.15),
(8.16) and (8.19) with (8.13). ut

Now, we prove the relative-absolute lower bounds. First, a direct application
of the lower bound in Proposition 2.1 to H0 and H1 yields

max{‖H0‖2, ‖H1‖2} ≥ ζ. (8.20)

Second, from (5.8), we get

‖∆1(λ0)x‖22
‖x‖22

≥

k−2
2∑
i=0

|λ0|2i + |λ0|k
‖S−1Akx‖22
‖x‖22

≥

k−2
2∑
i=0

|λ0|2i + |λ0|k‖A−1
k S‖−2

2 ≥

≥

k
2∑
i=0

|λ0|2i min{1, ‖A−1
k S‖−2

2 },

(8.21)

where we have used that ‖x‖2 ≤ ‖A−1‖2‖Ax‖2 for any vector x and invertible
matrix A. Hence, combining (8.20) and (8.21) with (8.13) yields

κra(λ0;HSP )

κra(λ0;P )
≥µb

(1 + |λ0|)
∑ k

2
i=0 |λ0|

2i∑k
i=0 |λ0|i

= µb

∑k+1
i=0 |λ0|

i∑k
i=0 |λ0|i

≥{
µb if |λ0| ≤ 1, and

µb

(
1 + |λ0|

k+1

)
if |λ0| > 1,

where µb has been defined in (6.3). Furthermore, by (5.8), we also have

‖∆1(λ0)x‖22
‖x‖22

≥

k−2
2∑
i=0

|λ0|2i. (8.22)

Thus, from (8.13), (8.20) and (8.22), we obtain

κra(λ0;HSP )

κra(λ0;P )
≥ζ (|λ0|+ 1)

∑ k−2
2

i=0 |λ0|
2i∑k

i=0 |λ0|i
≥ ζ

∑k−1
i=0 |λ0|

i∑k
i=0 |λ0|i

≥
ζ

2
if |λ0| ≤ 1, and

ζ

2|λ0|
if |λ0| > 1,

and the desired lower bounds have been established. ut

Proof (of Theorem 6.4) By Lemma 8.1 and the definition of κrr(λ0, P ), we have

κrr(λ0;HSP )

κrr(λ0;P )
=

(|λ0|‖H1‖2 + ‖H0‖2)∑k
i=0 |λ0|i‖Ai‖2

‖∆1(λ0)x‖22
‖x‖22

. (8.23)

Notice also

max
i=0:k

{|λ0|i‖Ai‖2} ≤
k∑
i=0

|λ0|i‖Ai‖2 ≤ (k + 1) max
i=0:k

{|λ0|i‖Ai‖2}. (8.24)



Reconsidering DL(P ) for the symmetric polynomial eigenvalue problem 37

Furthermore, from Lemma 8.2, we readily obtain

|λ0| ‖H1‖2 + ‖H0‖2 ≤
{

4ζ if |λ0| ≤ 1, and
4|λ0|ζ if |λ0| > 1,

(8.25)

where ζ has been defined in (6.1).
When |λ0| ≤ 1, the desired upper bound follows by combining (8.16), (8.24),

and (8.25) with (8.23). When |λ0| > 1, the desired upper bound follows by com-
bining (8.19), (8.24), and (8.25) with (8.23).

Now, we prove the lower bounds. First, from Proposition 2.1, we get

|λ0| ‖H1‖2 + ‖H0‖2 ≥
{

max{1, ‖S∗A−1
k S‖2} if |λ0| ≤ 1, and

|λ0|max{1, ‖S‖2} if |λ0| > 1.
(8.26)

Then, notice

‖∆1(λ0)x‖2
‖x‖22

≥
{

1 if |λ0| ≤ 1, and

max{|λ0|k‖A−1
k S‖−2

2 , |λ0|k−2} if |λ0| > 1.
(8.27)

which readily follows from (5.8). The lower bounds are obtained by combining
(8.24), (8.26) and (8.27) with (8.23).

9 Conclusions

In this paper, we propose a new strategy to solve the even degree symmetric/Hermi
tian polynomial eigenvalue problem. We have shown evidence that, the traditional
approach of using the linearizations D1(λ;P ) and Dk(λ;P ) is, in many occasions,
risky due to the fact that the eigenvectors of these two linearizations are too
sensitive to small perturbations in their matrix coefficients. This sensitivity leads
to large backward errors for the computed eigenpairs. We propose instead the use
of the linearizations HAk

P (λ) and GAk

P (λ) introduced in (5.7) and (5.9) (when S is
replaced by Ak). We have proven that the condition numbers of the eigenvalues
with small (resp. large) modulus of Dk(λ;P ) (resp. D1(λ;P )) and HAk

P (λ) (resp.

GAk

P (λ)) are comparable. But we have also shown that the condition number of
the eigenvalues with large (resp. small) modulus of Dk(λ;P ) (resp. D1(λ;P )) is
significantly worse than that of the eigenvalues of HAk

P (λ) (resp. GAk

P (λ)), specially
for moderate to large values of the degree k of P (λ). In future work we intend to
determine if the sensitivity of the eigenvectors of D1(λ;P ) and Dk(λ;P ) truly
depends on the existence of ill-conditioned eigenvalues or if it depends on any
other factors. We would also like to determine how this sensitivity changes the
structure of the computed eigenvectors, in particular, the structure of the blocks
from which the eigenvectors of the polynomial P (λ) are recovered, and how this
change affects the backward errors of the computed eigenpairs.

A Structure preserving deflation

In this section we consider the even-degree matrix polynomial (1.1) as an odd-grade matrix
polynomial by adding an extra zero matrix coefficient, that is,

Q(λ) := λk−10n + P (λ). (A.1)
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We observe that the pencil T k+1
Q (λ) (see (5.2)) is a “weak” linearization for Q(λ), i.e., it is not

a strong linearization, since T k+1
Q (λ) has n extra spurious eigenvalues at infinity. Nonetheless,

the Kronecker structure of these eigenvalues at infinity is very simple, as we show in the next
lemma.

Lemma A.1 Let P (λ) be an n × n even-degree matrix polynomial as in (1.1), and let Q be

as in (A.1). Then, the spectrum of T k+1
Q (λ) consists of the spectrum of P (λ) together with n

eigenvalues at infinity of index one, i.e., with Kronecker blocks of size 1.

Proof Notice revk+1Q(λ) = λrevkP (λ). Hence,

det (revk+1Q(λ)) = λn det (revkP (λ)) ,

and, so, all the extra n eigenvalues at infinity of Q(λ) have algebraic and geometric multiplicity
equal to one.

Lemma A.1 allows us to apply to T k+1
Q (λ) the structure preserving deflation developed

by Mehrmann and Xu [17], provided that Ak is nonsingular. Hence, we can deflate the n

spurious eigenvalues at infinity of T k+1
Q (λ) preserving the symmetric structure of the pencil.

Surprisingly, the result of applying the deflation procedure to T k+1
Q (λ) is essentially a pencil

of the form (5.6). The overall goal of this section is to prove this fact.

Let λT1−T0 := T k+1
Q (λ). The first step of the deflation consists in finding a unitary matrix

U such that

U∗T1 =

[
N
0

]
where N is of full row rank. Notice that T1 has n zero rows (its first n rows), so the unitary
matrix can be chosen as the permutation matrix.

U∗ =

[
U∗1
U∗2

]
:=

[
0 Ikn
In 0

]
.

With this choice for U , the resulting N is of full row rank since it contains a kn×kn nonsingular
matrix.

The second step of the deflation procedure consists in finding a unitary matrix V such
that

U∗2 T0V =
[
Ak −In 0 · · · 0

]
V =

[
0kn M

]
,

where M is nonsingular. We can find such unitary matrix V by using a rank revealing factoriza-
tion (via a QR decomposition with partial pivoting or the SVD decomposition, for example).
Let [

Ak −In
] [V11 V12
V21 V22

]
=
[
0n M

]
,

which implies, in particular, AkV11 = V21. Then, set

V =

 0
V11 V12
V21 V22

I(k−1)n 0

 .
Using MATLAB notation for submatrices, the deflated pencil is the kn× kn pencil

V (:, 1 : kn)∗T k+1
Q (λ)V (:, 1 : kn),

which is permutationally equivalent to

[
V ∗11 V

∗
21 0

0 I(k−1)n

]
T k+1
Q (λ)

 V11V21
0

0 I(k−1)n

 ,
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which equals

−V ∗21V11 λV ∗21
λV21 λAk−1 +Ak−2 −In

−In 0 λIn
λIn λAk−3 +Ak−4

. . .

λIn
λIn λA1 +A0


= HV21

P (λ),

as we wanted to show, where we have used AkV11 = V21.
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