Diagrammatic Presentations of Affine Type A Subfactor Planar Algebras of Index 4

Melody Molander

University of California - Santa Barbara

Introduction

The category of representations of a finite group is an example of a fusion category. Within this type of category we can take linear combinations of morphisms, and tensor products and direct sums of objects. A planar algebra can be constructed from a unitary fusion category with the advantage that the structure is now conveniently encoded by diagrams in the plane. Conversely, given a subfactor planar algebra, we can construct a fusion category of projections. The Kuperberg program is a proposal to give a presentation by generators and relations for every subfactor planar algebra In this poster I contribute to this program by giving presentations for the $\tilde{A}_{2 n-1}$ subfactor planar algebras of index 4 .

Definitions

- A planar algebra \mathcal{P} associates a vector space \mathcal{P}_{k} and a linear map
$\mathcal{P}(T): \mathcal{P}_{k_{1}} \otimes \ldots \otimes \mathcal{P}_{k_{r}} \rightarrow \mathcal{P}_{k_{0}}$ to each planar tangle diagram T with internal discs with k_{1}, \ldots, k_{r} points and k_{0} points on the external disk.

For example:
gives a map from $\mathcal{P}_{6} \otimes \mathcal{P}_{4} \otimes \mathcal{P}_{4} \rightarrow \mathcal{P}_{6}$. We could have an element of \mathcal{P}_{6} be $\stackrel{\star}{\sim}$ and plug it into f, take elements ${ }^{\star}$ and ${ }^{\star}$
in \mathcal{P}_{4} and plug them into g and h respectively, and get
an element of \mathcal{P}_{6}

- A subfactor planar algebra is a planar algebra that must satisfy the following additional rules:
- \mathcal{P}_{0} must be one-dimensional.
- Only spaces for discs with an even number of boundary points are nonzero.
- For each $T \in \mathcal{P}_{2},{ }^{(}$. We call this property being spherical.
- There must be an anti-linear adjoint operation $*: \mathcal{P}_{k} \rightarrow \mathcal{P}_{k}$ such that the sesquilinear form given by $\langle x, y\rangle=\operatorname{tr}\left(y^{*} x\right)$ is positive-definite.
- A closed circle in a subfactor planar algebra is in \mathcal{P}_{0}, so it is a complex number. In particular, it is a multiple of the empty diagram. The square of this number is called the index
- An element $T \in \mathcal{P}_{2 m}$ of a planar algebra is called a minimal projection if
$T^{2}=T, T^{*}=T$, and for any $D \in \mathcal{P}_{2 m}$, there exists a $k \in \mathbb{C}$ where
- A planar algebra is called semisimple if every projection is a direct sum of minimal projections and if for any two non-isomorphic minimal projections
$S \in \mathcal{P}_{2 m}$ and $T \in \mathcal{P}_{2 n}$ we have for $D \in \mathcal{P}_{m+n}$,
- The principal graph of a semisimple planar algebra has as vertices the
isomorphism classes of minimal projections and encodes a "multiplication table" of isomorphism cla
these elements.

The Principal Graph

Subfactor planar algebras of index 4 with finite principal graphs must have an affine Dynkin diagrams as that graph. The principal graph works as a "multiplication table" in the following way: every vertex's projection tensor a single strand is isomorphic to the direct sum of its neighbors. For example, for \tilde{A}_{5} we may have a principal graph:

which gives that $\psi \otimes \mid \equiv \varnothing_{\otimes \vee \psi}$

Presentations of $\tilde{A}_{2 n-1}$

Theorem 1 (M.) Fix n. Let ω_{n} be a $2 n$th root of unity. Let $\mathcal{P} \mathcal{A}(U)$ be the planar algebra generated by a single box U with $2 n$ strands oriented inwards, modulo the following relations:

1. A closed circle equals 2
2. $|=|\oplus|$
3. $\uparrow \downarrow=\nVdash$ and $\downarrow \uparrow=\longleftrightarrow$

Then this is an $\tilde{A}_{2 n-1}$ subfactor planar algebra of index 4 with principal graph:

Theorem 2 (M.) Fix n. Let τ_{n} be an nth root of unity. Let $\mathcal{P} \mathcal{A}(V)$ be the planar algebra generated by a single box V with $2 n$ strands alternating blue/red, modulo the following relations:

1. A closed circle equals 2

Then this is an $\tilde{A}_{2 n-1}$ subfactor planar algebra of index 4 with principal graph

The goal of the Kuperberg program is to understand as much as possible about each subfactor planar algebra just based upon the combinatorics of the diagrams. This way, we can easily work with the planar algebra and apply results obtained to their corresponding fusion categories. Additionally, subfactor planar algebras arise in functional analysis. A factor is a von Neumann algebra with a trivial center and a subfactor is then a unital inclusion of factors. Surprisingly, we have the following two theorems:
Theorem (Popa) All subfactor planar algebras arise from subfactors.
Theorem (Jones) The planar algebras coming from subfactors are subfactor planar algebras.
As a result, having a diagrammatic presentation of $\tilde{A}_{2 n-1}$ also lets us not need to appeal to von Neumann algebras as well.

Future Work

Theorem (Popa) The number of subfactor planar algebras associated to each of the corresponding Dynkin diagrams is given by:

Principal Graph	$\tilde{A}_{2 n-1}$	\tilde{A}_{∞}	\tilde{D}_{n}	\tilde{E}_{6}	\tilde{E}_{7}	\tilde{E}_{8}	A_{∞}	\tilde{D}_{∞} $\therefore \cdots$
Number of distinct subfactor planar algebras	n	1	n -2	1	1	1	1	1

Using this classification, I am interested in giving presentations for the rest of these cases. The \tilde{A}_{∞} case will follow from the presentations of $\tilde{A}_{2 n-1}$. I have already done nuch work towards the \tilde{D}_{∞} case. Further, some of these subfactor planar algebras are contained in others, so I wish to formally prove these containments using the diagrammatic presentations. Additionally, this table shows that there are only n distinct $\tilde{A}_{2 n-1}$ subfactor planar algebras, so I would like to find which of the ones I've isted in Theorem 1 and 2 are non-isomorphic. Lastly, I have proven that these are the presentations of index 4, but I also want to prove that given these presentations (without the first relation), the index must be 4 .

References and Acknowledgements

I am grateful to many people for their immense support with this project. In particular, I would like to thank my advisor Stephen Bigelow for the guidance through this new topic. I would also like to thank Soott Morrison and Dave Penneys for allowing me to use their notes on the problem. Additionally, I would like to thank Vijay Higgins for answering numerous of my questions on the topic.
1] Scott Morrison, Emily Peters, and Noah Snyder
Skein theory for the $\mathrm{D}_{2 n}$ planar algebras.
J. Pure Appl. Algebra, 214(2):117-139, 2010.
[2] David Penneys.
https://people.math. osu.edu/penneys.2/talks/PenneysDijon2013.pdf, May 2013
[3] Emily Peters.
Subfactors and planar algebras II
https
/www.msri.org/workshops/906/schedules/27878/documents/50407/assets/88338, January 2020.

[4] Sorin Popa.

lass
Acta Math. 172(2):163 255. 1994

