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Abstract. Two Hermitian matrices A, B ∈ Mn(C) are said to be Hermitian-congruent if there
exists a nonsingular Hermitian matrix C ∈ Mn(C) such that B = CAC. In this paper, we give neces-
sary and sufficient conditions for two nonsingular simultaneously unitarily diagonalizable Hermitian
matrices A and B to be Hermitian-congruent. Moreover, when A and B are Hermitian-congruent,
we describe the possible inertias of the Hermitian matrices C that carry the congruence. We also give
necessary and sufficient conditions for any 2-by-2 nonsingular Hermitian matrices to be Hermitian-
congruent. In both of the studied cases, we show that if A and B are real and Hermitian-congruent,
then they are congruent by a real symmetric matrix. Finally we note that if A and B are 2-by-2
nonsingular real symmetric matrices having the same sign pattern, then there is always a real sym-
metric matrix C satisfying B = CAC. Moreover, if both matrices are positive, then C can be picked
with arbitrary inertia.
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1. Introduction. Matrices A,B ∈ Mn(C) (Mn for short) are said to be congru-
ent if there is a nonsingular matrix C ∈ Mn(C) such that B = C∗AC. Congruence
is an equivalence relation on Mn(C). If ∗ is replaced by T and the matrices are real,
then congruence is also an equivalence relation on Mn(R). If A and B are Hermitian,
it is well known that they are congruent if and only if they have the same inertia
(number of positive, negative and zero eigenvalues, counting multiplicities) [4, Chap-
ter 4]. In particular, if A and B are real symmetric and have the same inertia, they
are congruent by a real matrix [4, Chapter 4]. We are interested here in the case in
which A and B are Hermitian (real symmetric) and C can be chosen Hermitian (real
symmetric), as well.

It is a notable fact that if A and B are positive definite, then there is a unique
positive definite matrix C such that B = CAC. A formula for C is

C = A−1/2
(
A1/2BA1/2

)1/2

A−1/2.

(This presentation was given in [4] in the context of solving symmetric word equa-
tions. The same matrix, with other presentations, has arisen in the different context
of generalizing the notion of geometric mean to positive definite matrices, [1, 2].)
Moreover, as will follow from Theorem 2.3, A and B are congruent by a Hermitian
matrix with arbitrary inertia. Since B = CAC if and only if −B = C(−A)C, similar
observations may be made when A and B are negative definite. However, if A and B
are congruent but not positive (negative) definite, it may happen that, not only there
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is no positive definite C that carries the congruence, but no Hermitian C at all. For
example, let

A =
[

1 0
0 −1

]
and B =

[
−2 0

0 1

]
.

In general, the occurence of Hermitian congruence is quite delicate in that small
changes in A and B, or algebraic manipulations, that preserve inertia may destroy it.
Nonetheless, as we shall see, there are broad circumstances in which it is surprisingly
robust.

We consider here the question of which pairs of nonsingular Hermitian (real sym-
metric) matrices A and B are congruent by a Hermitian (real symmetric) C and what
are the possible inertias of C. The order in which A and B are taken is immaterial.

We develop some general theory for this question and then specialize it to give
some explicit results in certain cases. In particular, we solve our question when A
and B are simultaneously unitarily diagonalizable. Also, when n = 2 highly explicit
results are given, including remarkable results involving the sign patterns of A and B.
In view of the facts mentioned for A and B positive (negative) definite, if convenient,
we may concentrate upon the cases in which A and B are indefinite.

Notice that the equation B = XAX is a particular case of the general continuous
algebraic Ricatti equation [5, Part II]

XAX + XD + D∗X −B = 0, (1.1)

when D = 0. Ricatti equations are of great interest because of their important role in
optimal filter design and control theory. In many applications, Hermitian solutions of
(1.1) are required. Most of the results in the literature on this problem assume that A
and B are positive semidefinite matrices. Some results can also be found for indefinite
matrices assuming that A satisfies some conditions motivated by control theory [3, 6].

2. Notation and general results. We start this section with some notation
and definitions that will be needed throughout the paper.

Let A,B ∈ Mn be Hermitian matrices. We say that A and B are Hermitian-
congruent if there is a nonsingular Hermitian matrix X ∈ Mn such that B = XAX.
Note that if A and B are nonsingular and B = XAX, then X is necessarily nonsin-
gular.

We say that K ∈ Mn is a signature matrix if K is a diagonal matrix with eigen-
values in {−1, 1}. If K is a signature matrix, then W ∈ Mn is said to be K-unitary
if W ∗KW = K. It is easy to see that the set of all K-unitary matrices form a group
under multiplication.

If A = [aij ] ∈ Mn, we say that S = [sij ] ∈ Mn is the sign matrix of A, and we
write S = sign(A), if sij = 1 for aij > 0; sij = −1 for aij < 0, and sij = 0 for aij = 0,
i, j = 1, ..., n.

The next two results allow us to get equivalent statements of our problem.
Theorem 2.1. Let A,B ∈ Mn be nonsingular Hermitian matrices with the same

inertia. Let Y, Z ∈ Mn be such that A = Y ∗KY and B = Z∗KZ, respectively, where
K is a signature matrix with the same inertia as A. Let X ∈ Mn be a Hermitian
matrix. Then, B = XAX if and only if X = Y −1WZ for some K-unitary matrix
W ∈ Mn.

Proof. Suppose that there is a Hermitian matrix X ∈ Mn such that B = XAX.
Then,

Z∗KZ = X(Y ∗KY )X,
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or, equivalently,

K = (Z−∗XY ∗)K(Y XZ−1).

Thus, W = Y XZ−1 is a K-unitary matrix.
Now suppose that X = Y −1WZ for some K-unitary matrix W ∈ Mn. Since X is

Hermitian,

Y −1WZ = Z∗W ∗Y −∗

Then,

XAX = (Z∗W ∗Y −∗)A(Y −1WZ) = B.

Corollary 2.2. Let A,B ∈ Mn be nonsingular Hermitian matrices. Let Y ∈ Mn

be such that A = Y ∗KY , where K is a signature matrix with the same inertia as A.
There is a Hermitian matrix X ∈ Mn such that B = XAX if and only if there is a
matrix Z ∈ Mn such that the following conditions are satisfied:

1. B = Z∗KZ,
2. ZY ∗ is a Hermitian matrix.

Proof. Suppose that there is a Hermitian matrix X ∈ Mn such that B = XAX.
Since A and B have the same inertia, there is Z̃ ∈ Mn such that B = Z̃∗KZ̃. By
Theorem 2.1,

X = Y −1WZ̃,

for some K-unitary matrix W ∈ Mn. Since X is Hermitian,

Y −1WZ̃ = Z̃∗W ∗Y −∗. (2.1)

Let Z := WZ̃. Then, using (2.1),

ZY ∗ = WZ̃Y ∗ = Y Z̃∗W ∗ = Y Z∗

Clearly, conditions 1. and 2. hold with Z := WZ̃.
Now suppose that there exists a matrix Z ∈ Mn such that B = Z∗KZ and ZY ∗

is Hermitian. Then, X = Y −1Z is a Hermitian solution of B = XAX.
We now show that if two Hermitian matrices are congruent by a definite matrix

then they are congruent by a Hermitian matrix with any inertia.
Theorem 2.3. Let A,B ∈ Mn be Hermitian matrices. If the matrix equation

B = XAX has a definite solution, then it has a Hermitian solution with an arbitrary
totally nonzero inertia.

Proof. We can assume that X is a positive definite solution of B = XAX. If
not, then −X is a positive definite solution. Then, there exists a nonsingular matrix
S ∈ Mn such that X = S∗S. Thus, we have

S∗SAS∗S = B,

or equivalently,

SAS∗ = S−∗BS−1.
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Since SAS∗ is Hermitian, it is unitarily diagonalizable. Let U ∈ Mn be a unitary
matrix and D a diagonal matrix such that U∗DU = SAS∗. Then,

USAS∗U∗ = D = US−∗BS−1U∗.

Let K be any n × n signature matrix. Since D is diagonal and diagonal matrices
commute, KDK = D, and therefore,

KUSAS∗U∗K = D = US−∗BS−1U∗,

or equivalently,

(S∗U∗KUS)A(S∗U∗KUS) = B,

and the result follows.
We finish this section with a lemma that facilitates the proofs of our results, as

it allows us to assume that A and/or B have a particular form.
Lemma 2.4. Let A,B ∈ Mn be Hermitian matrices and let C ∈ Mn be a non-

singular matrix. Then A and B are Hermitian-congruent if and only if C∗AC and
C−1BC−∗ are Hermitian-congruent.

Proof. It suffices to prove that if A and B are Hermitian-congruent then C∗AC
and C−1BC−∗ are Hermitian-congruent. Let X ∈ Mn be a nonsingular Hermitian
matrix such that B = XAX. Then

C−1BC−∗ =
(
C−1XC−∗) (C∗AC)

(
C−1XC−∗) . (2.2)

Clearly, C−1XC−∗ is Hermitian.

3. The simultaneously unitarily diagonalizable case. In this section we
study the existence of a Hermitian matrix X ∈ Mn such that B = XAX, when A,B ∈
Mn are nonsingular Hermitian simultaneously unitarily diagonalizable matrices.

We first consider the case in which A and B are real diagonal matrices. For a
certain choice of B (see Proposition 3.1 ) we may assume that A is a signature matrix,
which simplifies our calculations. The transition to the case in which A is a general
diagonal matrix follows easily from the next result, whose proof is similar to the proof
of Lemma 2.4, taking into account that A = |A| 12 K|A| 12 , with K = sign(A).

Proposition 3.1. Let A,B ∈ Mn be real nonsingular diagonal matrices and let
K be the sign matrix of A. Let X ∈ Mn. Then B = XAX if and only if B|A| =
(|A| 12 X|A| 12 )K(|A| 12 X|A| 12 ).

We now give some lemmas for real diagonal matrices A and B that will be needed
in the proof of our main result. We start with a result that shows that we can reduce
our problem to the cases in which sign(A) = sign(B) and sign(A) = −sign(B).

Lemma 3.2. Let

A = A1 ⊕ (−A2)⊕A3 ⊕ (−A4) (3.1)

and

B = (−B1)⊕B2 ⊕B3 ⊕ (−B4), (3.2)

where A1, B1, A2, B2 ∈ Mq, A3, B3 ∈ Mp and A4, B4 ∈ Mr are positive definite
diagonal matrices. Let X ∈ M2q+p+r be a Hermitian matrix. Then X is a solution
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of B = XAX if and only if X = X1 ⊕X2, where X1 ∈ M2q and X2 ∈ Mp+r are such
that

X1(A1 ⊕ (−A2))X1 = (−B1)⊕B2,

X2(A3 ⊕ (−A4))X2 = B3 ⊕ (−B4).

Proof. Bearing in mind Proposition 3.1, we assume, without loss of generality,
that

A = Iq ⊕ (−Iq)⊕ Ip ⊕ (−Ir)

and

B = (−D1)⊕D2 ⊕D3 ⊕ (−D4), (3.3)

where Di = AiBi, i = 1, 2, 3, 4. Suppose that

X =


X11 X12 X13 X14

X∗
12 X22 X23 X24

X∗
13 X∗

23 X33 X34

X∗
14 X∗

24 X∗
34 X44

 , (3.4)

where X11, X22 ∈ Mq, X33 ∈ Mp and X44 ∈ Mr, is a Hermitian matrix such that
B = XAX. Then,

X−1 = B−1XA =


−D−1

1 X11 D−1
1 X12 −D−1

1 X13 D−1
1 X14

D−1
2 X∗

12 −D−1
2 X22 D−1

2 X23 −D−1
2 X24

D−1
3 X∗

13 −D−1
3 X∗

23 D−1
3 X33 −D−1

3 X34

−D−1
4 X∗

14 D−1
4 X∗

24 −D−1
4 X∗

34 D−1
4 X44

 . (3.5)

Since X−1 is Hermitian, it follows that

D−1
i Xij = −XijD

−1
j , for i ∈ {1, 2}, j ∈ {3, 4}. (3.6)

As the main diagonal of Di is positive, for i = 1, 2, 3, 4, condition (3.6) implies that
Xij = 0 for i ∈ {1, 2}, j ∈ {3, 4}, and the result follows.

The proof of the converse is trivial.
The next lemma considers the case in which A,B ∈ Mn are real nonsingular

diagonal matrices with the same sign matrix.
Lemma 3.3. Let A,B ∈ Mn be real nonsingular diagonal matrices such that

sign(A) = sign(B). Then there is a real diagonal matrix X ∈ Mn, with arbitrary
inertia, such that B = XAX.

Proof. If sign(A) = sign(B), there exists a signature matrix K such that A =
|A|1/2K|A|1/2 and B = |B|1/2K|B|1/2. For an arbitrary signature matrix T ∈ Mn,
since T 2 = In, we have

B = |B|1/2K|B|1/2

=
(
|B|1/2|A|−1/2T

) (
|A|1/2K|A|1/2

) (
|B|1/2|A|−1/2T

)
=

(
|B|1/2|A|−1/2T

)
A

(
|B|1/2|A|−1/2T

)
.

5



Clearly, |B|1/2|A|−1/2T is real diagonal with the same inertia as T.
The next two lemmas consider the case in which A,B ∈ Mn are real nonsingular

diagonal matrices such that sign(A) = −sign(B).
Lemma 3.4. Let λ > 0. Then there is a real symmetric matrix X ∈ M2s such

that

X(Is ⊕ (−Is))X = λ((−Is)⊕ Is). (3.7)

Moreover, if X is any Hermitian solution to (3.7), then X has exactly s positive
eigenvalues.

Proof. The matrix

X =
√

λ

[
0 Is

Is 0

]
(3.8)

proves the first part of the statement. To prove the second part of the statement,
suppose that (3.7) holds for some Hermitian matrix X ∈ M2s. Let Y = 1/

√
λX.

Then,

Y

[
Is 0
0 −Is

]
=

[
−Is 0
0 Is

]
Y −1, (3.9)

which is equivalent to

Y −1 =
[
−Is 0
0 Is

]
(−Y )

[
−Is 0
0 Is

]
(3.10)

Thus, Y −1 is similar to −Y, which implies that the number of positive and negative
eigenvalues of Y, and, therefore, of X, are the same and, hence, equal to s.

Lemma 3.5. Let

A = A1 ⊕ (−A2) and B = (−B1)⊕B2, (3.11)

where A1, A2, B1, B2 ∈ Mq are positive definite diagonal matrices. If there is a Her-
mitian matrix X ∈ Mn such that B = XAX, then A1B1 and A2B2 are similar and
X has exactly q positive eigenvalues. Conversely, if A1B1 and A2B2 are similar, then
there is a real symmetric matrix X ∈ Mn with exactly q positive eigenvalues such that
B = XAX.

Proof. Taking into account Proposition 3.1, we assume, without loss of generality,
that

A = Iq ⊕ (−Iq) and B = (−D1)⊕D2,

where D1 = A1B1 and D2 = A2B2. Suppose that

X =
[

X11 X12

X∗
12 X22

]
, (3.12)

with X11, X22 ∈ Mq, is a Hermitian matrix such that B = XAX. Then,

X−1 = B−1XA =
[
−D−1

1 X11 D−1
1 X12

D−1
2 X∗

12 −D−1
2 X22

]
. (3.13)
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Because X−1 is Hermitian,

D−1
1 X11 = X11D

−1
1 ,

D−1
2 X22 = X22D

−1
2

D−1
1 X12 = X12D

−1
2 ,

which is equivalent to

(Xij)kl = 0 or λki = λlj , k, l = 1, . . . , q, and i, j = 1, 2, i ≤ j, (3.14)

where λr1 and λr2 denote the rth entry on the main diagonal of D1 and D2, respec-
tively.
Let P ∈ M2q be a permutation matrix such that

PT

[
−D1 0

0 D2

]
P =

 R 0 0
0 −R44 0
0 0 R55

 , (3.15)

where R44, R55 ∈ Mw are positive definite diagonal matrices such that the eigenval-
ues of R44 (resp. R55) are precisely the eigenvalues of D1 (resp. D2) that are not
eigenvalues of D2 (resp. D1), considering multiple eigenvalues (note that R44 and R55

have no common eigenvalues), and R = R11 ⊕R22 ⊕R33 ∈ M2(q−w), with

R11 = β1(−Iq1 ⊕ Iq1)⊕ · · · ⊕ βk1(−Iqk1
⊕ Iqk1

) ∈ M2(q−w)−u1−u2 ,
R22 = βk1+1(−Iqk1+1 ⊕ Iqk1+1)⊕ · · · ⊕ βk2(−Iqk2

⊕ Iqk2
) ∈ Mu1

,
R33 = βk2+1(−Iqk2+1 ⊕ Iqk2+1)⊕ · · · ⊕ βs(−Iqs

⊕ Iqs
) ∈ Mu2

,

where β1, . . . , βs are pairwise distinct positive numbers such that for i ≤ k1, βi is
an eigenvalue of neither R44 nor R55; for k1 < i ≤ k2, βi is an eigenvalue of R44

but not of R55, and for i > k2, βi is an eigenvalue of R55 but not of R44. Here,
qi = min{m1(βi),m2(βi)}, where m1(βi) and m2(βi) denote the multiplicities of βi

in D1 and D2, respectively. Note that w = 0 implies u1 = u2 = 0.
Applying the same permutation similarity to A, we get

PT AP = K ⊕ Iw ⊕ (−Iw),

where K = K11 ⊕K22 ⊕K33, with

K11 = [Iq1 ⊕ (−Iq1)]⊕ · · · ⊕
[
Iqk1

⊕ (−Iqk1
)
]
,

K22 =
[
Iqk1+1 ⊕ (−Iqk1+1)

]
⊕ · · · ⊕

[
Iqk2

⊕ (−Iqk2
)
]
,

K33 =
[
Iqk2+1 ⊕ (−Iqk2+1)

]
⊕ · · · ⊕ [Iqs

⊕ (−Iqs
)] .

Then the equation B = XAX is equivalent to

Y

 K 0 0
0 Iw 0
0 0 −Iw

Y =

 R 0 0
0 −R44 0
0 0 R55

 , (3.16)

where Y = PT XP. Because of (3.14), Y has the form

Y =


Y11 0 0 0 0
0 Y22 0 Y24 0
0 0 Y33 0 Y35

0 Y ∗
24 0 Y44 0

0 0 Y ∗
35 0 Y55

 , (3.17)
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where Y11 ∈ M2(q−w)−u1−u2 is a direct sum of blocks of sizes 2q1, . . . , 2qk1 ; Y22 ∈ Mu1 ,
Y33 ∈ Mu2 , and Y44, Y55 ∈ Mw.
In particular, condition (3.16) implies[

Y22 Y24

Y ∗
24 Y44

] [
K22 0
0 Iw

] [
Y22 Y24

Y ∗
24 Y44

]
=

[
R22 0
0 −R44

]
, (3.18)

which is not possible for w > 0 because K22 ⊕ Iw and R22 ⊕ (−R44) have different
inertia and, therefore, cannot be congruent. Thus, we deduce that w = 0, which
implies u1 = u2 = 0. This means that D1 and D2 have the same eigenvalues. Because
Y KY = R, and taking into account the form of Y, it follows easily from Lemma 3.4
that Y, and therefore X, has exactly q positive eigenvalues.

Conversely, suppose that D1 and D2 are similar. Then, there exists a permutation
matrix Q ∈ M2q such that

QT [(−D1)⊕D2]Q = T1 ⊕ · · · ⊕ Ts, (3.19)

with Ti = βi (−Iqi ⊕ Iqi) , i = 1, . . . , s, where β1, . . . , βs are the distinct eigenvalues of
D1 (and D2). According to Lemma 3.4, there is a real symmetric matrix X2i ∈ M2qi ,
with exactly qi positive eigenvalues, such that Ti = X2i (Iqi

⊕ (−Iqi
))X2i. Then

X2 [Iq ⊕ (−Iq)]X2 = (−D1)⊕D2, (3.20)

with X2 = Q(X21 ⊕ · · · ⊕X2s)QT . Clearly, X2 has exactly q positive eigenvalues.
We know describe the nonsingular simultaneously unitarily diagonalizable matri-

ces A,B ∈ Mn that are Hermitian-congruent.
Note that if A,B ∈ Mn are two Hermitian matrices with the same inertia that

are simultaneously unitarily diagonalizable, then AB is Hermitian and the number of
negative eigenvalues of AB is even. Moreover, any unitary matrix that diagonalizes
both A and B, also diagonalizes AB.

Theorem 3.6. Let A,B ∈ Mn be two nonsingular Hermitian matrices simulta-
neously unitarily diagonalizable. Let 2q be the number of negative eigenvalues of AB.
When q > 0, let u1, . . . , uq be any orthonormal eigenvectors of A and B associated
with positive eigenvalues of A and negative eigenvalues of B; let uq+1, . . . , u2q be any
orthonormal eigenvectors of A and B associated with negative eigenvalues of A and
positive eigenvalues of B. Then, there is a Hermitian matrix X ∈ Mn with exactly t
positive eigenvalues such that B = XAX if and only if t ∈ {q, . . . , n− q} and one of
the following conditions is satisfied:

1. q = 0;
2. q > 0 and there is a permutation σ of {1, . . . , q} such that

u∗
i ABui − u∗

q+σ(i)ABuq+σ(i) = 0, (3.21)

i = 1, . . . , q.
Moreover, if A and B are real and B = XAX has a Hermitian solution with

exactly t positive eigenvalues, then it has a real symmetric solution with exactly t
positive eigenvalues.

Proof. Suppose that A has exactly p + q positive eigenvalues. Let v1, . . . , vp be
any orthonormal eigenvectors of A and B associated with positive eigenvalues of both
A and B; let w1, . . . , wn−p−2q be any orthonormal eigenvectors of A and B associated
with negative eigenvalues of both A and B. Then,

U =
[

u1 · · · u2q v1 · · · vp w1 · · · wn−p−2q

]
8



is a unitary matrix such that

DA = U∗AU = A1 ⊕ (−A2)⊕A3 ⊕ (−A4), (3.22)

DB = U∗BU = (−B1)⊕B2 ⊕B3 ⊕ (−B4), (3.23)

where A1, B1, A2, B2 ∈ Mq, A3, B3 ∈ Mp and A4, B4 ∈ Mn−p−2q, are positive definite
diagonal matrices. It is not hard to see that

u∗
i Auiu

∗
i Bui = u∗

i ABui,

i = 1, . . . , 2q. Thus, the eigenvalues of A1B1 are

−u∗
1ABu1, . . . ,−u∗

qABuq

and the eigenvalues of A2B2 are

−u∗
q+1ABuq+1, . . . ,−u∗

2qABu2q.

According to Lemma 2.4, A and B are Hermitian-congruent if and only if DA and
DB are Hermitian-congruent.

Suppose that there is a Hermitian matrix X ∈ Mn with exactly t positive eigen-
values such that B = XAX. Then DB = Y DAY, with Y = U∗XU. According to
Lemma 3.2, Y = Y1 ⊕ Y2, with Y1 ∈ M2q and Y2 ∈ Mn−2q such that

Y1(A1 ⊕ (−A2))Y1 = (−B1)⊕B2 (3.24)

and

Y2(A3 ⊕ (−A4))Y2 = B3 ⊕ (−B4). (3.25)

If q 6= 0, according to Lemma 3.5, A1B1 and A2B2 are similar, which implies that
there is a permutation σ of {1, . . . , q} such that

u∗
i ABui = u∗

q+σ(i)ABuq+σ(i), (3.26)

for i = 1, . . . , q. Also, Y1 has exactly q positive eigenvalues. Thus, t ∈ {q, . . . , n− q}.
Conversely, suppose that t ∈ {q, . . . , n − q} and one of the conditions 1. or 2.

is satisfied. By Lemma 3.3, there is a real symmetric matrix Y2 with exactly t − q
positive eigenvalues such that (3.25) holds. Since A1B1 and A2B2 are similar, by
Lemma 3.5, there is a real symmetric matrix Y1 with exactly q positive eigenvalues
such that (3.24) holds. Let Y = Y1 ⊕ Y2. Then B = XAX, with X = UY U∗. Also,
Y, and, therefore, X, has exactly t positive eigenvalues. Clearly, in case A and B are
real, the matrix U can be assumed to be real, which implies that X is real symmetric.

The way we stated Theorem 3.6 was motivated by its analogy with Theorem 4.5.
We now give an alternative characterization of the nonsingular Hermitian matrices
simultaneously unitarily diagonalizable that are Hermitian-congruent (real symmetric
congruent in the real case).

Corollary 3.7. Let A,B ∈ Mn be two nonsingular Hermitian matrices simul-
taneously unitarily diagonalizable. Then, there is a Hermitian matrix X ∈ Mn such
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that B = XAX if and only if there is a unitary matrix V ∈ Mn such that V ∗AV and
V ∗BV are diagonal matrices of the forms

V ∗AV = SA ⊕A1 ⊕ ...⊕Al, V ∗BV = SB ⊕B1 ⊕ ...⊕Bl,

where

sign(SA) = sign(SB),

and Ai, Bi ∈ M2 are indefinite matrices such that Bi is a negative multiple of A−1
i ,

i = 1, ..., l.
Proof. Consider the notation used in the statement of Theorem 3.6. Let λi =

u∗
i Aui and βi = u∗

i Bui, i = 1, . . . , 2q. Note that λiβi < 0. Also, condition 3.21 is
equivalent to λiβi = λq+σ(i)βq+σ(i), i = 1, . . . , q. Now the proof follows easily from
Theorem 3.6.

4. The 2-by-2 case. In this section we study the existence of a Hermitian
solution of B = XAX when A,B ∈ M2 are indefinite matrices. When A and B are
real matrices, we show that B = XAX has a Hermitian solution if and only if it has
a real symmetric solution. At the end of the section we include some results, without
proofs, related to the existence of real symmetric solutions to the equation B = XAX
when the sign patterns of A and B are considered.

We first consider the case in which A = diag(1,−1) and B is real.
Lemma 4.1. Let

A =
[

1 0
0 −1

]
and B =

[
a t
t b

]
, (4.1)

with a, b, t ∈ R and t 6= 0. Then, there is a Hermitian matrix X ∈ M2 such that
B = XAX if and only if there is a real z such that the following conditions are
satisfied:

• z2 + a ≥ 0;
• z2 − b ≥ 0;
• t = z(

√
z2 + a + ε

√
z2 − b), for some ε ∈ {−1, 1}.

Moreover, if X is a Hermitian matrix such that B = XAX, then X is real.
Proof. Let

X =
[

x z
z y

]
∈ M2 (4.2)

be a Hermitian matrix. Note that x and y are real numbers. Then B = XAX is
equivalent to [

a t
t b

]
=

[
x2 − zz xz − zy
zx− yz zz − y2

]
, (4.3)

which implies xz − zy = zx − yz = t. Since t 6= 0, then z must be real. Therefore,
B = XAX if and only if z2 + a ≥ 0, z2 − b ≥ 0,

x = ε1

√
z2 + a

y = −ε2

√
z2 − b

and

t = z(ε1

√
z2 + a + ε2

√
z2 − b), (4.4)
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for some ε1, ε2 ∈ {−1, 1}. Since the second member of (4.4) is an odd function of z,
the result follows.

We will need the following two technical lemmas whose proofs are straightforward.
Lemma 4.2. Consider the function f(z) = z(

√
z2 + c +

√
z2 + d), with c ≥ d,

defined in Df = {z ∈ R : z2 + d ≥ 0}. Let t ∈ R. Then there is z ∈ R such that
f(z) = t if and only if one of the following conditions is satisfied:

1. d ≥ 0;
2. d < 0 and |t| ≥

√
d(d− c).

Lemma 4.3. Consider the function g(z) = z(
√

z2 + c−
√

z2 + d), with c > d and
d ≤ 0, defined in Dg = {z ∈ R : z2 + d ≥ 0}. Let t ∈ R. Then there is z ∈ R such that
g(z) = t if and only if one of the following conditions is satisfied:

1. c ≤ −d and |t| ∈
]

c−d
2 ,

√
d(d− c)

]
;

2. c > −d,
√

d(d− c) ≥ c−d
2 and |t| ∈

[√
−cd,

√
d(d− c)

]
;

3. c > −d,
√

d(d− c) < c−d
2 and |t| ∈

[√
−cd, c−d

2

[
.

We now use Lemmas 4.2 and 4.3 to obtain the following consequence of Lemma
4.1.

Lemma 4.4. Let A = diag(1,−1), and

B =
[

a t
t b

]
(4.5)

be an indefinite real matrix with t 6= 0. Then, there is a Hermitian matrix X such
that B = XAX if and only if one of the following conditions is satisfied:

1. a ≥ b;
2. |t| > |a+b|

2 .

Proof. Note that, since B is indefinite, then t2 > ab. According to Lemma 4.1,
there is a Hermitian matrix X of the form (4.2) such that[

a t
t b

]
= X

[
1 0
0 −1

]
X, (4.6)

if and only if there is ε ∈ {−1, 1} such that the equation

t = z(
√

z2 + a + ε
√

z2 − b) (4.7)

has a solution z. We now determine necessary and sufficient conditions for the exis-
tence of such an ε. Let f(z) = z(

√
z2 + a+

√
z2 − b) and g(z) = z(

√
z2 + a−

√
z2 − b).

We first assume that a ≥ −b.

Case 1: Suppose that a ≥ 0.

Subcase 1.1: Suppose that b ≤ 0. It follows from Lemma 4.2 that the equation
f(z) = t has a solution for any t ∈ R.

Subcase 1.2: Suppose that b > 0.

• Suppose that a > b. Then, from Lemma 4.2, equation f(z) = t has a solution
for |t| ∈ [

√
b(b + a),+∞[; from Lemma 4.3, equation g(z) = t has a solution

for |t| ∈ [
√

ab,
√

b(b + a)]. Thus, for any t such that t2 > ab, there is ε such
that (4.7) has a solution.

• Suppose that a ≤ b. Then, from Lemma 4.2, equation f(z) = t has a solution
if and only if |t| ∈ [

√
b(b + a),+∞[ and, from Lemma 4.3, equation g(z) = t

11



has a solution if and only if |t| ∈]a+b
2 ,

√
b(b + a)]. Thus, there is ε such that

(4.7) has a solution if and only if

|t| > a + b

2
. (4.8)

Case 2: Suppose that a < 0 and b ≥ 0. From Lemmas 4.2 and 4.3, there is ε such
that (4.7) has a solution if and only if (4.8) holds.

We showed that if a ≥ −b there is ε ∈ {−1, 1} such that (4.7) has a solution if
and only if

a ≥ b or |t| > a + b

2
. (4.9)

As g(−z) = −g(z), equation g(z) = t has a solution if and only if equation −g(z) = t
has a solution. Therefore, for ε ∈ {−1, 1}, (4.7) has a solution if and only if

t = z(
√

z2 − b + ε
√

z2 + a)

has a solution. Thus, if a < −b, by changing the roles of a and −b in (4.9), it follows
that there is ε such that (4.7) has a solution if and only if a ≥ b or |t| > −a+b

2 . Then,
the claim follows.

We now give the main result of this section. We consider that A,B ∈ M2 are
not simultaneously unitarily diagonalizable matrices, as the other case follows from
Theorem 3.6.

Theorem 4.5. Let A,B ∈ M2 be two indefinite matrices. Let u1 and u2 be
orthonormal eigenvectors of A. Suppose that u∗

1Bu2 6= 0. Then, there is a Hermitian
matrix X ∈ M2 such that B = XAX if and only if one of the following conditions is
satisfied:

1. u∗
1ABu1 + u∗

2ABu2 ≥ 0;
2. |

√
−u∗

1Au1u∗
2Au2u

∗
1Bu2| > 1

2 |u
∗
1ABu1 − u∗

2ABu2|.
Moreover, if A and B are real and B = XAX has a Hermitian solution, then it

has a real symmetric solution.
Proof. Since the statement of the theorem is the same if we change the roles of u1

and u2, assume, without loss of generality, that u1 is an eigenvector of A associated
with the eigenvalue λ1 > 0 and u2 is an eigenvector of A associated with the eigenvalue
λ2 < 0. Moreover, by a possible multiplication of u1 and u2 by unit modulus complex
numbers, assume that if A is real then u1 and u2 are real. Let U =

[
u1 u2

]
. Then

U∗AU = diag(λ1, λ2). Let D = diag(1/
√

λ1, 1/
√
−λ2) and

B′ =
(
D−1U∗) B

(
UD−1

)
=

[
a teiγ

te−iγ b

]
,

in which a and b are real (since B′ is Hermitian), and t is real (in fact, we can even
assume t ≥ 0). Let V = diag(eiγ , 1). Then, for C = UDV, C∗AC = diag(1,−1) and

C−1BC−∗ =
[

a t
t b

]
(4.10)

is real. Also, if A and B are real, then C is real. Note that

a = λ1u
∗
1Bu1

b = −λ2u
∗
2Bu2

|t| =
√
−λ1λ2|u∗

1Bu2|
12



Because B = XAX if and only if[
a t
t b

]
= (C−1XC−∗)

[
1 0
0 −1

]
(C−1XC−∗), (4.11)

conditions 1. and 2. follow from Lemma 4.4. If A and B are real and (4.11) holds,
then, by Lemma 4.1, C−1XC, and, therefore, X, is real.

We note that if A,B ∈ M2 are simultaneously unitarily diagonalizable matrices,
then the conditions in Theorem 3.6 are equivalent to conditions 1. and 2. in Theorem
4.5, if in condition 2. we replace > by = . Note that in this case u∗

1Bu2 = 0.
Finally, we consider two 2-by-2 nonsingular real symmetric matrices A,B and

study the problem of finding Hermitian solutions to the equation B = XAX when
the sign patterns of A and B are taken into account. Note that, by Theorem 4.5,
B = XAX has a Hermitian solution if and only if it has a real symmetric solution.

It can be proven that if A and B have the same sign pattern, then there is
always a Hermitian (real symmetric) solution to B = XAX, which is a remarkable
result. In fact, if A and B are both positive, then there is always a positive definite
solution which, by Theorem 2.3, implies that solutions with all possible inertias can
be obtained. For the sake of brevity we omit the proofs of these results.

REFERENCES

[1] T. Ando. Concavity of certain maps on positive definite matrices and applications to Hadamard
products. Linear Algebra Appl. 26, 203-241, 1979.

[2] M. Fiedler and V. Pták. A new positive definite geometric mean of two positive definite matrices.
Linear Algebra Appl. 251, 1-20, 1997.

[3] G. Hewer. Existence theorems for positive semidefinite and sign indefinite stabilizing solutions
of the Riccati equation. SIAM J. Control and Optim., 31:16–29, 1993.

[4] R.A. Horn and C.R. Johnson Matrix Analysis. Cambridge University Press, 1999.
[5] P. Lancaster and L. Rodman. Algebraic Riccati Equations. Clarendon Press, Oxford, 1995.
[6] A.C.M Ran and H.L. Trentelman. Linear quadratic problems with indefinite cost for discrete

time systems. SIAM J. Matrix Anal. and Appl., 14:776–797, 1993.

13


