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THOROUGHLY KNOTTED HOMOLOGY SPHERES 

Martin Scharlemann * 

For H n a homology n-sphere, consider the problem of classifying locally flat 

imbeddings H n•'-• S n+2 up to isotopy. Since any imbedding may be altered by adding 
knots S n• S n+2, the classification problem is at least as complex as the isotopy 

classification of knots. Elsewhere [8] we show that there is a natural correspondence 

between knot theory and the classification of those imbeddings H n• S n+2 which 
satisfy a certain condition on fundamental group. Those imbeddings which do not 

satisfy the fundamental group condition will be called thoroughly knotted. The goal 

of the present paper is the construction, for all n •> 3, of hornology spheres H n and of 

PL locally fiat imbeddings H n% S n+2 which are thoroughly knotted. A corollary will 
be that, for these nomology spheres, the codimension two classification problem is 

measurably more complex than knot theory. 

The outline is as follows: In õ1 we define thoroughly knotted imbeddings and 

present, for any homology n-sphere H n, necessary conditions for rrl(H) to be the 
fundamental group of a thoroughly knotted homology n-sphere. These conditions are 

shown to be sufficient if n •> 5. Also, for n •> 3, the conditions are shown to be 

sufficient to produce a thoroughly knotted imbeddings H # H• S n+2. 
In õ2 we review enough of Milnor's K-theory and of Steinberg's results on 

Chevalley groups to produce in õ3 an example of a group (the, binary icosahedral 

group) satisfying the algebraic conditions of õ t, and, therefore, providing thoroughly 

knotted homology n-spheres for all n •> 3. 

Finally, in õ4 we use the same example to show that for n = 3 the algebraic 

conditions of õ 1 are not sufficient to produce thoroughly knotted imbeddings of H 

itself, but only of H # H. 

I would like to thank Jon Carlson Ibr discussions useful in preparing õ2 and 
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Michael Stein for pointing out the connection between K-theory and the calculation 

of H2(SL(p,q)). 

õ 1. The algebraic problem. Suppose a hornology n-sphere H n is locally flatly 

imbedded in S n+2 and let i: Hnx D 2(-• S n+2 be an imbedding of a tubular 

neighborhood. Let rr 1 (H) = K and let G be the commutator subgroup of rr 1 (sn+2 - H). 
Since Hi(S n+2 - H) •_ Z, rrl(Sn+2 - H) may be written as a semidirect product G *r Z. 
In other words, there is an automorphism r: G --* G such that rrl(Sn+2 - H) consists of 
ordered pairs (g,t), g C G, t C Z with group multiplication (g,t)-(g',s) = (g-rt(g'),t + s). 

Van Kampen's theorem gives the following push-out diagram of fundamental 

groups, induced by inclusion: 

•rl(H X 0D 2) • K• Z • G ©r Z 

•2 

K • 

•2 

DEFINITION. The imbedding i: H• S n+2 is thoroughly knotted if SOl(K© 
{0}) 4: 0. 

The importance of this phenomenon will be explored in [8]. 

Note that, since S n+2- i(H X •21 is compact, Ger Z is finitely generated 
(though G need not be). Furthermore, Hi(G ß r A) • Hi(S n+2- H) • Z and, by the 
Hopf theorem [3 ], 

H2(sn+2 - H) 
.•, • • 0• H•(Ger Z) P•r2(sn+2 - H) 

where p is the Hurewicz homomorphism. 

In sum, if i' H --* S n+2 is a thoroughly knotted imbedding we have 

Søl Z (a) a push-out diagram K © Z ) G ©r 

K •2 > 1 
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such that 

(b) K•rrl(H) 

(c) •i(K• (0})4:0 

(d) G *r Z is finitely presented, 

HI(G*r Z) = Z, H2(G*r Z) = 0. 

(e) •2 is projection and •1 commutes with projection to Z. 
The following is a partial converse. Let H_ denote H with an open n-disk 

removed. 

1.1 PROPOSITION. Suppose there is a pttsh-out diagram satisf•'ing (a) -(e). 

Then there is a compact contractible (nq-2)-manifold N with aN "' O(H_ X 1) 2) xuch 
that 

(i) the natural inclusion OH_ X (0} c-• ON exte•Ms to an imbeddi•g 

(H_, OH_) X D 2 • N, ON 

(ii) the diagram induced by inclusions 

rrl(H_ X 0D2) , rrl(N- (H_ X (0})) 

rrl(H_ X D 2) • rrl(N) 
is the given push-out diagram. 

We begin the proof with a preliminary 

1.2 LEMMA. There is a closed m-manijbld M. m >• 5, such that •rl(M) • G •r Z 

and Hi(M) "- Hi(S 1 X Sin-l). 
PROOF. Let {x 1 .... ,Xs;r 1 ..... rt} be a presentation for G*r Z. Identify in the 

natural way rrl(s•(S1 X S4)) with the free group generated by Xl,...,x s. Perform 
surgery on circles oq: S 1 • #(S 1 • S 4) i= 1 ..... t representing r 1 .... ,r t. By standard 

s 

arguments, framings may be chosen for neighborhoods of the oq(S 1) so that the 
resulting manifold M' is almost parallelizable. From the Mayer-Vietoris sequence, 

H2(M') is free, and from VanKampen's theorem rrl(M') = G *r Z. 

According to Hopf [3], 0 = H2(G •r Z) = H2(M')/Prr2(M'). Thus a basis for 

H2(M') is representable by a finite collection of imbeddable spheres 7i(S2). Since M' is 
almost parallelizable, each 7i(S 2) has trivial normal bundle. Now perform surgery on 
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each 7i(S 2) to obtain a closed manifold M" with rrl(M" ) • G ß r Z and H2(M")= 0. 
By Poincare duality H3(M" ) = H2(M"): 0 and H4(M" ) = Hi(M") = Hi(G ß r Z) = Z. 
This completes the construction if m = 5. 

If m > 5 remove an open tubular neighborhood in M" representing a generator of 

Hi(M"), and take the cross-product of this manifold with D m-5. The resultant 
manifold is a hornology S 1 X D m-1 with fundamental group G ß r Z and boundary = 
O(S 1 X D 4 X D m-5) = S 1 X S m-2. Attach S 1 X D m-I by identifying the boundaries. It 

is easily verified that the resulting manifold M has rrl(M)• G ß r Z and H,(M)- 

H,(S 1 X Sin-l). This proves 1.2. 
PROOF OF 1.1. Take m = n + 2 in 1.2 and consider the parallelizable manifold 

(H_X S1 X I)#M with fundamental group (Ko Z), (Go r A). For Y l .... ,Yq 
generators of some presentation for K ß Z, perform framed surgery on q circles in 

(H_X S1 X I)#M representing the words yi 1.el(yi) G(Kø Z)*(Go r Z) and call 
the resulting parallelizable manifold M'. An easy calculation shows rrl(M' ) "- G ß r Z, 
H2(M' ) -- Hn(M') is free of rank q - 1 and Hi(M') = 0, i • 1,2,n. Furthermore, aM' • 

O(H_X S 1 X I) and the inclusion H_X S 1 X {0} -> M' induces the map el on 
fundamental groups. 

As in Lemma 1.2, since H2(Go r Z)= 0 it is possible to do surgery on q- 1 

2-spheres in M' to obtain N' a hornology S 1 X D n-I with rrl(N') _• G ß r Z and ON' • 
O(H_ X S 1 X I). 

Finally, let N be the manifold obtained from N' by attaching H_ X D 2 by a 

diffeomorphism H_ X aD 2 •_ H_ X S 1 X {0}. Then aN = a(H_ x D2), Hi(N) = 0, i •> 
1. Van Kampen's theorem implies that rrl(N) is the push-out of the maps •1 and •2, 

hence, by hypothesis (a), rr 1 (N) is trivial. Thus the imbedding H_ X D 2 • N satisfies 
the requirements of 1.1. 

Before trying to improve 1.1 we note the following corollary, which is the central 

result of this section. 

1.3 COROLLARY. If there is a push-out diagram satisfying (a) - (e) above, then 

there is a thoroughly knotted imbedding of the double H # (-H) of H into S n4-2. 
PROOF. The double along aN of the manifold N of 1.1 is a homotopy 

n+2-sphere, hence S n+2, and contains the double H # (-H) of H. The complement of a 
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tubular neighborhood of H # (-H) in S n+2 is the double of the manifold N' appearing 

h• the proof of 1.1 along H_ X S 1 X (1} C aN'. Hence rtl(Sn+2-(H#H)) is the free 
product of rtl(N') with itself amalgamated along s01(K m Z) C G •r Z • rtl(N'). In 

particular the inclusion N' -• sn+2-(H#H) induces an injection rt 1 (N') --> rt 1 (sn+2-(H# 
H)). Since s0t(K X {0}) is non-trivial in rtl(N'), its image in rtl(Sn+2-(H #H)) is 
non-trivial. Hence H # H is thoroughly knotted. 

The strongest sufficiency theorem possible for constructing thoroughly knotted 

homology spheres would be a version of 1.1 in which we replace H_ by H and N by 

S n+2 Is such a theorem possible? In õ4 a counterexample is given in case n = 3, but 
for n >• 5 we prove the following slightly weaker version' 

1.4 PROPOSITION. Suppose there is a push-out diagram satisfying (a) - (e). 

Then for any m • 5 there is a hornology tn-sphere H' and an imbedding H' X D 2 • 
S m-t-2 such that the diagram induced by inclusions 

•rl(H' X OD 2) , rtl (sm+2 - (H' X 

•rl(H' X D 2) ) rrl(Sm+2 ) 
is the given push-out diagram. 

Note that we are free to choose m 4= n, yet even when m = n we do not know 

that H' = H. 

PROOF OF 1.4. In [5] Kervaire shows that, if a group K is the fundamental 

group of a homology sphere, then Hi(K) = 0 for i = 1,2, and, conversely, any finitely 

presented group K with Hi(K) = 0, i = 1,2, is the fundamental group of a hornology 
m-sphere for each m >• 5. In fact, the latter construction creates the hornology 

m-sphere H' with rrl(H' ) m K by beginning with S TM and successively doing surgery on 
i-spheres for i = 0,1,2. It is not difficult to see from his construction that, if W is the 

trace of the surgeries (beginning with the O-handle D m+l with boundary sm), then W 
is a hornology disk with boundary 3W = H, and the inclusion H-> W induces an 

isomorphism of fundamental groups. 

It will be convenient to view H' "• 3W as H_' t-J o D TM. Consider the manifold N', 
constructed as in 1.1, whose boundary is 3(H__' X S 1 X I). Attach W X S 1 to H'_ X 
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S 1 X {1} C 3N' along H'_ X S 1 C W X S 1. This manifold has boundary (H'_ X S 1 X 

{0}) CJ 3 (D m X S 1) "• H' X S 1. Standard calculations again show that if H' X D 2 is 
attached to this H' X S 1 the resulting manifold is S m+2 and that, since i' I-t • W 
induces an isomorphism on fundamental groups, this imbedding of H' X D 2 into S m+2 

has a push-out diagram as in (ii) of 1.1 and hence as required to prove 1.3. 

{}2. K-theory and Chevalley groups. It is relatively easy to produce examples of 

push-out diagrams satisfying all the hypotheses of 1.1 other than H2(G ©r Z)= 0. 
Unfortunately, this last condition is tedious to verily and difficult to produce. In this 

section we review the algebra (associated with K-theory) which shows that 

H2(SL(n,p)) = 0. Here SL(n,p) is the special linear group of n X n matrices, n •> 5, in 

the field Zp. In {}3 we will choose G to be one of these groups. See [7] [10] for 
missing proofs. 

Kervaire and Steinberg provide the following machinery for constructing groups 

with trivial first and second hornology' Given a perfect group G, there is an extension 

G c of G, known as the universal central extension, which is characterized by the 

existence of a surjection ')': G c • G whose kernel lies in the center of G c and which 
factors uniquely through any other central extension of G. 

Milnor constructs G c as follows [7]' Let F be a free group which maps onto G 

and let R be the kernel of the map. Since G is assumed perfect, [F,F]/[F,R] also 

maps onto G, and the kernel, (R Ch IF,F] )/[R,F] is clearly central. Milnor provides an 

elegant proof that G c "• [F,F]/[F,R]. Note that the center (R C3 [F,F])/[R,F] ofG c 
is, according to Hopf [3], precisely H.•(G;Z). 

2.1 LEMMA. For an), perfect group G, H2(G c) '• Hi(G c) '• O. Furthermore, if 

H2(G) = H 1 (G) = O, then G c '• G. 

PROOF. By [7, Theorem 5.3] G c is perfect and, for (Gc) c the universal central 

extension of G c, the exact sequence 

1 • H2(G c) • (Gc) c ½-• G c • 1 
splits. Let s: G c --> (Gc) c be the splitting (i.e. ½s = 1). By definition of (Gc)c, there is a 

unique homomorphism (Gc) c • (Gc) c such that ½-h = ½. Since ½s½ = ½, s½ = 1. Then ½ 
is an isomorphism and so H2(Gc) = 0. 

If H2(G) '" Hi(G) '" 0, then ker(G c • G) is trivial and so G c '" G. This completes 



THOROUGHLY KNOTTED HOMOLOGY SPHERES 277 

the proof of 2.1. 

REMARK. An (unimportant) corollary of this lemma is that a group G is the 

fundamental group of a hornology m-sphere. m • $ if and only if G is a finitely 

presented universal central extension. Unfortunately, the presentation [ F,F] / [ F,R] of 

G c given by Milnor is finitely generated only if it is trivial. 

Steinberg has studied a class of groups for which a presentation for the universal 

extension can be calculated in a different manner. To each of these groups G(Z,F), 

called Chevalley groups, is associated a field F and a root system Z of a semi-simple 

Lie algebra. The most important example to topologists has been the root system of 

type An_ 1 . In this case G(An_ 1 ,F) is SL(n,F), the group of unimodular n X n matrices 

with coefficients in F. For n • 5, its universal central extension St(n,F)-• SL(n,F), 

generated by the Steinberg symbols, has kernel Milnor's K2(F). 

For F a finite field, K2(F) = 0. Thus we have 

2.2 PROPOSITION. (Steinberg). For F a finite field and n • 5, SL(n,F) is a 

finite universal central extension. 

õ3. The algebraic construction. In this section we present a push-out diagram 

satisfying the hypotheses of 1.l,with H the dodecahedral space. The existence of a 

thoroughly knotted imbedding of the double of the dodecahedral space (in fact, 

examples in all dimensions) will then follow from 1.3. 

Let K= •rl(H)= SL(2,5) and G= SL(5,5). There is a natural injection j: 

SL(2,5) ß SL(3,5) -• SL(5,5) induced by the decomposition (Z 5 ß ZS) ß (Z 5 ß Z 5 ß 

ZS). SL(2,5) has one non-trivial normal subgroup, the center C '-' Z 2 with one 

non-zero element (b 1 •). In general, SL(m,n) is simple if m and n - 1 are relatively 
prime [2]. In particular SL(3,5) and SL(5,5) are simple. Let cr',fi' • SL(3,5) have 

non-trivial commutator [cr',fi'] and let cr = j(1 ß or'), • = j(1 ß •'). For G = SL(5,5), 

define •-: G-• G by •-(g) = crgcr -1. Clearly •-[j(SL(2,5)ß 1) is the identity, so the 

homomorphism •1: K• Z• G•. Z given by •l(k,t) = (j(k• 1),t)• G•. Z is 
well-defined and injectire. 

Let •2: K ß Z • K be the projection, and consider the push-out 

K ß z .... ..... 
•2'N"-,.. K./*2 
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3.1 PROPOSITION. The above push-out satisfies properties (a) - (e) of õ1. 

PROOF. (a) For any t G Z, SO2(1,t) = 1, so •lsol(1,t) = 1. Thus ker(•l ) contains 

the normal subgroup generated by so l(1 ,t). Then for any (g,0) C G*r Z and t C Z, 

el(g,0) = • i(sol(1,t)-(g,0)-sol(1 ,-t)) = ½l(rt(g),0). In particular, for g =/T 1 and t = 1, 
•,1 (18o•-1oe-l,0)= 1. 

Since [/•,oe] 4 = 1, ker •1 (3 G C G*r Z is a non-trivial normal subgroup of G. 

Since G is simple, ker • 1 contains G as well as Z. Hence • 1 is trivial, so •3 is trivial 
and, finally, X = 1. 

(b) K = SL(2,5) = •r 1 (Dodecahedral space). 

(c) sol is injective by definition. 

(d) Since G'" SL(5,5) is finite, G*r Z is finitely presented. Since G is 

simple, Hi(G) = 0 and Hi(G* r Z)= Z. To show H2(G* r Z)= 0, let Y be a K(G* r 

Z,1 ) space, The homomorphism •rl(Y)-+ Z yields a covering K(G,1) space Y. Then, 

since H2(G) = 0, H2(Y) = Hi(Y) = 0. Hence H2(G*r Z)= H2(Z)= 0 [6, Corollary 
7.3]. 

(e) Follows from the definitions. 

3.2 COROLLARY. There are thoroughly knotted hornology n-spheres for all 

n•>3. 

PROOF. By 1.3 it suffices to produce for each n•> 3 a hornology n-splaere with 

•rl(H) "• SL(2,5). For n = 3, let H be the dodecahedral space. For n > 3, use a(H_ X 
Dn-2). 

õ4. Algebra 4= Geometry for n = 3. The purpose of this section is to show that 

the diagram of 3.1 is a counterexample to 1.4 in the case m = 3. The fundamental tool 

is 

4.1 THEOREM. Suppose N is a compact orientable 4-manifold with connected 

boundary M such that •rl(M)"• SL(2,5) and •rl(N) maps onto SL(5,5). Then the 

composition •rl(M)-+ •rl(N)-+ SL(5,5) can not be the natural inclusion SL(2,5)• 
SL(5,5). 

First we show how 4.1 produces a counterexample. 

Suppose there is a smooth imbedding of a hornology 3-sphere H in S 5 such that 
the induced push-out diagram is that of 3.1 ß 
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SL(2,5) ½ Z ) SL(5,5) Or Z 

1 
SL(2,5) > 1 

Let i: H X D 2•--• S 5 be a tubular neighborhood of H. 

Consider the infinite cyclic cover X of S 5 - (H X D2). X has two ends and 
boundary H X R. Extend the projection H X R-• R to a proper map f: X-• Rand 

homotope rel boundary to make f transverse to 0 in R. By standard surgery arguments 

N = ffl (0) may be chosen so that N is connected, and, since G is finitely generated, so 

that the inclusion i•: rr 1 (N) -> G is surjective. This contradicts 4.1. 
We can eliminate the possibility of such a non-smoothable locally fiat imbedding 

H• S 5 in either of two ways. The first' apply the transversality theory of [9] to 

produce a hornology manifold satisfying the hypotheses of N in 4.1 but not the 

conclusion, and observe that the proof of 4.1 applied also to N a homology m'anifold. 

The second method' add to H a non-smoothable knot S 3 • S 5 with rr 1 (S5 - S3) • Z, 
to make H smoothable [ 11 ß 

We begin the proof of the theorem. 

LEMMA 1. The 3-S)'low subgroups of SL(2,5) and SL(5,5)are, respectin,ely, Z 3 

an d Z 3 • Z 3. 

PROOF. A calculation [2, page 491 ] shows that the highest power of 3 dividing 

the orders of SL(2,5) and SL(5,5) are 3 and 9 respectively. Thus the 3-Sylow subgroup 

of SL(2,5) is Z 3 and the inclusion Z 3+ Z 3C SL(2,5)½ SL(2,5)C SL(5,5) is a 
3-Sytow subgroup of SL(5,5). 

For V a vector space, let V-V denote the symmetric product of V with itself. 

LEMMA2. There is a natural isomorphism of Z3-rector spaces H2(Z3-• 
Z3,.Z).H2(Z 3 4- Z3,.Z)•-, H4(Z 3 + Z3: Z) giren by so(a 'b) = a t3 b. 

PROOF. In general 

Hq(ZP:Z) • I Zp q even 0 q odd [6]. 

It follows from the integral Bockstein sequence that the Bockstein map fi: 
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H2k-I(z3;z3)-> H2k(z3;z) is also an isomorphism, and from the universal coefficient 
theorem that the reduction homomorphism r: H2k(z3;z)-> H2k(z3;Z 3) is also an 
isomorphism. Let g generate H2(Z3'Z). 

Since the 3-skeleton of K(Z3,1 ) is a Lens space, hence a manifold. it follows by 

Poincare duality in the field Z 3 that fi-l(g) U g generates H3(Z3:Z3), so rfi(/•-l(g) 
rg) = rgU rg+ fi-l(g)U fi(rg) generates r(H4(Z3:Z)). Since rg is in the image of 
/•(rg) = 0. Hence r(g U g) generates r(H4(Z3:Z3)) and so g O g generates H4(Z3:Z). 
Denote g k_J g by h. 

Since (H*(Z3:Z)* H*(Z3;Z))5 = 0, the K•inneth formular provides a natural 
isomorphism, 

(H*(Z3;Z) •) H*(Z3:Z))4 • H4(Z 3 + Z3;Z), 

so H4(Z 3 + Z 3;Z) is generated by h X 1, g X g, I X g. 
Let Pi: Z3 + Z3 -> Z3 be the projections, i = 1,2, and gi = P•(g)' Then H4(Z 3 + 

Z3;Z) is generated by p•(h) = gl O gl, gl U g2, and p•(h) = g2 U g2' 
The Kunneth formula also gives a natural isomorphism 

(H*(Z3:Z) © H*(Z3:Z))2 -> H2(Z 3 + Z3;Z) 

sending g • 1 to gl and 1 g> g to g2' Thus H2(Z 3 + Z3;Z).H2(Z 3 + Z3iZ) is generated 
by gl'gl' gl'g2, and g2'g2. 

Since s• maps a basis of the Z3-vector space H2(Z 3 + Z3:Z)-H2(Z 3 + Z3;Z) to a 
basis of the Z3-vector space H4(Z 3 + Z3:Z), • is an isomorphism. Q.E.D. 

Let 7={_01 _11} in SL(2.5). Then 7 3= 1. so 7 generates a subgroup Z3C 
SL(2,5) • SL(5,5). 

LEMMA 3. The map H3(SL(5,5):Z 3)--> H3(Z3,'Z3), i•duced by i•tclttsio•t. is 
surjectire. 

PROOF. Let N C SL(5,5) be the norrealizer of the 3-Sylow subgroup generated 

by the matrices 

a =Q and b = 7 I 1 . 

Then Z 3 C N is generated by a. The map H3(SL(5,5);Z3)-> H3(N:Z 3) is an 
isomorphism [4]. Thus it suffices to show H3(N:Z 3) -> H3('Z3;Z 3) is surjective. 



THOROUGHLY KNOTTED HOMOLOGY SPHERES 281 

From the Lyndon spectral sequence we deduce that the 3-primary torsion of 

H4(N;Z) is isomorphic to the submodule of H4(Z 3 + Z3;Z) fixed by the action (via 
conjugation) of N on Z 3 + Z 3 [6, page 117, 3521. We now examine this action. 

Write x G N C SL(5,5) as 

Since x G N, xax -1 = anb TM for some n,m G Z 3. Then xa = anbmx implies X 2 = •,nx2, 
so (I-•,n)x2=0. Butifn•0inZ3then(I-•,n)=( I _-l)or(_-I l). In either case the 
two rows of X 2 are equal. 

Similarly xb = an'bm'x for some n',m' G Z3, so X 1 = •,n'x I and (I - •,n')x 1 = 0. 
Then if n' • 0, X 1 has both rows equal. Since det x 4= 0, one of n or n' must be zero. 

Furthermore, since X 4 = bmX4 and X 3 = bm'X3, it follows in a similar manner that 
one of m or m' is zero. 

n n 

Since conjugation by x is an automorphism of Z 3 + Z 3, the matrix (m m ') must 
be non-singular. Hence it is one of the following eight matrices 

or 

0 +I ---I 0 

The universal coefficient theorem gives an isomorphism 

H2(Z 3 + Z3;Z) • Ext(Hi(Z 3 + Z3;Z),Z). 

S/race Ext is conSravariant in its first variable, an automorphism of Hi(Z 3 + Z3;Z) 

represented by a matrix A, induces an automorphism of H2(Z 3 + Z 3;Z) represented 
by A T on its natural basis (g X I,I X g). Thus any x in N operates on H2(Z 3 + Z 3:Z) 
by a transpose of one of the above matrices, hence by one of the above matrices. 

By Lemma 2, the action of x on H4(Z 3 + Z 3 ;Z), with respect to the basis given in 
the proof of that lemma, is given by the symmetric product of one of these eight 

matrices with itself. There are four possibilities: 

---I , ---I 
1 I 
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In any case x fixes gl U gl + g2 u g2, so the image of H4(N;Z)-* H4(Z 3 + Z3;Z) 
i* 

contains gl U gl + g2 u g2' Hence H4(N;Z) --* H4(Z3;Z) is onto. 
Since the 3-primary part of H4(N:Z) is a submodule of H4(Z 3 + Z3:Z), each of 

its elements has order at most 3. Hence i* is split by a map s: H4(Z3;Z) -* H4(N;Z). 
Consider the commutative diagram with rows the integral Bockstein 

homomorphism 

H3(N;Z3) • , H4(N;Z ) 3 , H4(N;Z ) 
i* s 

H3(Z3;Z3 ) /• 'H4(Z3;Z)-•'•H4(Z3;Z) 
3 

Since H4(N;Z) -• H4(N;Z) is trivial on s(H4(Z3;Z)), there is an element x C H3(N;Z3) 
such that i*/•(x) generates H4(Z3;Z). But since /•i*(x)= i*/•(x) and/•: H3(Z3;Z3)-• 
H4(Z 3 ;Z) is an isomorphism, i*(x) generates H3(Z3;Z3). Q.E.D. 

LEMMA 4. The homomorphism Hs,(Z3,'Z) -* H3(SL(5,5),'Z) is injectire. 
PROOF. Consider the commutative diagram obtained from the universal 

coefficient theorem: 

0 0 

Ext(H2(SL(5,5);Z),Z 3) • Ext(H2(•3 ;Z);Z 3 ) 
H3(SL(S,S);•3 ) ' H3(Z3;Z 1 ) 
Hom(H3(SL(5,5):Z),Z3) , Hom(H (Z3:Z),Z3) 

$ 35 
0 0 

Since H3(SL(5,5);Z3) -• H3(Z3:Z3) is onto, Hom(H3(SL(5,5);Z),Z3)-> 
Hom(H3(Z 3 ;Z),Z3) is onto. Then H3(Z3;Z) -• H3(SL(5,5);Z) must be injective. 

PROOF OF 4.1. In terms of the bordism groups, Theorem 4.1 claims: If o•: M 3 -• 
K(SL(2,5),I) is a map inducing an isomorphism on fundamental groups, then the 

inclusion •3(SL(2,5)) -> •3(SL(5,5)) does not map o• to zero. 

Since rrl(M) is finite, rr2(M) = 0, and so the universal cover of M is a homotopy 
3-sphere. Thus K(SL(2,5),I) may be obtained from M by attaching a si•gle 4-cell and 

cells of dimension greater than 4. Hence we may take a to be the inclusion, and 



THOROUGHLY KNOTTED HOMOLOGY SPHERES 283 

further deduce that H3(SL(2,5);Z) is generated by or, [M]. 
Since the composition 

H3(Z3;Z ) -> H3(SL(2,5):Z) -> H3(SL(5,5);Z ) 

is non-trivial, the generator cr,[M] 

H3(SL(5 ,5 ):Z). 
From the commutative diagram 

of H3(SL(2,5),Z) must be non-trivial in 

a G 123(SL(2,5)) • 123(SL(5,5)) 

o•,[M] G H3(SL(2,5):Z) ) H3(SL(5,5);Z) 

it then follows thatcr must be non-trivial in I23(SL(5,5);Z). 
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