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Abstract. A specific set of 4g + 1 elements is shown to gener-
ate the Goeritz group of the genus g + 1 Heegaard splitting of a
genus g handlebody. These generators are consistent with Powell’s
proposed generating set for the Goeritz group of the genus g + 1
splitting of S3. There are two proofs: one using purely classical
techniques and one using thin position.

1. Introduction

Following early work of Goeritz [Go], the genus g Goeritz group of
the 3-sphere can be described as the isotopy classes of orientation-
preserving homeomorphisms of the 3-sphere that leave the genus g
Heegaard splitting invariant. Goeritz identified a finite set of generators
for the genus 2 Goeritz group; that work has been recently updated,
extended and completed, to give a full picture of the group (see [Sc],
[Ak], [Cho]). Goeritz’ set of generators was extended by Powell [Po] to a
set of generators for all higher genus Goeritz groups, but his proof that
the generators suffice contained a gap [Sc]. The finite set of elements
that Powell proposed as generators for the full Goeritz group remains
a very plausible set, though a proof remains elusive.

One intriguing aspect of the problem is that Gabai’s powerful tech-
nique of thin position [Ga] is available for objects in S3, such as Hee-
gaard splitting surfaces (see [ST2]), but the technique was not known
to Powell. In addition, one can imagine structuring a proof by induc-
tion on the “co-genus” k of Heegaard splittings of a handlebody: any
genus g Heegaard splitting of a genus g− k handlebody H gives rise to
a genus g splitting of S3, by identifying H with one of the handlebodies
in the standard genus g − k splitting of S3. In that context, Powell’s
conjecture would suggest a natural set of generators for the genus g
Goeritz group of a genus g − k handlebody (see Section 5 for the def-
inition). As k ascends we eventually have a set of generators for the
genus g Goeritz group of the genus 0 handlebody B3 (or, equivalently,
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S3). With that strategy in mind, here we verify Powell’s conjecture for
the first and easiest case, namely co-genus 1. Rephrasing slightly, we
exhibit, for any genus g handlebody H, a certain finite set of elements
that generates the genus g+1 Goeritz group G(H,Σ) of H. Combining
the results of Theorems 3.2 and 5.1, to which we refer for notation, we
show:

Theorem 1.1. The Goeritz group G(H,Σ) of the genus g handlebody
H is generated by 4g+1 elements, namely 2g generators of the subgroup
A{E1,...,Eg} and 2g + 1 generators of the subgroup FE0

.

We will give two proofs that these generators suffice: the first is
along classical lines (i. e. without thin position) and the second uses
thin position. Both arguments are given in a slightly different setting
– the isotopies are of an unknotted arc in the handlebody, rather than
a Heegaard surface – but the connection between the two is explained
in Section 5.

2. Embedding an unknotted arc in a ball

For M,N smooth manifolds, let Emb(M,N) denote the space of
smooth proper embeddings ofM intoN . Let Emb0(I, B3) ⊂ Emb(I, B3)
denote the path-component consisting of those embeddings for which
the image is an unknotted arc. There is a natural fibration Emb0(I, B3)→
Emb(∂I, ∂B3) whose fiber is Emb0(I, B3 rel ∂I) [Pa]. Following Hatcher’s
proof of the Smale conjecture, this fiber is contractible [Ha2, Appen-
dix (6)], so in particular π1(Emb0(I, B3)) ∼= π1(Emb(∂I, ∂B3)). The
space Emb(∂I, ∂B3) is the configuration space F2(S2) of ordered pairs
of points in the sphere; its fundamental group is the pure braid group
of two points in S2, which is trivial. Hence Emb0(I, B3) is simply con-
nected. By taking each element of Emb0(I, B3) to its image in B3 we
get a natural map Emb0(I, B3)→ Unk(I, B3), the space of unknotted
arcs in B3; its fiber is the space of automorphisms of the interval I,
which consists of two contractible components, representing orienta-
tion preserving and orientation reversing automorphisms of the inter-
val. Combining these two observations we discover that the natural
map from Unk(I, B3) to the configuration space C2(S2) of unordered
pairs of points in S2 induces an isomorphism between the respective
fundamental groups. Note that π1(C2(S2)) is commonly called the full
braid group B2(S2). We conclude that π1(Unk(I, B3)) ∼= B2(S2) ∼= Z2,
[Bi, Theorem 1.11].

Now suppose P is a connected planar surface in ∂(B3) and UnkP (I, B3)
is the space of all unknotted arcs in B3 whose end points lie in P .
Exactly the same argument as above shows that π1(UnkP (I, B3)) ∼=
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B2(P ), where the latter is the full braid group of two points in P . It
is straightforward to identify a set of generators for B2(P ). Begin with
the ordered configuration space C2(P ) and project to the first point
x0 ∈ P . The map is a fibration p : C2(P ) → C1(P ) = P whose fiber
is C1(P − {point}) = P − {point} [FN]. Since P is connected and
π2(P ) is trivial, it follows that π1(C2(P )) is an extension of π1(P ) by
π1(P − {point}) and each of these groups admits a well-known collec-
tion of generators, one for each boundary component of P . Namely,
for each boundary component choose a loop from the base point that
is parallel in P − {point} to that component. One of these generators
is redundant in π1(P ); all are needed in π1(P −{point}). To complete
this set of generators to a set of generators for B2(P ), add an isotopy
of the pair of points that interchanges the pair.

These rather abstract descriptions translate to this concrete descrip-
tion of a set of generators for π1(UnkP (B3)) ∼= B2(P ): Let α be a short
arc in P ; its endpoints x0, x1 will be the pair of points whose motion
we are describing. Half rotation of α around its center, exchanging its
ends is one generator for B2(P ); call it the rotor ρ0. Let c1, ..., cp be the
boundary components of P and for each ci choose a loop γi in P that
passes through x1 and is parallel in P − x0 to ci. Choose these loops
so that they intersect each other or α only in the point x1 (see Figure
1). For each 1 ≤ i ≤ p let ρi be an isotopy that moves the entire arc α
through a loop in P parallel to γi and back to itself. This defines each
ρi up to multiples of the rotor ρ0, so the subgroup F of B2(P ) defined
as that generated by ρi, 0 ≤ i ≤ p is in fact well-defined. Call F the
freewheeling subgroup. F is an extension of π1(P ) by Z.

A second subgroup A ⊂ π1(UnkP (B3)) ∼= B2(P ), called the anchored
subgroup, is defined as those elements which keep the “anchor” end x0

of α fixed as the other end follows a closed path in P − {x0} that
begins and ends at x1. It corresponds to the fundamental group of
the fiber P − {point} in the above fibration. More concretely, for each
1 ≤ i ≤ p let ai denote the element determined by keeping x0 fixed and
moving x1 around the loop γi. The subgroup A is generated by the ai;
it includes any even power of the rotor ρ0, via the relation (in Figure
1) a1a2...ap = ρ2.

The fibration above shows that together A and F generate the group
π1(UnkP (B3)), so {ρi, 0 ≤ i ≤ p} and {ai, 1 ≤ i ≤ p} together consti-
tute a set of generators for π1(UnkP (B3)).
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Figure 1. Generating A ⊂ B2(P )

3. Unknotted arcs in a handlebody

The goal of this section is to extend this analysis to describe, for a
genus g handlebody H, a fairly natural set of generators for the funda-
mental group of the space Unk(I,H) of unknotted properly embedded
arcs in H.

We begin with a basepoint for Unk(I,H), i. e. a fixed choice of
unknotted arc in H. This is facilitated by viewing H as the product
of a planar surface with I: Let Q be a disk D from which g disks
D1, ..., Dg have been removed. Picture the disks Di as laid out in a
horizontal row in D, with a vertical arc βi, 1 ≤ i ≤ g descending from
each ∂Di ⊂ ∂Q to ∂D. Further choose a point x ∈ inter(Q)− ∪iβi to
the left of the disks Di and connect it to ∂D by a horizontal arc β0. See
Figure 2. Then Q× I is a handlebody in which x× I is an unknotted
arc I0 in H with end points xi = x × {i}, i = 0, 1. Furthermore, the
g disks Ei = βi × I ⊂ H, i = 1, ..., g constitute a complete collection
of meridian disks for H. That is, the complement in H of a regular
neighborhood η(∪gi=1Ei) of ∪gi=1Ei is a 3-ball B3 which intersects ∂H
in a planar surface P . The boundary of P has 2g components, two
copies of each ∂Ei, i = 1, ..., g.

The disk E0 = β0×I defines a parallelism between the arc I0 and an
arc α ⊂ ∂H. Such a disk will be called a parallelism disk for I0 and the
subarc of its boundary that lies on ∂H will be called a parallel arc for
I0. It will be convenient, when considering a pair E0, E

′
0 of parallelism

disks and corresponding parallel arcs α0 = E0 ∩ ∂H, α′0 = E ′0 ∩ ∂H
for I0, to isotope the disks so that they are transverse except where
they coincide along I0, and so that they have disjoint interiors near
I0. (This is done by unwinding E ′0 along I0). A standard innermost
disk argument shows that the simple closed curves in E0 ∩ E ′0 can be
removed by an isotopy that does not move I0, after which what remains



GENUS g + 1 GOERITZ GROUP 5

D1 D2 Dg

β1 β2 βg

β0

I0

x0

x1

E0

E1 E2
Eg

Q

Figure 2. A genus g handlebody H with trivial arc I0

of E0 ∩E ′0 is their common boundary arc I0 together with a collection
of interior arcs whose endpoints are the points of α0 ∩ α′0. Call this a
normal position for two parallelism disks.

Motivated by the discussion above, we note some obvious elements
and subgroups of π1(Unk(I,H)): Since the pair (B3, P ) is a sub-
set of (H, ∂H) there is a natural inclusion-induced homomorphism
π1(UnkP (I, B3)) → π1(Unk(I,H). For example, a natural picture of
the rotor ρ0 in π1(Unk(I,H)) is obtained by doing a half-twist of I0

in a 3-ball neighborhood of the disk β0 × I. This is shown on the
left in Figure 3. The image of the anchored subgroup A ⊂ B2(P )
in π1(Unk(I,H)) can be defined much like the anchored subgroup in
B2(P ) itself: hold the end of I0 at x0 fixed while isotoping the end
at x1 so that the whole arc I moves around and back to its original
position, never letting the moving I intersect any of the g disks Ei. We
denote this subgroup A{E1,...,Eg} ⊂ π1(Unk(I,H)). Two of its genera-
tors are shown center and right in Figure 3. There is also a naturally
defined freewheeling subgroup FE0

⊂ π1(Unk(I,H)) consisting of those
elements represented by a proper isotopy of the disk E0 through H and
back to itself (though perhaps with orientation reversed). Thus again
the rotor ρ0 lies in FE0

, and the kernel of FE0
→ π1(∂H) is generated

by the rotor ρ0. Since π1(∂H) is itself generated by 2g elements (essen-
tially given by the choice of {E1, ..., Eg}), FE0

is generated by 2g + 1
elements.

Suppose ω ∈ π1(Unk(I,H)) is represented by a proper isotopy ft :
I → H. The isotopy extends to an ambient isotopy of H which we
continue to denote ft; let αω ⊂ ∂H denote f1(α0). Since f1(I0) = I0,
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ρ0
a1

a′1

Figure 3. The rotor ρ0 and generators a1, a
′
1 ∈ A.

f1(E0) is a new parallelism disk, and αω is the corresponding parallel
arc for I0 in ∂H.

Lemma 3.1. The parallel arcs α0 and αω for I0 are isotopic rel end
points in ∂H if and only if ω ∈ FE0

.

Proof. If ω ∈ FE0
then by definition αω = α0. On the other hand, if

αω is isotopic to α0 rel end points, then we may as well assume αω =
α0, for the isotopy from αω to α0 doesn’t move I0. Then, thickening
I0 slightly to η(I0), E0 and f1(E0) are properly embedded disks in
the handlebody H − η(I0) and have the same boundary. A standard
innermost disk argument shows that then f1(E0) may be isotoped rel
∂ (so, in particular, the isotopy leaves I0 fixed) until f1(E0) is disjoint
from E0. Since their boundaries are the same, and the handlebody
H−η(I0) is irreducible, a final isotopy can ensure that f1(E0) coincides
with E0, revealing that ω ∈ F. �

A sequence of further lemmas will show:

Theorem 3.2. The subgroups A{E1,...,Eg} and FE0
together generate all

of π1(Unk(I,H)), so the union of their generators is an explicit set of
generators for π1(Unk(I,H)).

What is perhaps surprising about this theorem is that the subgroups
themselves depend heavily on our choice of the disks {E0, ..., Eg}. Rec-
ognizing this dependence, let the combined symbol AF{E0,...,Eg} denote
the subgroup of π1(Unk(I,H)) generated by A{E1,...,Eg} and FE0

.

Lemma 3.3. Suppose E ′0 ⊂ H is another parallelism disk that lies
entirely in H − {E1, ..., Eg}. Then AF{E′0,E1,...,Eg} = AF{E0,E1,...,Eg}.

Proof. Put the pair E0, E
′
0 in normal position. The proof is by induc-

tion on the number |E0 ∩ E ′0| of arcs in which their interiors intersect.
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If |E0 ∩ E ′0| = 0, so the disks intersect only in I0, then let E∪ ⊂
H − {E1, ..., Eg} be the properly embedded disk that is their union.
Rotating one end of I0 fully around a slightly pushed-off copy of E∪
describes an element a ∈ A{E1,...,Eg} for which a representative isotopy
carries the disk E0 to E ′0. See Figure 4. In particular, if f is any
element of FE0

then the product a−1fa has a representative isotopy
which carries E ′0 to itself. Hence a−1fa ∈ FE′0 so f ∈ AF{E′0,E1,...,Eg}.
Thus FE0

⊂ AF{E′0,E1,...,Eg}, so AF{E0,E1,...,Eg} ⊂ AF{E′0,E1,...,Eg}. The
symmetric argument shows that AF{E′0,E1,...,Eg} ⊂ AF{E0,E1,...,Eg} and so
AF{E0,E1,...,Eg} = AF{E′0,E1,...,Eg} in this case.

E∪

E0

E′0

a a a

Figure 4. a ∈ A: circling around E∪ brings E0 to E ′0.

The argument just given shows that for any pair of parallelism disks
F0, F

′
0 ⊂ H−{E1, ..., Eg} which intersect only along I0, AF{F ′0,E1,...,Eg} =

AF{F0,E1,...,Eg}. Suppose inductively that this is true whenever |F0 ∩
F ′0| ≤ k and, for the inductive step, suppose that |E0 ∩ E ′0| = k + 1.
Among all arcs of E0∩E ′0, let β be outermost in E ′0, so that the subdisk
E∗ ⊂ E ′0 cut off by β does not contain I0 in its boundary, nor any other
point of E0 in its interior. Then attaching E∗ along β to the component
of E0−β that contains I0 gives a parallelism disk F0 that is disjoint from
E0 and intersects E ′0 in ≤ k arcs. It follows by inductive assumption
that AF{E0,E1,...,Eg} = AF{F0,E1...,Eg} = AF{E′0,E1,...,Eg} as required. �

Following Lemma 3.3 there is no loss in dropping E0 from the nota-
tion, so AF{E0,E1,...,Eg} will henceforth be denoted simply AF{E1,...,Eg}.

Lemma 3.4. Suppose E∗ ⊂ H is a disk in H − (I0 ∪E1 ∪ ...∪Eg}, so
that {E∗, E2, ..., Eg} is a complete set of meridian disks for H. Then
AF{E1,E2,...,Eg} = AF{E∗,E2,...,Eg}. That is, the subgroup AF{−,E2,...,Eg} is
the same, whether we fill in E1 or E∗.

Proof. All g + 1 meridian disks {E∗, E1, E2, ..., Eg} are mutually dis-
joint and all are disjoint from the proper arc I0. Although an arbitrary
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parallelism disk for I0 may intersect {E∗, E1, E2, ..., Eg}, a standard
innermost-disk, outermost-arc argument can be used to diminish the
number of components of intersection until a parallelism disk E0 is
found that is completely disjoint from {E∗, E1, E2, ..., Eg}. Use E0 to
define both AF{E1,E2,...,Eg} and AF{E∗,E2,...,Eg}. It follows that FE0

is
a subgroup of both AF{E1,E2,...,Eg} and AF{E∗,E2,...,Eg}. Hence it suf-
fices to show that A{E∗,E2,...,Eg} ⊂ AF{E1,E2,...,Eg} and A{E1,E2,...,Eg} ⊂
AF{E∗,E2,...,Eg}. We will prove the latter; the former follows by a sym-
metric argument.

E∗

E0E∗
′

c

E1 Ei

Figure 5

Extend a regular neighborhood of ∪gi=2Ei to a regular neighborhood
Y of ∪gi=1Ei and Y ∗ of E∗ ∪ (∪gi=2Ei). The disk E∗ is necessarily sep-
arating in the ball B3 = H − Y and, since H − Y ∗ is also a ball, it
follows that the two sides of E1 in ∂B3 lie in different components of
B3−E∗. Put another way, there is a simple closed curve c in ∂H which
is disjoint from {E2, E3, ..., Eg} but intersects each of E1 and E∗ in a
single point. Let f ∈ FE0

be the element represented by isotoping E0

around the circle c in the direction so that it first passes through E1

and then through E∗.
The image of E∗, after the isotopy f is extended to H, is a disk E∗

′

that is isotopic to E∗ in B3 but not in B3 − I0. The isotopy need not
disturb the disks {E2, E3, ..., Eg}. Put another way, there is a collar
between E∗ and E∗

′ in B3, a collar that contains both the trivial arc
I0 and the parallelism disk E0 but is disjoint from {E2, E3, ..., Eg}. See
Figure 5. As before, let P denote the planar surface ∂H − Y , that is
the planar surface obtained from ∂H by deleting a neighborhood of the
meridian disks {E1, E2, ..., Eg}. Modeling the concrete description of
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generators of A ⊂ B2(P ) given via Figure 1, the definition of A{E1,...,Eg}
begins with a collection of loops γi, γ

′
i ⊂ P, 1 ≤ i ≤ g so that all the

loops are mutually disjoint, except in their common end points at x1;
for each i, one of γi and γ′i is parallel in P to each of the two copies of ∂Ei
in ∂P ; each loop is disjoint from ∂E0 except at x1; and (what is new)
each loop intersects only one end of the collar that lies between ∂E∗ and
∂E∗

′. Then 2g generators ai, a
′
i, 1 ≤ i ≤ g of A{E1,...,Eg} are represented

by isotopies obtained by sliding the endpoint x1 of I0 around the loops
γi and γ′i respectively.

If γi (resp γ′i) is one of the loops disjoint from E∗, then ai (resp a′i) also
lies in A{E∗,...,Eg}. If, on the other hand, γi (resp γ′i) is one of the loops
that is disjoint from E∗

′, then faif
−1 (resp fa′if

−1) is represented by
an isotopy of I0 that is disjoint from E∗. Moreover, since an isotopy of
I0 representing f doesn’t disturb the disks {E2, E3, ..., Eg}, the isotopy
of I0 representing faif

−1 (resp fa′if
−1) is disjoint from these disks

as well. That is, each such faif
−1 (resp fa′if

−1) lies in A{E∗,...,Eg}.
Hence in all cases, ai (resp a′i) lies in AF{E∗,E2,...,Eg}, so A{E1,...,Eg} ⊂
AF{E∗,E2,...,Eg}. �

It is well-known that in a genus g handlebody any two complete
collections of g meridian disks can be connected by a sequence of com-
plete collections of meridian disks so that at each step in the sequence
a single meridian disk is replaced with a different and disjoint one. See,
for example, [Wa, Theorem 1]. It follows then from Lemma 3.4 that
the subgroup AF{E1,E2,...,Eg} is independent of the specific collection of
meridian disks, so we can simply denote it AF.

Theorem 3.5. The inclusion AF ⊂ π1(Unk(I,H)) is an equality.

Proof. Begin with a parallelism disk E0 for I0, with α0 the arc E0∩∂H
connecting the endpoints x0 and x1. Suppose ω ∈ π1(Unk(I,H)) is
represented by a proper isotopy ft : I → H extending to the ambient
isotopy ft : H → H. Adjust the end of the ambient isotopy so that
E0 and f1(E0) are in normal position. Let αω ⊂ ∂H denote the image
f1(α0), an arc in ∂H that also connects x0 and x1. The proof is by
induction on |α0 ∩ αω|, the number of points in which the interiors of
α0 and αω intersect. The number is always even, namely twice the
number |E0 ∩ f1(E0)| of arcs of intersection of the disk interiors.

If |α0∩αω| = 0, so α0 and αω intersect only in their endpoints at x0

and x1, then the union of α0 and αω is a simple closed curve in ∂H that
bounds a (possibly inessential) disk E∪. The disk E∪ properly contains
I0 and is properly contained in H. Choose a complete collection of
meridian disks {E1, ..., Eg} for H that is disjoint from E∪. Then an
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isotopy of one end of I0 completely around ∂E∪ (pushed slightly aside)
represents an element b of A{E1,...,Eg} and takes αω to α0. See the
earlier Figure 4. It follows from Lemma 3.1 that the product ωb is in
FE0

, so ω ∈ AF.
For the inductive step, suppose that any element in π1(Unk(I,H))

whose corresponding isotopy carries some I0-parallel arc α to an arc
that intersects α in k or fewer points is known to lie in AF. Suppose
also that |α0 ∩ αω| = k + 2. Let E∗ be a disk in f1(E0) − E0 cut off
by an outermost arc β of E0 ∩ f1(E0) in f1(E0). Then attaching E∗

along β to the component of E0−β that contains I0 gives a parallelism
disk F0 that is disjoint from E0 and intersects αω in ≤ k points. The
union of F0 and E0 along I0 is a properly embedded disk E∪ and, as
usual, there is an isotopy representing an element η of AF that carries
F0 to E0. Now apply the inductive assumption to the product ηω: The
isotopy corresponding to ηω carries the arc F0 ∩ ∂H to αω. It follows
by inductive assumption then that ηω ∈ AF. Hence also ω ∈ AF,
completing the inductive step. �

Theorem 3.2 is then an obvious corollary, and provides an explicit
set of generators for π1(Unk(I,H)).

4. Connection to width

Suppose ft : I → H is a proper isotopy from I0 back to itself,
representing an element ω ∈ π1(Unk(I,H)). Put ft in general position
with respect to the collection ∆ of meridian disks {E1, ...Eg} so ft
is transverse to ∆ (in particular, f(∂I) ∩ ∆ = ∅) at all but a finite
number 0 < t0 ≤ t1 ≤ ... ≤ tn < 1 of values of t, which we will call the
critical points of the isotopy ft. Let ci, 1 ≤ i ≤ n be any value so that
ti−1 ≤ ci ≤ ti and define wi = |f−1

ci
(∆)| = |fci(I) ∩∆| to be the width

of I at ci. The values wi, 1 ≤ i ≤ n are all independent of the choice of
the points ci ∈ (ti−1, ti) since the value of |ft(I) ∩∆| can only change
at times when ft is not transverse to ∆.

Definition 4.1. The width w(ft) of the isotopy ft is maxi{wi}. The
width w(ω) of ω ∈ π1(Unk(I,H)) is the minimum value of w(ft) for
all isotopies ft that represent ω.

Corollary 4.2. For any ω1, ω2 ∈ π1(Unk(I,H)), the width of the prod-
uct w(ω1ω2) ≤ max{w(ω1), w(ω2)}.

It follows that, for any n ≥ 0, the set of elements of π1(Unk(I,H)) of
width no greater than n constitutes a subgroup of π1(Unk(I,H)). For
example, if n = 0 the subgroup is precisely the image of the inclusion-
induced homomorphism π1(UnkP (I, B3)) → π1(Unk(I,H)) defined at
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the beginning of Section 3, a subgroup that includes the anchored sub-
group A∆. It is easy to see that the width of any element in FE0 is
at most 1, so it follows from Corollary 4.2 and Theorem 3.2, that the
width of any element in π1(Unk(I,H)) = AF{E0,E1,...,Eg} is at most 1.

The fact that every element in π1(Unk(I,H)) is at most width 1
suggests an alternate path to a proof of Theorem 3.2, a path that
would avoid the technical difficulties of Lemmas 3.3 and 3.4: prove
directly that any element of width 1 is in AF{E0,E1,...,Eg} and prove
directly that any element in π1(Unk(I,H)) has width at most 1 (say by
thinning a given isotopy as much as possible) . We do so below. Neither
argument requires a change in the meridian disks {E1, ..., Eg}. The first
argument, that any element of width 1 is in AF{E0,E1,...,Eg}, is the sort
of argument that might be extended to isotopies of unknotted graphs
in H, not just isotopies of the single unknotted arc I, just as other thin
position arguments have been extended to graphs (see [ST1], [ST2]).
The second argument, which shows that the thinnest representation
of any element in π1(Unk(I,H)) is at most width 1, seems difficult to
generalize to isotopies of an arbitrary unknotted graph, because the
argument doesn’t directly thin a given isotopy, but rather makes use
of Lemma 3.1 in a way that may be limited to isotopies of a single arc.

Proposition 4.3. If an element ω ∈ π1(Unk(I,H)) has w(ω) = 1 then
ω ∈ AF{E0,E1,...,Eg}

Proof. The proof requires a series of lemmas.

Lemma 4.4. It suffices to consider only those ω ∈ π1(Unk(I,H)) rep-
resented by isotopies ft : I → H with exactly two critical points.

Proof. Suppose w(ω) = 1 and ft : I → H is an isotopy realizing this
width. Let 0 < t0 ≤ t1 ≤ ... ≤ tn < 1 be the critical points of the
isotopy and, as defined above, let wi be the width of I during the ith

interval. Since each wi is either 0 or 1 and wi 6= wi−1 it follows that
the value of wi alternates between 0 and 1. Since I0 ∩∆ = ∅ the value
of w1 = 1. During those intervals when the width is 0, ft(I) is disjoint
from ∆, so the isotopy ft can be deformed, without altering the width,
so that at some time t during each such interval, ft(I) = I0. Thereby
ω can be viewed as the product of elements, for each of which there is
an isotopy with just two critical points. �

So we henceforth assume that ω ∈ π1(Unk(I,H)) is represented by
an isotopy ft so that n = 1 and there are just two critical points
during the isotopy, t0 and t1. If either point were critical because of a
tangency between fti(I) and ∆, then the value of wi would change by
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2 as the tangent point passed through ∆, and this is impossible by the
assumption in this case. We conclude that t0 and t1 are critical because
they mark the point at which ft moves a single end of I through ∆,
say through the meridian disk E1 ⊂ ∆. It is possible that at t0 and
t1 the same end of I moves through E1 (so I does not pass completely
through E1), or possibly different ends of I move through E1 (when I
does pass completely through E1). We will refer to these two types of
isotopies as a bounce and a pass.

Pick a generic value t0 < t′ < t1. There is a natural way to associate
to the isotopy ft two disks, D0, D1, called tracking disks for ft with
these properties (see Figures 6 and 7):

• Each Di is embedded in H and has interior disjoint from ft′(I).
• Each ∂Di consists of the end-point union of three arcs: an arc

in E1, an arc in ∂H and the subarc Ji of ft′(I) lying between the
point p = E1 ∩ ft′(I) and the end of ft′(I) that passes through
E1 at ti, i = 0, 1.
• The subarcs of ∂D0 and ∂D1 that lie on E1 coincide. Along this

arc α the disks Di meet transversally.
• D0∩D1 consists of a collection of properly embedded arcs, each

ending in a point on ∂H.

Note that, by definition, J0 = J1 for a bounce and ft′(I) = J0 ∪ J1

for a pass. Here is the construction:
Recall that ft0(I) intersects E1 exactly in a single endpoint. Since

the isotopy is generic, at time t0 + ε, there is a small disk D0 on the
side of E1 opposite to ft0(I) so that ∂D0 is the union of an arc in E1,
an arc in ∂H and the small end-segment of ft0+ε(I). For values of t
between t0 + ε and t′, ft(I) remains transverse to E1 and is divided
by E1 into two segments, each of which is properly isotoped in H −∆
during the interval [t0 + ε, t′]. Apply the isotopy extension theorem to
this isotopy in H−∆. At the end of the isotopy, the small end-segment
of ft0+ε(I) has become J0 ⊂ ft′(I) and D0 remains disjoint from the
other interval ft′(I) − J0 because they were disjoint at the start of
the isotopy. Similarly construct D1 and J1 using the isotopy extension
theorem in the interval [t′, t1 − ε], but starting at the right end-point
t1 − ε. The disks D0 and D1 each intersect E1 in a single arc; it is
straightforward to isotope the disks further so that the arcs coincide,
the disks are transverse (including along the arc α = ∂Di∩E1 and also
along J0 = J1 in the case of a bounce). An innermost disk argument
ensures that all components of intersection are proper arcs.
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E1

Ei Ej Ek

J0 = J1

J ′

∂H

ft′(I)

α

p

Figure 6. Tracking disks: ∂D0 (red) and ∂D1 (blue)

E1

Ei Ej
Ek

J0J1

∂H

D0 ∩D1

Figure 7. ∂D0 (red), ∂D1 (blue), D0 ∩D1 (orange)

Definition 4.5. Minimize the number of arc components in D0 ∩ D1

via isotopies that fix each subarc ∂Di − ∂H. The number |D0 ∩D1| of
intersection arcs is called the complexity of the isotopy ft.

Lemma 4.6. If there is a parallelism disk D for I so that the interiors
of both ft0(D) and ft1(D) are disjoint from the meridian disks ∆, then
ω ∈ AF{E0,E1,...,Eg}.

Proof. Replace the isotopy ft, 0 ≤ t ≤ t0 by an isotopy that carries E0

to ft0(D) in H−∆ and replace the isotopy ft, t1 ≤ t ≤ 1 by an isotopy
that carries ft1(D) to E0 in H − ∆. The resulting isotopy carries E0

back to itself, and therefore represents an element of FE0
. It has been
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obtained by pre- and post-multiplying ω by elements whose represent-
ing isotopies keep I disjoint from ∆ and therefore lie in AFE0,...,Eg . It
follows that ω ∈ AFE0,...,Eg . �

Corollary 4.7. If ft is a pass of complexity zero, then ω ∈ AF{E0,E1,...,Eg}.

Proof. Since ft is a pass, ft′(I) = J0 ∪ J1. Since the complexity is zero,
the union D of the disks D0 and D1 along α is embedded. Hence D is
a parallelism disk for ft′(I). By construction, the isotopy ft extends to
an ambient isotopy of D so that the interiors of both ft0(D) and ft1(D)
are disjoint from the meridian disks ∆. Now apply Lemma 4. �

Lemma 4.8. If ft is a bounce of complexity zero, then ω can also
be represented by the product of two passes of complexity zero. Hence
ω ∈ AF{E0,E1,...,Eg}.

Proof. Since ft is a bounce, J0 = J1. Since the complexity is zero, the
union D of the tracking disks D0 and D1 along their common boundary
subarc is an embedded disk D in H which contains J0 = J1 and is
disjoint from the complementary subarc J ′ = ft′(I)− Ji. Furthermore
D is disjoint from ∆ except along the arc α where it is tangent to E1.

We know that ft′(I) is ∂-parallel in H; a parallelism disk can be
isotoped so that the arc of intersection with ∆ that has its endpoint
at p ∈ E1 is α. A standard innermost-disk, outermost-arc argument in
(∆ ∪D)− α will then find a parallelism disk that intersects the entire
collection of disks D ∩ ∆ in just α. The half E ′ of this parallelism
disk that is incident to J ′ can be used to define an isotopy of the arc
J ′ across E1. When this isotopy, followed by its inverse, are inserted
into ft at time t′, the resulting isotopy is the result of a deformation
of ft and so still represents ω, but the new isotopy is the product of
two passes. Since ∂E ′ intersects each ∂Di only along α, D0 ∪ E ′ and
D1 ∪ E ′ are embedded disks, so each pass has complexity zero. �

Lemma 4.9. A bounce of complexity n can be written as the product
of two bounces, one of complexity zero and the other of complexity less
than n.

Proof. The assumption is that the tracking disks D0 and D1 for ft
intersect in n arc components, each with its endpoints on ∂Di∩∂H. A
standard outermost-arc argument on the n curves of intersection gives
a third disk E ′ such that ∂E ′ coincides with the boundaries of the
Di away from ∂H, E ′ is entirely disjoint from D0, and E ′ intersects
D1 in n − 1 or fewer arcs. The disk E ′ can be used to define an
isotopy of the arc J0 = J1 across E1. When this isotopy, followed
by its inverse, are inserted into ft at time t′, the resulting isotopy is
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the result of a deformation of ft and so still represents ω, but the
new isotopy is the product of two bounces each determined by one of
D0 ∪ E ′ or E ′ ∪D1. The former is an embedded disk, so that bounce
has complexity zero. Since |D1 ∩ E ′| ≤ n − 1, the bounce determined
by E ′ ∪D1 has complexity at most n− 1. �

Lemma 4.10. A pass of complexity n can be written as the product of
a bounce of complexity zero and a pass of complexity less than n.

Proof. The proof is much like that of Lemma 4.9: Using an outermost
(in D1) arc of intersection, a disk E ′ is found so that ∂E ′ = J0 ∪ α,
E ′ is disjoint from D0, and E ′ intersects D1 in at most n − 1 arcs.
The disk E ′ can be used to define an isotopy of the arc J0 across
E1. When the isotopy, followed by its inverse, are inserted into ft at
time t′, the resulting isotopy is the result of a deformation of ft and
so still represents ω, but the new isotopy is the product of a bounce
determined by D0 ∪E ′ and a pass determined by E ′ ∪D1. The former
is an embedded disk, so the bounce has complexity zero. The pass
determined by E ′ ∪D1 has complexity at most n− 1. �

Proposition 4.3 now follows by induction on the complexity of ft. �

Proposition 4.11. Any element ω ∈ π1(Unk(I,H)) has a representa-
tive isotopy which is of width at most 1 with respect to the collection of
meridian disks ∆.

Proof. Let D0 be any disk of parallelism for I0 that is disjoint from ∆,
let ft be an isotopy of I that represents ω, so in particular f1(I0) = I0.
Extend ft to an ambient isotopy of H, and let D1 = f1(D0) be the
final position of D0 after the isotopy. Call D1 the terminal disk for the
isotopy. It follows from Lemma 3.1 that, up to a product of elements
of FD0

, each of which has width 1 with respect to ∆, ω is represented
by any isotopy of I0 back to itself that has the same terminal disk D1.
The proof will be by induction on |D1 ∩∆|; we assume this has been
minimized by isotopy, so in particular all components of intersection
are arcs with end points on the arc α = ∂D1 ∩ ∂H.

Given the disk D1, here is a useful isotopy, called a D1-sweep, that
takes D0 to D1. Pick any p point on α, and isotope D0 in the com-
plement of ∆ so that it becomes a small regular neighborhood Np of
p in D1. (Do not drag D1 along.) This isotopy carries I0 to an arc
Ip = ∂Np−∂H properly embedded in D1. Then stretch Np in D1 until
it fills all of D1, so we view Np as sweeping across all of D1. The com-
bination of the two isotopies carries I0 back to itself and takes D0 to
D1 so, up to a further product with width one isotopies, we can assume
that this combined isotopy represents ω (via Lemma 3.1).
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It will be useful to have a notation for this two stage process: let g
be the isotopy in the complement of ∆ that takes D0 to Np and let s
be the isotopy that sweeps Np across D1. We wish to determine the
width of the sequence g ∗ s of the two isotopies. Since the isotopy g is
disjoint from ∆, much depends on the D1-sweep s of Np across D1. In
particular, if the number of intersection arcs |D1 ∩∆| ≤ 1 it is obvious
how to arrange the sweep so the width is at most 1. So henceforth we
assume that |D1 ∩∆| ≥ 2.

g

Np

β′ βs

D0

D1

Dp ⊂ D1

Figure 8

Of all arcs in D1 ∩ ∆, let β be one that is outermost in ∆. That
is, the interior of one of the disks that β cuts off from ∆ is disjoint
from D1. Pick the point p for the D1-sweep to be near an end-point
of β in ∂D1, on a side of β that contains at least one other arc. (Since
|D1 ∩∆| ≥ 2 there is at least one other arc.) Let β′ ⊂ D1 be an arc in
D1 −∆ with an end at p and which is parallel to β and let Dp be the
subdisk of D1 cut off by β′ that does not contain I0 ⊂ ∂D1. See Figure
8. Now do the sweep s in two stages: first sweep Np across Dp until
it coincides with Dp, then complete the sweep across D1. See Figure
9 Denote the two stages of the sweep by s = s1 ∗ s2. The isotopy s1

carries Ip to the arc β′; exploiting the fact that β is outermost in ∆
there is an obvious isotopy h (best imagined in Figure 8) that carries
β′ back to Ip, an isotopy that is disjoint from ∆ and from D1. Finally,
deform the given isotopy g ∗ s = g ∗ s1 ∗ s2 whose width we seek, to the
isotopy g ∗ s1 ∗ h ∗ g ∗ g ∗ h ∗ s2, which can be written as the product
(g∗s1∗h∗g)∗(g∗h∗s2), of two isotopies, each representing an element of
π1(Unk(I,H)). The first isotopy has terminal disk containing exactly
the arcs of Dp ∩ ∆ and the second has terminal disk containing the
other arcs D1∩∆. By construction of β′ each set is non-empty so each
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terminal disk intersects ∆ in fewer arcs than D1 did. By inductive
hypothesis, each isotopy can be deformed to have width at most 1 so,
by Corollary 4.2, w(ω) ≤ 1. �

I0

Np

β′ β

s1

s2

Dp

Figure 9

5. Connection to the Goeritz group

Suppose H is a genus g ≥ 1 handlebody, and Σ is a genus g + 1
Heegaard surface in H. That is, Σ splits H into a handlebody H1 of
genus g + 1 and a compression-body H2. The compression-body H2 is
known to be isotopic to the regular neighborhood of the union of ∂H
and an unknotted properly embedded arc I0 ⊂ H (see [ST1, Lemma
2.7]).

Let Diff(H) be the group of diffeomorphisms of H and Diff(H,Σ) ⊂
Diff(H) be the subgroup of diffeomorphisms that take the splitting sur-
face Σ to itself. Following [JM], define the Goeritz group G(H,Σ) of
the Heegaard splitting to be the group consisting of those path compo-
nents of Diff(H,Σ) which lie in the trivial path component of Diff(H).
So, a non-trivial element of G(H,Σ) is represented by a diffeomorphism
of the pair (H,Σ) that is isotopic to the identity as a diffeomorphism
of H, but no isotopy to the identity preserves Σ.

Theorem 5.1. For H a handlebody of genus ≥ 2,

G(H,Σ) ∼= π1(Unk(I,H)).
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For H a solid torus, there is an exact sequence

1→ Z→ π1(Unk(I,H))→ G(H,Σ)→ 1.

In either case, the finite collection of generators of π1(Unk(I,H))
described above is a complete set of generators for G(H,Σ).

Proof. This is a special case of [JM, Theorem 1], but there the fun-
damental group of the space H(H,Σ) = Diff(H)/Diff(H,Σ) takes the
place of π1(Unk(I,H)). So it suffices to show that there is a homotopy
equivalence between H(H,Σ) and Unk(I,H). We sketch a proof:

Fix a diffeomorphism e : I → I0 ⊂ H, for I0 as above a specific
unknotted arc in H. It is easy to see that for any other embedding
e′ : I → H with e′(I) unknotted, there is a diffeomorphism h : H → H,
so that he = e′. It follows that the restriction to I0 defines a surjec-
tion Diff(H)→ Emb0(I,H). Since any automorphism of I0 extends to
an automorphism of H, this surjection maps the subgroup Diff(H, I0)
(diffeomorphisms of H that take I0 to itself) onto the space of auto-
morphisms of I0. It follows that Unk(I,H) = Emb0(I,H)/Diff(I) has
the same homotopy type as Diff(H)/Diff(H, I0).

Suppose for the compression-bodyH2 in the Heegaard splitting above
we take a fixed regular neighborhood of ∂H∪I0 ⊂ H. Let Diff(H,H2, I0)
denote the subgroup of Diff(H,H2) that takes I0 to itself.

Lemma 5.2. The inclusion Diff(H,H2, I0) ⊂ Diff(H,H2) is a homo-
topy equivalence.

Proof. First note that the path component Diff0(H,H2) of Diff(H,H2)
containing the identity is contractible, using first [EE] on ∂H2 and
then [Ha1] on the interiors of H1 and H2. Any other path component
of Diff(H,H2) is therefore contractible, since each is homeomorphic to
Diff0(H,H2). It therefore suffices to show that any path component
of Diff(H,H2) contains an element of Diff(H,H2, I0). Equivalently, it
suffices to show that any diffeomorphism of H2 is isotopic to one that
sends I0 to I0. A standard innermost disk, outermost arc argument
shows that H2 contains, up to isotopy, a single ∂-reducing disk D0;
once D0 has been isotoped to itself and then the point I0∩D0 isotoped
to itself in D0, the rest of I0 can be isotoped to itself, using a product
structure on H2 − η(D0) ∼= ∂H × I. �

Lemma 5.3. The inclusion Diff(H,H2, I0) ⊂ Diff(H, I0) is a homotopy
equivalence.

Proof. Such spaces have the homotopy type of CW -complexes. (See
[HKMR, Section 2] for a discussion of this and associated properties.)
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So it suffices to show that, for any

Θ : (Bk, ∂Bk)→ (Diff(H, I0),Diff(H,H2, I0)), k ≥ 1,

there is a pairwise homotopy to a map whose image lies entirely inside
Diff(H,H2, I0). The core of the proof is a classic argument in smooth
topology; a sketch of the rather complex argument is given in the Ap-
pendix. Note that the level of analysis that is required is not much
deeper than the Chain Rule in multivariable calculus.1 �

A diffeomorphism ofH that takes Σ to itself will also takeH2 to itself,
sinceH2 andH1 are not diffeomorphic. Hence Diff(H,Σ) = Diff(H,H2)
and

H(H,Σ) = Diff(H)/Diff(H,Σ) = Diff(H)/Diff(H,H2).

Lemma 5.2 shows that the natural map

Diff(H)/Diff(H,H2, I0)→ Diff(H)/Diff(H,H2)

is a homotopy equivalence and Lemma 5.3 shows that the natural map

Diff(H)/Diff(H,H2, I0)→ Diff(H)/Diff(H, I0)

is a homotopy equivalence. Together these imply that H(H,Σ) =
Diff(H)/Diff(H,H2) is homotopy equivalent to Diff(H)/Diff(H, I0),
which we have already seen is homotopy equivalent to Unk(I,H). �

1But in some ways the argument in the Appendix is just a distraction: First of
all, we do not need the full homotopy equivalence to show that the fundamental
groups of H(H,Σ) and Unk(I,H) are isomorphic (but restricting attention just to
the fundamental group wouldn’t really simplify the argument). Secondly, we could
have, from the outset, informally viewed each isotopy of I in H described in the
proof above to be a proxy for an isotopy of a thin regular neighborhood H ′ of ∂H∪I;
the difference then between isotopies of H ′ and isotopies of the compression body
H2 is easily bridged, requiring from the Appendix only Lemma A.7 and following.
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Appendix A. Moving a diffeomorphism to preserve H2.

A conceptual sketch of the proof of Lemma 5.3 can be broken into six
steps. It is useful to view Θ : (Bk, ∂Bk)→ (Diff(H, I0),Diff(H,H2, I0))
as a family of diffeomorphisms hu : (H, I0)→ (H, I0) parameterized by
u ∈ Bk so that for u near ∂Bk, hu(H2) = H2. By picking a particular
value u0 ∈ ∂Bk and post-composing all diffeomorphisms with h−1

u0
we

may, with no loss of generality, assume that Θ(Bk) lies in the compo-
nent of Diff(H, I0) that contains the identity. Here are the six stages:

(1) (Pairwise) homotope Θ so that for each u, hu is the identity on
∂H.

(2) Further homotope Θ so that for some collar structure ∂H × I
near ∂H and for each u ∈ Bk, hu|(∂H × I) is the identity.

(3) Further homotope Θ so that after the homotopy there is a neigh-
borhood of I0 and a product structure I0 × R2 on that neigh-
borhood so that for all u ∈ Bk, hu|(I0 × R2) commutes with
projection to I0 near I0.

(4) Further homotope Θ so that for all u ∈ Bk, hu|(I0 × R2) is a
linear (i. e. GLn) bundle map over I0 near I0.

(5) Further homotope Θ so that for all u ∈ Bk, hu|(I0 × R2) is
an orthogonal (i. e. On) bundle map near I0. There is then a
regular neighborhood H ′ ⊂ H2 of ∂H∪I0 so that for all u ∈ Bk,
hu(H

′) = H ′.
(6) Further homotope Θ so that for the specific regular neighbor-

hood H2 of ∂H ∪ I0 and for each u ∈ Bk, hu(H2) = H2.

For the first stage, let Θ∂H : Bk → Diff(∂H, ∂I0) be the restriction of

each hu to ∂H. The further restriction Θ∂H |∂B
k defines an element of

πn−1(Diff(∂H, ∂I0)) in the component containing the identity hu0 |∂H.
The space Diff(∂H, ∂I0) is known to be contractible (see [EE], [ES],
or [Gr]). Hence Θ∂H |∂B

k is null-homotopic. The homotopy can be

extended to give a homotopy of Θ∂H : Bk → Diff(∂H, ∂I0) and then, by

the isotopy extension theorem, to a homotopy of Θ : Bk → Diff(H, I0),
after which each hu|∂H is the identity.

The homotopy needed for the second stage is analogous to (and much
simpler than) the sequence of homotopies constructed in stages 3 to 5,
so we leave its construction to the reader.

Stages 3 through 5 might best be viewed in this context: One is
given a smooth embedding h : I × R2 → I × R2 that restricts to a
diffeomorphism I × {0} → I × {0} and which is the identity near
∂I × R2. One hopes to isotope the embedding, moving only points
near I ×{0} and away from ∂I ×R2 so that afterwards the embedding
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is an orthogonal bundle map near I × {0}. Moreover, one wants to
do this in a sufficiently natural way that a Bk-parameterized family of
embeddings gives rise to a Bk-parameterized family of isotopies. The
relevant lemmas below are proven for general Rn, not just R2, since
there is little lost in doing so. (In fact the arguments could easily
be further extended to families of smooth embeddings D` × Rn →
D` × Rn, ` > 1).

Stage 3: Straightening the diffeomorphism near I0

Definition A.1. A smooth isotopy ft : I × Rn → I × Rn of an em-
bedding f0 : I × Rn → I × Rn is allowable if it has compact support in
(int I)×Rn. That is, the isotopy is fixed near ∂I ×Rn and outside of
a compact set in I × Rn.

Definition A.2. A smooth embedding f : I × (Rn, 0) → I × (Rn, 0)
commutes with projection to I if for all (x, y) ∈ I × Rn, p1f(x, y) =
f(x, 0) ∈ I.

Definition A.3. For A a square matrix or its underlying linear trans-
formation, let |A| denote the operator norm of A, that is

|A| = max{|Ax| : x ∈ Rn, |x| = 1}

= max{|Ax|
|x|

: 0 6= x ∈ Rn}

.

Let φ : [0,∞) → [0, 1] be a smooth map such that φ([0, 1/2]) = 0,
φ : (1/2, 1) → (0, 1) is a diffeomorphism, and φ([1,∞)) = 1. Let b0

be an upper bound for sφ′(s); for example φ could easily be chosen so
that b0 = 4 suffices. For any ε > 0 let φε : [0,∞)→ [0, 1] be defined by
φε(s) = φ( s

ε
).

Then

φε([ε,∞)) = 1

and, for any ε > 0 and any s ∈ [0,∞),

sφ′ε(s) = sφ′(
s

ε
)
1

ε
=
s

ε
φ′(

s

ε
) ≤ b0.

Thus b0 is an upper bound for all sφ′ε(s).
Now fix an ε > 0 and define g1 : Rn → [0, 1] by g1(y) = φε(|y|). This

is a smooth function on Rn which is 0 on the ball Bε/2 and 1 outside
of Bε. Linearly interpolating,

gt(y) = (1− t) + tg1(y)
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is a smooth homotopy with support in Bε from the constant function 1
to g1. Define a smooth homotopy λt : Rn → Rn, 0 ≤ t ≤ 1 by λt(y) =
gt(y)y and note that, by the chain rule, the derivative Dλt(y)(z) =
gt(y)z + tφ′ε(|y|)(

y
|y| · z)y so Dλt(y) has the matrix

gt(y)In + t
φ′ε(|y|)
|y|

yy∗

and so satisfies

|Dλt(y)| ≤ gt(y) + tφ′ε(|y|)|y|
|yy∗|
|y2|

≤ 1 + b0

since the norm of the matrix yy∗ is |y|2. (This last point is best seen
by taking y to be a unit vector, z to be any other unit vector and
observing that |yy∗z| = |y(y · z)| ≤ |y(y · y)| = 1. Note also that the
function represented by an expression like φ′ε(|y|)/|y| is understood to
be 0 when y = 0. Since φ′ε(y) ≡ 0 for y near 0, the function is smooth.)

The central point of the above calculation is only this: |Dλt(y)| has
a uniform bound that is independent of t or the value of ε that is used
in the construction of λ.

Lemma A.4 (Handle-straightening). Suppose f : I × (Rn, 0) → I ×
(Rn, 0) is an embedding which commutes with projection to I near ∂I×
{0}. Then there is an allowable isotopy of f to an embedding that
commutes with projection to I near all of I × {0}. (See Figure 10.)

Moreover, given a continuous family fu, u ∈ Bk of such embeddings
so that for u near ∂Bk, fu commutes with projection to I near I×{0},
a continuous family of such isotopies can be found, and the isotopy is
constant for any u sufficiently near ∂Bk.

Proof. We will construct an isotopy ft for a given f = f0 and then
observe that it has the properties described. By post-composing with
a GLn bundle map over the diffeomorphism f−1|I × {0}, we may as
well assume that f |I×{0} is the identity and, along I×{0}, D(p2f) is
the identity on each Rn fiber Rn

x. Hence, at any point (x, 0) ∈ I ×{0},
the matrix of the derivative Df : R × Rn → R × Rn is the identity
except for perhaps the last n entries of the first row, which contain the
gradient ∇(p1f |Rn

x).
For any ε > 0, consider the map

ft : I × Rn → I × Rn

defined near I ×Bε by

ft

(
x
y

)
=

(
p1f(x, λt(y))
p2f(x, y)

)
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and fixed at f outside I×Bε. For any value of t, the derivative of ft at
any (x, y) ∈ I × Rn differs from that of f by multiplying its first row
on the right by the matrix (

1 0
0 Dλt(y)

)
.

For ε small, the first row of Dft will then be quite close to a row vector
of the form (

1 v∗
)

where |v∗| ≤ (1 + b0)|∇(p1f |Rn
x)| and the matrix for Dft will be quite

close to the matrix (
1 v∗

0 In

)
.

So, although we cannot necessarily make v∗ small by taking ε small,
the entries in v∗ are at least bounded by a bound that is independent
of ε, and, by taking ε small, the rest of the matrix can be made to have
entries arbitrarily close to those of the identity matrix. In particular,
for ε sufficiently small, Dft will be non-singular everywhere, and so each
ft will be a smooth embedding. Thus ft will be an allowable isotopy to
a smooth embedding f1 that commutes with projection to I on I×B ε

2
,

since on I ×B ε
2

we have p1f(x, λ1(y)) = p1f(x, 0) = f(x, 0) ∈ I.

I

Rn

f

f1

Bε

Figure 10

The extension to a parameterized family of embeddings fu, u ∈ Bk

is relatively easy: pick ε so small (as is possible, since Bk is compact)
so that the above argument works simultaneously on each fu, u ∈ Bk

and also so small that, for each u near ∂Bk, I ×Bε lies within the area
on which fu already commutes with projection to I. �
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Stage 4: Linearizing the diffeomorphism near I0

Lemma A.5 (Diffn/GLn). Suppose f : I × (Rn, 0) → I × (Rn, 0)
is an embedding which commutes with projection to I and which is a
GLn bundle map near ∂I × {0}. Then there is an allowable isotopy
of f , through embeddings which commute with projection to I, to an
embedding that is a GLn bundle map near I × {0}.

Moreover, given a continuous family fu, u ∈ Bk of such embeddings
so that for u near ∂Bk, fu is a GLn bundle map near I × {0}, a
continuous family of such isotopies can be found, and the isotopy of fu

is constant for any u sufficiently near ∂Bk.

Proof. For each x ∈ I consider the restriction f |Rn
x of f to the fiber Rn

x

over x. By post-composing f with the GLn bundle map over f−1|I×{0}
determined by D(f |Rn

x)(0)−1 we may as well assume that f |I × {0} is
the identity and that D(f |Rn

x)(0) is the identity for each x. There are
differentiable maps ψi,x : Rn

x → Rn
x, 1 ≤ i ≤ n, smoothly dependent on

x, so that for y ∈ Rn
x, f(y) = Σn

i=1yiψi,x(y) and ψi,x(0) = ei, the ith

unit vector in Rn [BJ, Lemma 2.3].
Choose ε small and let λt : Rn → Rn be the homotopy defined above

using ε. For each t ∈ [0, 1] define ft : I × (Rn, 0) → I × (Rn, 0) as the
bundle map for which each ft|Rn

x is given by Σn
i=1yiψi,x(λt(y)). When

t = 1 the function on Bε/2 ⊂ Rn
x is given by Σn

i=1yiei, i. e. the identity.
As in Step 1, the bound |Dλt(y0)| ≤ 1 + b0 guarantees that if ε is
chosen sufficiently small the derivative of Σn

i=1yiψi,x(λt(y)) is close to
the identity throughout I ×Bε; hence ft remains a diffeomorphism for
each t.

The extension to a parameterized family of embeddings fu is done
as in Stage 3 (Sub-section A) above. �

Stage 5: Orthogonalizing the diffeomorphism near I0

Lemma A.6 (GLn/On). Suppose f : I × (Rn, 0) → I × (Rn, 0) is
a GLn bundle map which is an On bundle map near ∂I × {0}. Then
there is an allowable isotopy of f , through embeddings which commute
with projection to I, to an embedding that is an On bundle map near
I × {0}.

Moreover, given a continuous family fu, u ∈ Bk of such embeddings
so that for u near ∂Bk, fu is an On bundle map near I × {0}, a
continuous family of such isotopies can be found, and the isotopy of fu

is constant for any u sufficiently near ∂Bk.

Proof. Once again we may as well assume f |I×{0} is the identity and
focus on the linear maps f |Rn

x.



GENUS g + 1 GOERITZ GROUP 25

As a consequence of the Gram-Schmidt orthogonalization process,
any matrix A ∈ GLn can be written uniquely as the product QT of
an orthogonal matrix Q and an upper triangular matrix T with only
positive entries in the diagonal. The entries of Q and T = QtA depend
smoothly on those of A. In particular, by post-composing f with the
orthogonal bundle map determined by the inverse of the orthogonal
part of (Dfx)(0) we may as well assume that for each x ∈ I, f |Rn

x is
defined by an upper triangular matrix Tx with all positive diagonal
entries.

A worrisome example: It seems natural to use the function gt de-
fined above to interpolate linearly between Tx and the identity, in anal-
ogy to the way gt (via λt) was used in Stages 3 and 4. Here this would
mean setting

ft(y) = [In + gt(y)(Tx−In)]y ∀y ∈ Rn
x.

This strategy fails without control on the bound b0 of sφ′(s), even
in the relevant case n = 2, because ft may fail to be a diffeomorphism.
For example, if

Tx =

(
1 r
0 1

)
then with the above definition

(D(f1|R2
x)y)(z) =

(
1 g1(y)r
0 1

)
z +

(
φ′(|y|)(ry2)(y · z)/|y|

0

)
Choose z =

(
1
0

)
and get the vector(

1 + φ′(|y|)(ry1y2)/|y|
0

)
=

(
1 + rφ′(|y|)|y| y1y2

y21+y22
0

)
For a fixed value of |y|, the ratio y1y2

y21+y22
takes on every value in [−1/2, 1/2].

So, unless φ′(|y|)|y| < 2
|r| , which could be much smaller than b0, the

vector (D(f1|R2
x)y)(z) will be trivial for some y. At this value of y,

D(f1|R2
x)y would be singular, so f1|R2

x would not be a diffeomorphism.

On the other hand, in contrast to the previous two stages, there
is no advantage to restricting the support of the isotopy ft to an ε
neighborhood of I ×{0} since f , as a GLn bundle map, is independent
of scale. So we are free to choose φ a bit differently:

Given κ > 0, let φ : [0,∞)→ [0, 1] be a smooth, monotonically non-
decreasing map such that φ([0, 1]) = 0, φ(s) = 1 outside some closed
interval, and, for all s, sφ′(s) < κ. For example, φ could be obtained
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by integrating a smooth approximation to the discontinuous function

on [0,∞) which takes the value κ/2s for s ∈ [1, e
2
κ ] but is otherwise 0.

Suppose A is any upper triangular matrix with positive entries in
the diagonal and τ ∈ [0, 1]. Then the matrix Aτ = (I + τ(A − I)) =
(1 − τ)I + τA is invertible, since it also is upper triangular and has
positive diagonal entries. Suppose κ1, κ2 ∈ [0,∞) satisfy

κ1 ≤
1

supτ |A−1
τ |

, κ2 ≤
1

|A− I|
.

Then, for any τ ∈ [0, 1] and any y, z 6= 0 ∈ Rn,

|Aτz| ≥ κ1|z|, κ2|(A− I)y| ≤ |y|.
In particular, if 0 ≤ κ < κ1κ2 then

|Aτ (z)+κ
|z|
|y|

(A−I)y| ≥ |Aτ (z)|−κ |z|
|y|
|(A−I)y| > κ1|z|−κ1

|z|
|y|
|y| = 0.

Apply this to the problem at hand by choosing values κ1, κ2 so that
for all x ∈ [0, 1],

κ1 ≤
1

supτ |(Tx)−1
τ |

, κ2 ≤
1

|Tx − In|
.

Then choose φ : [0,∞) → [0, 1] as above so that for all s ∈ [0,∞),
sφ′(s) < κ1κ2. Much as in Step 2, define the smooth homotopies
gt : Rn → [0, 1] and ft|Rn

x : Rn
x → Rn

x via

gt(y) = (1− t) + tφ(|y|)(y)

ft(y) = (In + gt(y)(Tx − In)).

Then for all x ∈ I and each y 6= 0 6= z ∈ Rn
x,

D(ft|Rn
x)y(z) = (I + gt(y)(Tx − In))z +Dgt(y)(z)(Tx − In)y

= (I + g(y)(Tx − In))z + tφ′(|y|)y · z
|y|

(Tx − In)y.

Now notice that by construction

tφ′(|y|)y · z
|y|
≤ φ′(|y|)|y|y · z

|y|2
< κ1κ2

|z|
|y|

so, applying the argument above to τ = g(y) and A = Tx, we have
|D(ft|Rn

x)y(z)| > 0. Thus D(ft|Rn
x) is non-singular everywhere and so,

for all t, ft is a diffeomorphism, as required.
The extension to a parameterized family fu, u ∈ Bk is essentially

the same as in the previous two cases, after choosing κ to be less than
the infimum of κ1κ2 taken over all u ∈ Bk. Note that for u near ∂Bk,
where fu is already an orthogonal bundle map, each Tx will be the



GENUS g + 1 GOERITZ GROUP 27

identity, so, regardless of the value of t or y in the definition (ft|Rn
x)y =

(In + gt(y)(Tx − In))y, the function is constantly the identity. �

Stage 6: From preserving H ′ to preserving H2.

The previous stages allow us to define a possibly very thin regular
neighborhood H ′ ⊂ H2 of ∂H ∪ I0 and a relative homotopy of Θ to
a map (Bk, ∂Bk) → (Diff(H,H ′, I0),Diff(H,H2, I0)). Continue to de-
note the result as Θ and invoke this special case of Hatcher’s powerful
theorem:

Lemma A.7. Suppose F is a closed orientable surface. Any ψ : Sk →
Diff(F ×I, F ×{0}) is homotopic to a map so that each ψ(u) : F ×I →
F ×I respects projection to I. (In fact, unless F is a torus or a sphere,
there is a diffeomorphism f : F → F and a homotopy of ψ to a map
so that each ψ(u) is just f × idI .)

Proof. The special case in which F is a torus or a sphere is left to
the reader; it will not be used. Pick a base point u0 ∈ Sk and let
ψ0 = ψ(u0) : F × I → F × I. Take f in the statement of the Lemma
to be ψ0|(F × {0}) : F → F and, with no loss of generality, assume
this diffeomorphism is the identity. Since Diff(F ) is contractible [EE],
the map ψ| : Sk → Diff(F ) defined by ψ|(u) = ψ(u)|(F × {0}) can
be deformed so that each ψ|(u) is the identity. The homotopy of ψ|
induces a homotopy of ψ via the isotopy extension theorem.

The map p1ψ0 : F × I → F defines a homotopy from ψ0|(F × {1}) :
F → F to the identity, and this implies that ψ0|(F × {1}) is isotopic
to the identity. The previous argument applied to diffeomorphisms of
F × {1} instead of F × {0} then provides a further homotopy of ψ,
after which each diffeomorphism ψ(u) : F × I → F × I is the identity
on F ×{0, 1} = ∂(F ×I). That is, after the homotopy of ψ, ψ maps Sk

enirely into the space of diffeomorphisms of F × I that are the identity
on ∂(F × I). The lemma then follows from the central theorem of
[Ha1]. �

The region H2− int(H ′) between the regular neighborhoods of ∂H ∪
I0 is a collar which can be parameterized by Σ × I. With this in
mind, apply Lemma A.7 to ψ = Θ|∂Bk : Sk−1 → Diff(H2 − int(H ′)),
extending the parameterization slightly outside of H2 − int(H ′) via an
argument like that in Stage 2 above. We then have a parameterization
Σ × R of a neighborhood of H2 − int(H ′) so that ∂H2 corresponds to
Σ × {1}, ∂H ′ corresponds to Σ × {0}, and so that for each u ∈ ∂Bk,
the restriction of Θ(u) : H → H to Σ × R respects projection to
R. Let gt : R → R be a smooth isotopy with compact support from
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the identity to a diffeomorphism that takes 1 ∈ R to 0. Define the
isotopy rt : Σ × R → Σ × R by rt(y, s) = (y, gt(s)) and extend by the
identity to an isotopy of H. The result is an isotopy from the identity
to a diffeomorphism that takes H2 to H ′. Then the deformation Θt

of Θ defined by Θt(u) = r−1
t Θ(u)rt : H → H pairwise homotopes

Θ : (Bk, ∂Bk) → (Diff(H, I0),Diff(H,H2, I0)) to a map whose image
lies entirely in Diff(H,H2, I0).
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