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Abstract. A gap in [RS] is filled: new examples are found of
closed orientable 3-manifolds with possibly multiple genus 2 Hee-
gaard splittings. Properties common to all the examples in [RS]
are not universally shared by the new examples: some of the new
examples have Hempel distance 3, and it is not clear that a single
stabilization always makes the multiple splittings isotopic.

1. Introduction

In 1998, Rubinstein and the second author [RS] studied the question
of when there could be more than one distinct genus 2 Heegaard split-
ting of the same closed orientable 3-manifold. The goal of the project
was modest: to provide a complete list of ways in which such multiple
splittings could be constructed, but with no claim that each example
on the list did in fact have multiple non-isotopic splittings (there could
be isotopies from one splitting to another that are not apparent). Nor
was there a claim that the list had no redundancies; a 3-manifold and
its multiple splittings might appear more than once on the list. Such a
list would still be useful, for if every example on the list could be shown
to have a certain property, then that property would be true for any
closed orientable 3-manifold M that has multiple genus 2 splittings.
Two examples were given in [RS]:

• If M is atoroidal then the hyperelliptic involutions determined
by the two genus 2 Heegaard splittings commute.
• Any two genus 2 Heegaard splittings of M become isotopic after

a single stabilization.

Despite this modest goal, the argument in [RS] contains a gap. In
2008, the first author discovered a class of examples that do not ap-
pear on the list and which, moreover, have mathematical properties
that distinguish them in important ways from the examples that do
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appear in [RS]. It is true that, even for the new examples, the hyper-
elliptic involutions commute. But we know of no argument showing
that the new examples all share the second property above; that is, we
cannot show that the newly discovered multiple splittings necessarily
become isotopic after a single stabilization (though they do after two
stabilizations).

A third property, shared by all examples in [RS] but not by some
of the new examples, is not listed above because the notion of Hempel
distance of Heegaard splittings (see [He]) did not exist at the time [RS]
was written. But a retrospective look (see Section 7 below) will verify
that all the splittings described in [RS] have Hempel distance no greater
than 2, whereas results of the first author [Be2] illustrate that at least
some of the new examples have Hempel distance 3. (This also verifies
that the gap in the argument in [RS] actually led to missed examples.)

The present paper serves as an erratum to [RS]1 and describes the
new examples. Here is an outline: In Section 2 we describe a general
method for constructing closed orientable 3-manifolds that appear to
have multiple genus 2 Heegaard splittings; these examples (called Dehn-
derived) are based around Dehn surgery on a pair of strategically placed
curves. It follows from the construction that always the hyperelliptic
involutions of the alternate splittings coincide.

It is not immediately obvious that curves supporting Dehn-derived
examples can be found, but in Sections 3 and 4 we give three specific
classes of examples. The classes are denoted MH (Section 3), M×I and
Mhybrid (Section 4). (MH can be viewed as a third variation of [RS,
Example 4.2].) For the examples MH and Mhybrid a single stabilization
suffices to make the alternate splittings equivalent, but this property
is at least not apparent in most cases of M×I .

Section 5 describes how the proof of [RS, Lemma 9.5, Case 2] went
astray and how it needs to be altered to fix the gap. The upshot is
that Dehn-derived examples, as described in Section 2, do fill the gap
in the original proof. In Section 6 it is further shown, using new results
in [Be2], that any Dehn-derived example is in fact of type MH , M×I
or Mhybrid. Finally, in Section 7 we verify that all of the old examples
that are listed in [RS] are of Hempel distance 2, whereas at least some
Dehn-derived examples are of distance 3. (It is easy to see that all
Dehn-derived examples are of distance no more than 3.)

1The error is on p. 533: The last sentence of the first paragraph of Case 2 should
have read, “The same curves cannot then be twisted in X since M is hyperbolike.”
This leaves open an additional possibility for PX , PY , which appears as Subcase B
in Section 5 below.
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2. Dehn derived multiple splittings

A primitive k-tuple of curves in the boundary of a genus g handle-
body H is a collection λ1, ...λk ⊂ ∂H of k ≤ g disjoint simple closed
curves so that, for some properly embedded collection D1, ..., Dk of
disks in H, |λi∩Dj| = δij, 1 ≤ i, j ≤ k. It is easy to see that the closed
complement in H of such a collection of meridian disks is a genus g−k
handlebody. In particular, if k = g then λ1, ...λg is called a complete set
of primitive curves and the corresponding collection of disks D1, ..., Dg

is called a complete set of meridian disks. The closed complement of a
complete set of meridian disks in H is a 3-ball.

Suppose Λ = λ1, ...λk ⊂ ∂H is a primitive k-tuple of curves in H
and let α1, ..., αk be the properly embedded collection of curves in H
obtained by pushing Λ slightly into the interior of H. We can view H
as the boundary connect sum of a genus g − k handlebody H ′ and k
solid tori W1, ...,Wk, with λi a longitude of Wi and so αi a core curve
of Wi. Then Dehn surgery on αi ⊂ Wi still gives a solid torus. Hence
any Dehn surgery on the family of curves α1, ..., αk leaves H still a
handlebody.

Definition 2.1. Suppose M0 = Ha ∪S Hb is a Heegaard splitting of a
closed 3-manifold M0. A simple closed curve λ ⊂ S is doubly primitive
if λ is a primitive curve in both handlebodies Ha and Hb.

SupposeM0 is a closed orientable 3-manifold and thatM0 = Ha∪SHb

is a genus 2 Heegaard splitting of M0. Suppose further that λ1, λ2 ⊂ S
are two disjoint doubly primitive curves in S.

Proposition 2.2. Suppose M is a manifold obtained by some specified
Dehn surgeries on λ1 and λ2. For i = 1, 2, let Ai (resp. Bi) be the
manifold obtained from the handlebody Ha (resp. Hb) by pushing the
curve λi into int(Ha) (resp int(Hb)) and performing the specified Dehn
surgery on the curve.

Then A1 ∪S B2 and A2 ∪S B1 are two (possibly different) genus 2
Heegaard splittings of M .

Proof. Ai (resp Bi) is obtained from Ha (resp Hb) by Dehn surgery
on a pushed in copy αi of a single primitive curve in S. It was just
observed that this makes each Ai (resp. Bi) a handlebody. �

Definition 2.3. Two genus 2 Heegaard splittings X ∪Q Y and A∪P B
of a closed 3-manifold M are called Dehn derived (from the splitting
M0 = Ha ∪S Hb via λ1 ∪ λ2 ⊂ S) if the two splittings are created as in
Proposition 2.2.
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Corollary 2.4. Suppose M = A ∪P B = X ∪Q Y are a Dehn-derived
pair of Heegaard splittings. Then the two hyperelliptic involutions of
M , one determined by the Heegaard splitting A ∪P B and the other by
the Heegaard splitting X ∪Q Y , coincide.

Proof. Let M0 = Ha ∪S Hb be the Heegaard split 3-manifold from
which the two splittings of M are Dehn derived, via λ1 ∪ λ2 ⊂ S.
The hyperelliptic involution preserves the isotopy class (though perhaps
reversing the orientation) of any simple closed curve in S. We may then
position λi so that the curves are preserved (reversing orientation) by
the hyperelliptic involution on M0 = Ha ∪S Hb. Then the hyperelliptic
involution on M0 naturally induces a single hyperelliptic involution on
M . �

3. A simple set of examples

It is not immediately obvious how to create examples of a Dehn-
derived pair of splittings or, very naively, whether examples even exist.
In this section we present and briefly discuss an important concrete
class of examples.

Consider a genus 2 handlebody H, constructed from two 0-handles
by connecting them with three 1-handles. With this structure H has
a natural Z3 symmetry, shown as 2π

3
rotation about the green axis in

Figure 1. Let λ1 ⊂ ∂H be the red curve shown in the figure and λ2, λ3

be the other two simple closed curves to which λ1 is carried by the
Z3 symmetry. Then each λi is a primitive curve on ∂H and, indeed,
any two of the curves, say λ1, λ2 constitute a complete set of primitive
curves (that is, a primitive pair). In this case the corresponding pair
of meridian disks are the meridian disks of the two 1-handles through
which λ3 passes.

Let H be the genus 3 handlebody obtained by removing from H a
neighborhood of the arc in which the axis of symmetry intersects one of
the 0-handles. It is easy to see that in H the collection λ1, λ2, λ3 ⊂ ∂H
is a complete set of primitive curves, that is a primitive 3-tuple.

To construct some Dehn-derived pairs of Heegaard splittings, begin
with two genus 2 handlebodies A and B, on each of whose boundaries
lie three disjoint simple closed curves corresponding to λ1, λ2, λ3 ⊂ ∂H.
Let λia ⊂ ∂A (resp λib ⊂ ∂B) be the curve corresponding to λi in A
(resp B), for each 1 ≤ i ≤ 3. Adopting (for comparison purposes)
notation from [RS, Section 4.2], let αna, αsa, ρa ⊂ A be the triple of
curves obtained by pushing λ1a, λ2a, λ3a into the interior of A and let
αnb, αsb, ρb ⊂ B be the triple of curves obtained by pushing λ1b, λ2b, λ3b

into the interior of B. Let N be a manifold constructed by identifying
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Figure 1

an annular neighborhood of λ1a in ∂A with an annular neighborhood of
λ1b in ∂B and an annular neighborhood of λ2a in ∂A with an annular
neighborhood of λ2b in ∂B. (After the identification, call the annuli
An and As with core curves λ1, λ2 respectively .) Then identify the
two 4-punctured spheres ∂A− (An ∪ As) and ∂B − (An ∪ As) by any
homeomorphism.

This construction defines a genus 2 Heegaard structure on N , of
course, but it also defines a genus 2 Heegaard splitting on M0, the
manifold obtained from N by arbitrary Dehn surgery on just the two
curves ρa ⊂ A and ρb ⊂ B, for surgery on these pushed-in primitive
curves leaves A and B still handlebodies, handlebodies which we denote
respectively Ha and Hb. What’s more, the curves λ1, λ2 are each primi-
tive in both Ha and Hb (though they are not necessarily a primitive pair
in either). Thus the Heegaard splitting M0 = Ha∪Hb gives rise to two
potentially different genus 2 Heegaard structures on any manifold MH

that is obtained by simultaneously doing further Dehn surgery on the
two curves λ1, λ2. That is, a manifold MH obtained by arbitrary Dehn
surgery on all four curves λ1, λ2, ρa, ρb ⊂ N has two possibly distinct
genus 2 Heegaard splittings, Dehn derived from the Heegaard splitting
M0 = Ha ∪ Hb. One Heegaard structure MH = A1 ∪ B2 is obtained
by pushing λ1 to αna ⊂ intA and λ2 to αsb ⊂ intB before doing Dehn
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surgeries on the four curves; the other MH = A2 ∪ B1 is obtained by
pushing λ1 to αnb ⊂ intB and λ2 to αsa ⊂ intA before doing the Dehn
surgeries. In each case, exactly two of the four Dehn surgered curves
lie in each handlebody A and B before the Dehn surgery, and in that
handlebody are a pushed-in primitive pair.

Proposition 3.1. The two Heegaard splittings A1∪B2 and A2∪B1 of
MH become isotopic after at most a single stabilization.

Proof. Let A and B be the genus 3 handlebodies derived from A and B
respectively, just as H was derived from H. Here is a natural genus 3
Heegaard splitting of MH : in contrast to the construction above, push
both λ1 to αna and λ2 to αsa, so both curves (as well as ρa) lie in A before
doing the Dehn surgeries. Although A may no longer be a handlebody
after the Dehn surgeries, it follows from the discussion above that the
result on A of the surgery on the three curves αna, αsa, ρa ⊂ A ⊂ A is

still a genus three handlebody A
′
. The complement of A

′
in MH is also

a handlebody B′: a single 1-handle is added to B and surgery is done

on the single curve ρb ⊂ B. Thus MH = A
′ ∪B′ is a genus 3 Heegaard

splitting of MH .
It’s fairly easy to see that this Heegaard splitting is a stabilization

of A1 ∪B2 (and so, symmetrically, A2 ∪B1). Indeed, an alternate way

to construct A
′ ∪ B′ is to begin with A1 ∪ B2 and add to A1 (and so

subtract from B2) a regular neighborhood of the curve αsb ⊂ int(B) and
a straight arc from ∂B to αsb. From this point of view, the inclusion
B′ ⊂ B2 defines a genus 3 Heegaard splitting of the genus 2 handlebody
B2, and any such Heegaard splitting is necessarily stabilized (see [ST,
Lemma 2.7]). The pair of stabilizing disks are also a pair of stabilizing

disks for A
′ ∪B′ �

4. A second construction, and a hybrid

Here is another natural, but less naive, way to find disjoint pairs
of primitive curves on the boundary of a genus 2-handlebody and so
to create a Dehn-derived pair of Heegaard splittings. Let F denote
a torus with the interior of a disk removed. Then F × I is a genus
2-handlebody. For γ any properly embedded essential simple closed
curve in F , γ × {0} (or symmetrically γ × {1}) is a primitive curve in
the handlebody F × I. Indeed, for δ a properly embedded arc in F
intersecting γ once, δ × I is a meridian disk in F × I that intersects
γ × {0} exactly once.

Following this observation, and the example of the previous section,
here is a recipe for constructing candidate 3-manifolds. Begin with
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two copies A and B of the surface F and choose two essential (not
necessarily disjoint) simple closed curves α0, α1 ⊂ A and two essential
(not necessarily disjoint) simple closed curves β0, β1 ⊂ B. Let λ0a =
α0 × {0} ⊂ ∂(A × I), λ1a = α1 × {1} ⊂ ∂(A × I), λ0b = β0 × {0} ⊂
∂(B×I), λ1b = β1×{1} ⊂ ∂(B×I). Identify an annular neighborhood
of λ0a in A×{0} with an annular neighborhood of λ0b in B×{0} and call
the core curve of the resulting annulus λ0. Similarly identify an annular
neighborhood of λ1a in A×{1} with an annular neighborhood of λ1b in
B × {1} and call the core curve of the resulting annulus λ1. Complete
the identification of ∂(A × I) with ∂(B × I) along the remaining 4-
punctured sphere arbitrarily. Call the resulting closed 3-manifold M0,
with Heegaard splitting M0 = (A× I) ∪ (B × I).

The 3-manifold M×I obtained from M0 by doing arbitrary Dehn
surgeries to the simple closed curves λ0 and λ1 has a Dehn-derived pair
of Heegaard splittings: one comes from first pushing λ0 into A × I
and λ1 into B × I before the Dehn surgery, the other comes from first
pushing λ1 into A× I and λ0 into B × I before the Dehn surgery.

Remarks on stabilization It is not apparent to us that a single sta-
bilization will make the two Dehn-derived splittings of M×I equivalent.
The argument of Proposition 3.1 does not immediately carry over: if
both curves λ0a and λ1a are pushed into A× I there is no apparent arc
so that the complement A× I of a neighborhood of the arc in A× I is
a genus 3 handlebody after an arbitrary Dehn surgery on the pushed in
λ0a and λ1a. If there is a proper arc γ in A that intersects both curves
α0 ⊂ A and α1 ⊂ A in a single point, then the complement A× I after
pushing the interior of γ into A× I is a genus 3 handlebody, and so a
single stabilization suffices, but having such an arc γ is not the general
situation. (What is required for such an arc γ to exist is that the slopes
of α0 α1 in A are a distance at most two apart in the Farey graph [Mi,
Figure 1]. In that case γ has the slope that is incident to the slopes of
both α0 and α1 in the Farey graph.)

On the other hand, it is relatively easy to show that two stabilizations
suffice to make the two splittings equivalent. To see this, push both λ0

and λ1 into A×I and connect them to respectively A×{0} and A×{1}
by straight arcs. Then add a regular neighborhood of the arcs and of
the pushed in curves λ0 and λ1 to B×I to create a genus 4 handlebody
B × I and simultaneously subtract the regular neighborhood from A×I
to get the genus 4 handlebody A× I. The resulting genus 4 Heegaard
splitting M0 = A× I ∪ B × I becomes a Heegaard splitting H+

a ∪
H+
b of M×I after the prescribed Dehn surgery on λ0 and λ1. Using

the argument of Proposition 3.1 it is easy to see that the Heegaard
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splitting H+
a ∪ H+

b destablizes to the genus 3 splitting obtained by
instead pushing λ0 into B × I and then adding to B × I a regular
neighborhood of λ1 ⊂ (A × I) and a straight arc attaching it to A ×
{1}. The argument of Proposition 3.1 applied again shows that this
Heegaard splitting destabilizes to the genus 2 splitting in which λ0 is
pushed into B×I and λ1 into A×I, one of the Dehn-derived splittings.
But this destabilization process is clearly symmetric: we could equally
well have destabilized to the other genus 2 splitting, in which λ0 is
pushed into A×I and λ1 into B×I, and this is the other Dehn-derived
splitting.

A further, call it a hybrid example of a Dehn-derived pair of split-
tings comes by combining the two constructions above: Identify annular
neighborhoods of λ1, λ2 ⊂ ∂H from Section 3 with annular neighbor-
hoods of λ0b, λ1b ⊂ ∂(B × I) and identify the rest of ∂H with the rest
of ∂(B × I) in any way. This gives a closed 3-manifold N with a Hee-
gaard splitting H ∪ (B× I). Let M0 be a 3-manifold obtained by doing
an arbitrary Dehn surgery on λ3 ⊂ ∂H, after pushing it into int(H).
Then M0 has the genus 2 Heegaard splitting (exploiting the notation
used above) M0 = Ha ∪ (B × I). Let Mhybrid be a closed 3-manifold
obtained from M0 by arbitrary Dehn surgeries on the two remaining
curves λ1, λ2 ⊂ ∂Ha ⊂ M0. The Dehn-derived pair of Heegaard split-
tings for Mhybrid is obtained by alternatively pushing λ1 into Ha and
λ2 into B × I or vice versa. A single stabilization suffices to make the
two splittings equivalent, essentially by the same argument as for MH ,
in Proposition 3.1.

5. Filling the gap in [RS]

The gap in [RS] arises because of a faulty sentence in the midst of
a long and technical argument which would be difficult to summarize.
We see no good alternative to simply jumping into that argument at
a reasonable breaking point and inserting the argument we now be-
lieve to be complete. The jumping in point is on p. 533, in the midst
of trying to prove that all cases of multiple genus 2 Heegaard split-
tings have been covered in the earlier examples listed in that paper.
Here M is a closed hyperbolike 3-manifold with Heegaard splittings
M = A ∪P B = X ∪Q Y . The two splitting surfaces P and Q have
been made to coincide on sub-surfaces P0 ⊂ P and Q0 ⊂ Q. Then
P − P0 consists of annular components PX and PY properly embed-
ded in the handlebodies X and Y respectively, and Q − Q0 consists
of annular components QA, QB properly embedded in the handlebod-
ies A,B respectively. With this as background, we now re-enter the
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proof of [RS, Theorem 9.4, Case 2] on page 533, at first echoing what
is written there as the proof of Subcase A below. In filling the gap in
the argument we also broaden the possible outcome, as expressed in
Proposition 5.1:

Case 2: PX and PY are both non-empty and the end of each curve
in ∂PX ∪ ∂PY is parallel to one of c1 or c2.

Proposition 5.1. In this case, either

I) the splittings M = A ∪P B = X ∪Q Y are related as in [RS,
Example 4.4] or

II) the two splittings M = A ∪P B = X ∪Q Y are Dehn-derived
from a single genus 2 Heegaard splitting of another manifold
M0.

Proof. If at least one annulus in each of PX or PY is non-separating,
then together they would give a non-separating, hence essential, torus
in M . This contradicts our assumption that M is hyperbolike. So we
may as well assume that each annulus in PY is separating. Hence the
ends of PY are twisted in Y (see [RS, Definition 5.4]). No end of PY
can also be twisted in X, for the union along the curve of the solid
tori (one in X, one in Y ) on which the curve is a torus knot would be
a Seifert submanifold of M , contradicting the assumption that M is
hyperbolike.

Subcase A: Some end of PY is parallel to an end of PX . [The gap
in [RS] was to view this as the only possibility.]

In this case, by [RS, Lemma 5.6] all of PX is a collection of parallel
non-separating longitudinal annuli in X. If PY has ends at both c1 and
c2 then neither curve can be twisted in X. In this case each annulus in
PX is non-separating and so has ends that are non-parallel in Q. This
implies that each annulus in PX has one end at c1 and one at c2. Attach
such an annulus in X to the tori in Y on which the ci are twisted. The
boundary of the thickened result would exhibit a Seifert manifold in
M , again contradicting the assumption that M is hyperbolike. We
conclude that PY has ends only at c2, say.

If there were three or more annuli in PY (hence six or more ends
of ∂PY at c2) then there would be at least four ends of PX at c2. No
annulus in PX could have both ends at c2 (since c2 is not twisted in
X) so there would also be at least four ends of PX at c1. This would
contradict [RS, Lemma 9.5]. So we conclude that PY is made up of one
or two annuli. If it’s two annuli, necessarily separating and parallel in
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Y , then, again by [RS, Lemma 9.5] some annulus in PX has an end
at c2. It cannot have both ends at c2 and must be non-separating and
longitudinal in X, since c2 is not twisted in X. In this case the relation
between P and Q can be seen as follows (See [RS, Figure 32]): In [RS,
Example 4.4, Variation 2], let P be the splitting given there with Dehn
surgery curve in µa+ and Q be the same splitting given there but with
Dehn surgery curve in µa− . To view these simultaneously as splittings
of the same manifold M , of course, the Dehn surgery curve has to be
moved from µa+ to µa− , dragging some annuli along, until the splitting
surfaces P and Q intersect as described.

Suppose then that PY is a single annulus. It may have both ends on
P0 or it may have one end on P0 and one end on an end of PX . (If both
ends of PY were also ends of PX then these, together with ends of PX
at ∂P0 parallel to c2 would exhibit more than two annuli in PX , hence
more than two ends of PX at c1, contradicting [RS, Lemma 9.5].) If PY
has one end on P0 and one end on an end of PX , the initial splitting
by Q is as in [RS, Example 4.4, Variation 1] (X = A− ∪ σ), with a
Dehn surgery curve lying in µb+ , say. If the splitting is altered by first
putting the Dehn surgery curve in µa+ (yielding the same manifold
M), then altering as in [RS, Example 4.4] (i. e. considering A ∪P B
where B = B− ∪ σ) and then dragging the Dehn surgery curve from
µa+ to µb+ , pushing before it an annulus from the 4-punctured sphere
along which A− and B− are identified, we get the splitting surface P ,
intersecting Q as required. (See [RS, Figure 33].) This completes the
proof that I) holds in Subcase A.

Subcase B: No end of PY is parallel to an end of PX .

In view of [RS, Lemma 9.5], in this subcase PY and PX each consist of
exactly one separating annulus, PY twisted in Y with boundary curves
parallel to c2 (say) and PX twisted in X with boundary curves parallel
to c1. This case is symmetric: the annulus in Q lying between the
ends of PY is QA (say) and the annulus in Q lying between the ends of
PX is exactly QB. The annulus PY cannot be parallel to the annulus
QA (else P0 and Q0 could be extended to include both) but rather the
region between them is a solid torus W2 = A ∩ Y on whose boundary
the cores of the annuli are torus knots. Similarly B∩X is a solid torus
W1 on whose boundary the cores of the annuli QB and PX are torus
knots. The annulus PY ∂-compresses in Y to become a separating disk;
it follows that Y −W2 = B∩Y is a genus 2 handlebody HBY on which
the core a2 of the annulus PY is primitive. Symmetrically, the curve c1
(viewed as the core of the annulus QB) is primitive in HBY , the curve
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c2 is primitive in the genus 2 handlebody HAX = X −W1 = X ∩A, as
is the core curve a1 of PX .

Here is another way to describe the manifold M above: begin with
the two genus 2 handlebodies HAX (which contains disjoint primitive
simple closed curves a1, c2 on its boundary) and HBY (which contains
disjoint primitive simple closed curves a2, c1 on its boundary). Con-
struct a closed 3-manifold M0 by identifying ∂HAX to ∂HBY by a
homeomorphism that identifies ai with ci, i = 1, 2. Call the result-
ing curves α1, α2. Now recover M from M0 by removing a tubular
neighborhood of each αi and replacing with the solid torus Wi; equiva-
lently, do an appropriate surgery on each αi in M0. The two Heegaard
splittings of M are then seen as follows: if α1 is pushed into HAX and
α2 into HBY before the surgery on the curves, then the resulting Hee-
gaard splitting is M = X ∪Q Y ; if α1 is pushed into HBY and α2 into
HAX before the surgery then the resulting splitting is M = A ∪P B.
That is, the splittings of M are both Dehn-derived from the Heegaard
splitting M0 = HAX ∪HBY . Thus II) holds in Subcase B. �

6. A taxonomy of Dehn-derived splittings

Sections 3 and 4 give concrete examples of pairs of Dehn-derived
fillings. In this section we show that these examples in fact constitute
all pairs of Dehn-derived splittings. The argument exploits Berge’s
classification of pairs of primitive curves on genus 2 handlebodies [Be],
though the classification here is slightly different.

Let H be a genus 2 handlebody, with λ1, λ2, λ3 ⊂ ∂H the disjoint
simple closed curves described in Section 3. Denote by ρ the curve in
the interior of H obtained by pushing λ3 into H and let Hsurg denote
the handlebody obtained from H by a specified Dehn surgery on ρ ⊂
int(H). As in Section 4, let F denote a torus with the interior of a disk
removed.

Proposition 6.1 (Berge). Suppose α and β are disjoint non-parallel
primitive curves on the boundary of a genus 2 handlebody H. Then
either

A) there is a Dehn surgery on ρ ⊂ H and a homeomorphism h :
H → Hsurg so that h(α) = λ1 ⊂ ∂Hsurg and h(β) = λ2 ⊂
∂Hsurg or

B) there is a homeomorphism h : H → F×I so that h(α) ⊂ F×{0}
and h(β) ⊂ F × {1}.

Proof. This classification is a variant of that described in [Be]. The
Type II pair there, as well as some pairs of Type I, are exactly as
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described in alternative B). The interest is in the third example of a
Type I pair, in [Be, Lemma 3.8 (3) via Figure 3]. In that example, H is
viewed as divided into two solid tori by a separating disk D; let λa and
λb be longitudes of the two solid tori into which D divides H. Then β
is parallel to λb, and α is the band sum, via a band that crosses D once,
of λb with a torus knot on the solid torus containing λa. This picture
is equivalent to letting α be the band sum λa#λb (through D) of λb
with λa, and then performing a Dehn surgery on a disjoint copy of λa
that has been pushed into H, to become a core of the solid torus on
which λa lies. Now translate: relabel λb ⊂ ∂H as λ2 and λa ⊂ ∂H as
λ3. Then λa#λb corresponds to λ1. The construction just described is
then to push λ3 into the interior of H and perform some surgery to get
Hsurg. Afterwards α corresponds to λ1 ⊂ ∂Hsurg and β corresponds to
λ2 ⊂ ∂Hsurg. This is exactly alternative A). �

Following Propositions 5.1 and 6.1 there is a fairly clear description
of the cases of multiple Heegaard splittings that are missing from [RS].
According to Proposition 5.1 the only missing cases are pairs of split-
tings that are Dehn-derived from an initial splitting HAX ∪ HBY of a
manifold M0. First determine which of alternatives A) and B) apply
to the pairs of surgery curves as they lie on the boundaries of the re-
spective handlebodies: {a1, c2} ⊂ HAX or {a2, c1} ⊂ HBY . If both are
of type A) then the pair of splittings is Dehn-derived as in the con-
struction of MH in Section 3. If both are of type B) then the pair of
splittings is Dehn-derived as in the construction of M×I in Section 4.
If one is of type A) and one of type B) then the pair of splittings is
Dehn-derived as in the construction of Mhybrid in Section 4.

It is worth mentioning that there is another view of a pair of primitive
curves lying on a handlebody as in A) of Proposition 6.1, a view that
more closely resembles that in B): Let α, β, γ be simple closed curves
in F so that each pair of curves intersects in exactly one point. (For
example, choose curves in F of slopes 0, 1,∞.) Then it is fairly easy to
see that the three curves α×{0}, β×{1}, γ×{1

2
} lie in the handlebody

F × I just as λ1, λ2, ρ lie in H in the description preceding Proposition
6.1. So the primitive curves in description A) can be made to look like
a special case of those in description B), but with the cost that an extra
Dehn surgery has to be performed on a specific curve in the interior of
F × I. This is the twisted product view of [Be, 3.2].

7. Distance

It would seem possible that the Dehn-derived pairs of Heegaard split-
tings exhibited above could coincidentally all be contained among the
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examples already listed in [RS], for there is no claim that the types of
examples of multiple Heegaard splittings we have offered here and in
[RS] do not overlap. But in fact there is an invariant which does show
that at least some Dehn-derived pairs of Heegaard splittings described
above did not already occur in a different guise in [RS]. This invariant
had not yet been introduced when [RS] was written and is called the
(Hempel) distance of the Heegaard splitting [He]. We briefly review:

Definition 7.1. A Heegaard splitting H1∪SH2 has Hempel distance at
most n if there is a sequence c0, ..., cn of essential simple closed curves
in the splitting surface S so that

• for each i = 1, ..., n, ci ∩ ci−1 = ∅
• c0 bounds a disk in H1

• cn bounds a disk in H2

If the splitting has distance ≤ n but not ≤ n − 1, then the distance
d(S) = n.

A Heegaard splitting of distance 0 is called reducible; one of distance
≤ 1 is called weakly reducible. Any Heegaard splitting of a reducible
manifold is reducible. A Heegaard splitting of distance ≤ 2 is said
to have the disjoint curve property [Th]; any Heegaard splitting of a
toroidal 3-manifold has the disjoint curve property ([He], [Th]). A
weakly reducible genus 2 Heegaard splitting is also reducible, so an
irreducible Heegaard splitting of genus 2 has distance at least 2 ([Th]).

In the other direction we have:

Proposition 7.2. Suppose the manifold M has a Dehn-derived pair of
Heegaard splittings. Then each of these Heegaard splittings has Hempel
distance at most 3.

Proof. Suppose the splittings are Dehn-derived from a splitting M0 =
Ha∪SHb via the disjoint pair of simple closed curves λ1, λ2 ⊂ S. With
no loss of generality, consider the splitting M = A ∪S B obtained by
pushing λ1 into int(Ha) and λ2 into int(Hb) before doing Dehn surgery
on the λi. Since λ1 is primitive in Ha there is a properly embedded
essential disk Da ⊂ Ha that is disjoint from λ1. (For example Da can
be obtained from a meridian disk D1 ⊂ Ha that intersects λ1 in a single
point by band-summing together two copies of D1 along a subarc of
λ1−D1.) Da is then also disjoint from the curve α1 ⊂ Ha obtained by
pushing λ1 into int(Ha), so Da remains intact as a meridian of A after
surgery on α1. Hence ∂Da and λ1 are disjoint curves in ∂A.

Symmetrically, there is a meridian Db ⊂ B so that ∂Db and λ2 are
disjoint curves in ∂B. Then the sequence ∂Da, λ1, λ2, ∂Db shows that
the splitting A ∪S B has distance at most 3. �



14 JOHN BERGE AND MARTIN SCHARLEMANN

Proposition 7.3. All examples of multiple Heegaard splittings appear-
ing in [RS, Section 4] have Hempel distance ≤ 2.

Proof. Following the comments above we can restrict attention to irre-
ducible, atoroidal manifolds. We briefly run through the examples as
they appear in [RS, Section 4]. Typically the description of an example
H1 ∪S H2 in [RS] consists of two parts: A collection of annuli A ⊂ S
along which ∂H1 and ∂H2 are identified, followed by an arbitrary iden-
tification of ∂H1−A with ∂H2−A. From this point of view the simple
closed curves ∂A ⊂ S that separate one sort of region from the other
will be called the seams of the Heegaard splitting. We will observe that
in [RS] some seam is always disjoint from an essential disk in H1 and
an essential disk in H2. This demonstrates that the splitting has the
disjoint curve property and so has distance ≤ 2.

To be specific: In [RS, Subsection 4.1], [RS, Subsection 4.2, Variation
1] and [RS, Subsection 4.4, Variations 1 and 2], the meridians of the
1-handles ea and eb are disjoint from the seams. [RS, Subsection 4.2,
Variation 2] is slightly more complicated. It is a bit like the construc-
tion in Section 3 above: Handlebodies A and B are identified along
neighborhoods of all three curves λi, i = 1, 2, 3, Dehn surgery is done
to all three, with λ1, λ2 pushed into A and λ3 into B (then vice versa).
But there is a meridian of A disjoint from λ1 and λ2 and a meridian of
B disjoint from λ1 and λ3, so a seam parallel to λ1 demonstrates that
the splitting of [RS, Subsection 4.2, Variation 2] has the disjoint curve
property.

The manifolds in [RS, Subsection 4.3] and [RS, Subsection 4.4, Vari-
ations 3, 4, and 7] are all toroidal, so they are of distance ≤ 2. What
remains are [RS, Subsection 4.4, Variations 5 and 6] and we adopt the
terminology there. In Variation 5, with, say, ρa ⊂ A−, the seams that
are the boundary of the 4-punctured sphere ∂A− ∩ ∂Γ are all disjoint
from the meridian of the 1-handle eb ⊂ B and, in A−, any one of these
seams together with ρa lie in A− as two of the λi’s of Section 3 above
lie in H. In particular, there is a meridian of A− disjoint from both the
seam and from ρa. Thus that seam again illustrates that the splitting
has the disjoint curve property.

The argument for Variation 6 is much the same. First note that if,
in that Variation, Dehn surgeries are done on two curves parallel to
σ, then the resulting manifold has a Seifert piece and so has distance
≤ 2. So the only change we need to consider from Variation 5 is Dehn
surgery on a single curve parallel to σ. If that curve lies in B the
argument for Variation 5 suffices; if it is in A− this merely forces us to
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pick a specific seam in the argument for Variation 5, a seam parallel to
the new surgery curve. �

In contrast, some of the examples constructed in this paper can be
shown to have distance 3, so they cannot have appeared in any case
considered in [RS]. See [Be2] for details.
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