
NON-PL IMBEDDINGS OF 3-MANIFOLDS. 


1. Introduction. All imbeddings will be locally flat and all isotopies will 
be ambient isotopies. Let M",N"+~ be closed PL manifolds, m >3. For any 
imbedding f :M"+N"+~ there is an obstruction in H ~ ( M ;  2,) to isotoping f to 
a PL imbedding [6]. However, it follows from the twisted product structure 
theorem of [9] that for m > 5 there is a PL manifold M' and a homeomorphism 
g :M'+M such that f 0 g :M'+N is isotopic to a PL imbedding. Thus for m >5 
there is a natural way of replacing any imbedding of M in N with a PL 
imbedding of a homeomorphic manifold M'. 

Here we study the analogous situation for m=3.  Since PL structures on 
3-manifolds are unique, the above theorem does not extend directly. However, 
we show there is a biunique correspondence between isotopy classes of non-PL 
imbeddings of M in N and isotopy classes of PL imbeddings (with an ap-
propriate condition on fundamental group) of a manifold M' homology equiv- 
alent to M. 

In particular, we will show in Section 4 that the cobordism classification of 
non-PL 3-knots in s5[4,2] is equivalent to the cobordism classification of PL 
imbeddings of certain homology 3-spheres in s5. The correspondence is natural 
in the sense that a 3-knot and the corresponding imbedded homology sphere 
have (non-properly) homotopy equivalent complements in s5, and the Seifert 
surface for the homology 3-sphere has a Seifert pairing isomorphic to that 
which Cappell and Shaneson define for the knot. 

Explicitly the main theorem is as follows. Let H be a homology sphere 
bounding an index 8 PL parallelizable 4-manifold. Let M and N be closed PL 3 
and 5 dimensional manifolds respectively. Let Imb,(M,N) denote isotopy 
classes of imbeddings M+N which do not contain a PL imbedding, and let 
Imb, (M # H, N) denote isotopy classes of PL imbeddings g :M # H+ N with 
the property that the natural map i, :T,(H)-+T,[N- g ( ~#H))is trivial. Here 
i, is induced by inclusion after isotoping H -D~cM # H off of g (M # H) in 
N. 
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THEOREM1.1. There is a natural 1-1 correspondence 8:Imbm(M,N)++ 
ImbH(M# H, N )  such that for f E Imbm(M, N ) ,  N - f ( M )  and N -
8 ( f ) ( M# H )  are hmotopy equivalent (open) manifolds. 

R m r k s .  For all known examples of H there will not be a proper 
homotopy equivalence, since if n,(H)#O, the ends will have different funda- 
mental groups. 

An obvious relative version for aM# (ZI #aN is also true; the proof is 
identical to that below. 

The requirement that i ,  :T,(H)+T,(N- g ( ~ ) )be trivial in the definition 
of ImbH(H,N)is necessary even when N is s'. In fact there is a homology 
3-sphere H and a smooth imbedding H 4 S 5  such that the natural inclusion 
n , ( H ) - + n , ( ~ ~ -H )  is non-trivial. The construction and its implications for a 
more general problem will appear elsewhere. 

2. Preliminary Lemmas. Let H be a homology sphere bounding a PL 
parallelizable manifold of index 8. 

LEMMA2.1. H X s ' bounds a unique topological manifold U h m t o p y  
equivalent to the circle, but does not bound such a PL manifold. 

Proof. That U exists is implicit in [ l ,  111. A detailed proof for H the 
dodecahedra1 space appears in [7,8].This proof readily extends to any such H. 

If U and U' are too such manifolds, then U ua U' is a homotopy s4X S l, 
and hence is homeomorphic to s X S [ 10 1, and hence bounds D 5X S l. The 
inclusions U,u'+D X S are homotopy equivalences, so by the TOP s-cobor- 
dism theorem U - U' .  

We will consider H as the union along the boundary of H - rH -D~ and 
D3. The natural imbeddings of D 3 x  S and H- x S in dU will be denoted 
( D 3 x  S ~ ) ~ , ( H -  x s , ) ~ .  

LEMMA2.2. The unknotted imbedding s2+s4 extends to a locally flat 
imbedding H-+D5 such that the complement of an open tubular neighbor- 
hood of H- in D 5  is U.  The imbedding is unique up to isotopy re1 boundary 
and is not isotopic to a PL imbedding. 

Proof. Attach H - x D2 to U along ( H - x s').. The result is a contract- 
ible 5-manifold with boundary s 4 ,  and hence D5. The composition H- x ( 0 )  
'GH - X D GD then defines the required imbedding. 

If i ,  :H- 4D and i2:H - 4D are two such imbeddings, the uniqueness 
of U implies there is a PL homeomorphism h :D5+ D 5  such that i, h = i ,  and 
h=identity near aD5. But any such PL homeomorphism is isotopic to the 
identity by Alexander's trick. 
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Remark 2.3. We will make use of the following observation. Suppose a 
5-manifold V is the union along the boundary of two 5-manifolds W, and W, 
(written V= W, u a W,). Let x : S1+a W, = a  W2 be an imbedding of the circle 
in V, with trivial tubular neighborhood v restricting to tubular neighborhoods v, 
of x in dW,, i =1,2. Then Wi - v = Wi, and V- v is the union of W, and W, 
along a W, - v, and d W2- v,. 

Note that each v, defines a cross-section of the S3 bundle i. Since 
n,(S 3, =0, any two cross-sections are isotopic. Hence if aD2 x s is attached to 
V- v by a bundle map h :dD2x s3+i, we may assume that for s =0; ua D23, 
h-'(pi) =aD2X Di3, Therefore if surgery is performed on x in V with a given 
framing, then there are framings for v, and v2 in awl and aW, with the 
following property: The manifold V' obtained by the surgery on V is the 
boundary union of the manifolds obtained from W, and W2 by attaching 
2-handles to v, and v, with these framings. 

Let T be a simply connected manifold obtained from H- x D2 by attach- 
ing r 2-handles along circles x,, . ..,x, in H- x (q), q €dD2. Let Q be the 
manifold obtained from U by attaching r 2-handles to x,, . . .,x, in (H- X (q))U 
with the same framings used to define T. 

LEMMA2.4. There is a natural locally flat isotopy class of imbeddings 
i :(D3, dD3) 4 ( T ,  aH X {0)), such that the complement of an open tubular 
neighborhood of i(D3) in T is homeomorphic to Q. 

Proof. Attach a 2-handle L =D X D ,,l)SX(DalongUto and call 
the resulting manifold P. It is easily seen that P is contractible and, with the 
natural identification along the boundary, P ua (H- X D2) is a homotopy s5, 
and hence S5. On P ua ( H - X D2) perform surgery on x,, . . . ,x, in H- X (q) with 
framings chosen as in Remark 2.3 so that the resulting PL manifold V will be 

,.l)SXalong (D3 LQ', where Q' is obtained from Q by attaching auT 
Since V was obtained from s5by doing surgery on r-circles, it is the 

connected sum of r %sphere bundles over s2and so bounds W, the boundary 
sum of r 4-disk bundles over s2.Since T is simply connected, the inclusions Q' 
4W, T 4W are homotopy equivalences. By the PL h-cobordism theorem, 

PL 
Q' = T. Since Q' contains the required 3-disk D3 X (0) cL, SO does T. 

The PL homeomorphism h: Q'+T is well defined up to isotopy. Indeed, 
from the PL h-cobordism theorem there is a PL homeomorphism H:  W+T x I 
such that HI T+ T X (0) is the identity. If H' : W+ T x I is any other such PL 
homeomorphism, then H' H - : T X I+ T X I is a PL pseudoisotopy. Since 
n,(T) =0, H' .H - is PL isotopic re1 boundary to an isotopy [5]. Hence HI Q' is 
isotopic re1 boundary to H'IQ'. This completes the proof of Lemma 2.4. 
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Remark 2.5. If s further 2-handles are attached to T to obtain T ' ,  the 
circles upon which they are attached will be null-homotopic, and hence 
null-isotopic in dQ' and i3T. Thus T'= T  4 s(S2X D3), and the natural imbed- 
ding D3 C+T' which the above lemma would provide is also that obtained from 
the composition ( D 3  4 T G - T  4 s ( s 2 x  D3)= T'. 

3. Proof of Theorem 1.1. 

Step 1. Definition of 8. Let f :  M+N be an imbedding not isotopic to a 
PL imbedding, D3cM be a disk PL imbedded in M, and D3 X D2 be the 
restriction to D3 of some normal bundle v to M in N. D3 X D2 is uniquely 
defined up to ambient isotopy. 

Since the imbedding M-N is not isotopic to a PL imbedding, while N is 
PL, the Kirby-Siebenmann obstruction to isotoping the bundle PL structure vM 
on v, inherited from the PL structure on M, to the PL structure v, inherited 
from N,is the non-trivial element a of ~ ~ ( v ;Z2) [6]. 

Lemma 2.1 applied to D3x D2 provides a non-PL locally flat imbedding 
M # H-vM, which we denote 8  ( f ) .  Since 8  ( f )  is not isotopic in vM to a PL 
imbedding, the obstruction to isotoping the PL structure v, to one in which 
8  ( f ) ( M  # H )  is PL imbedded is also a. Since 2a =0, 8 ( f ) is isotopic to an 
imbedding into N which is PL. 

Step 2. Definition of 4 :ImbH(M# H, N)+ImbE(M, N) .  Let g :M # H+ 
N be in Imb,(M # H, N )  and H- x D2 be the restriction to H- of some normal 
bundle v to g(M # H )  in N. Since H- is acyclic, the trivialization H- x D2 is 
well defined. For q  EdD2, let xi :S '+H X ( p), i =1,.. . ,r,  be disjoint circles 
imbedded in H- X ( q ) representing xi En l (H) such that n, (H) /[x , ,. . . ,x,] =O. 
By general position and the definition of Imb,(M # H, N ) ,  x,, . . . ,x, bound 
2-disks in N - v. Attach 2-handles to H- X D2 using these disks as core disks. 
Lemma 2.4 then provides an extension of g ( M - )  to an imbedding of M, which 
we call +( g ). 

The map + ( g )  is well defined, for the only real choice involved is that of 
the circles x,, . . . ,x, and their spanning disks. Remark 2.5 shows that this choice 
is irrelevant. 

That + ( g )  is not PL follows much as did the proof that 8  ( f )  is PL. 

Step 3.  + B ( f ) = f .  Let ( H - , ~ H - ) + ( D ~ xD2 ,dD3x  ( 0 ) )  be as defined in 
Lemma 2.2, and H- x D2 be a tubular neighborhood of H- in D3X D2. 
Choose disjoint imbedded circles in H- x ( q )which normally generate n,(H),  
choose disjoint disks in ( D 3x D2)- ( H - X D2)bounding the circles, and attach 
2-handles with these as core disks to H- x D2 in ( D 3x D2)- ( H - X D ~ ) ,  
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obtaining a manifold T cD 3x D2. Let i  (D3)  be the imbedded D 3  given by 
Lemma 2.4. It suffices to show that i ( D 3 )is isotopic in D 3 x  D 2  to D3X ( 0 ) .  

From the definitions in Lemmas 2.2 and 2.4 it is evident that the 
complement of a neighborhood of h ( D 3 )  in D 3 X D is simply the manifold 
obtained by identifying two copies of U along ( H - x S l) ..This manifold is a 
homotopy circle bounded by S 3 x S l ,  and hence is D 4x S [lo].Thus h ( D 3 )is 
the standard unknotted 3-disk in D3 x D2.  

Step 4. 6+(g)=g. It is evident from the definitions that 0 and + commute 
with ambient PL homeomorphisms of N. That is, if h :N+ N  is a PL homeomor- 
phism, then B+(h 0 g)= h 0 6+(g). Given g, it therefore suffices to define a PL 
homeomorphism h :N+N such that h 0 g =B+(g), for then g= 6+(h-' 0g)= 

0 ( + 6 ) + ( h - ~ o ~ ) = 8 + ( 8 + ( h - ~ o ~ ) ) = 8 + ( ~ )  by Step 3. 
Let T be the manifold of Lemma 2.4 as imbedded in N in Step 2. Let v be 

an open tubular neighborhood of g ( H - x ( 0 ) )  in T,  and v' an open tubular 
neighborhood of 6+(g)(H-X ( 0 ) )  in T.  It suffices to show that the natural 
homeomorphism of the boundaries of T - v and T - v' extends to a homeomor- 
phism of T - v to T - v'. 

T - v is the space obtained from H- x aD2x I by attaching 2-handles to 
circles xl, . . . ,xr in H- x ( q )x ( 1 )  which normally generate r l ( H - ) .  On the 
other hand, T- v' is obtained from U u (,3,, U by attaching 2-handles to one 
of the boundary components in the same manner. Thus, from Remark 2.3, it 
follows that the manifold V, defined as the union along the boundary of T- v 
and T - v', may be obtained by identifying two copies of U along their entire 
boundary and doing surgery along x,, . . . ,xr in H - X ( q )c ( H- X S ').C U Ua U. 

But, as in Lemma 2.2, U ua U is simply s4x S Hence V is the connected 
sum of S X S and r 3-sphere bundles over s 2. Thus V bounds the boundary 
sum W of D5X S and r 4-disk bundles over s2 ,  and the inclusions T - v+ W 
and T - v'+ W are homotopy equivalences. By the s-cobordism theorem, 
T- v = T - v'. This completes Step 4. 

The proof of Theorem 1.1 is completed by observing that the inclusion 
( D 3x s l ).+u is a homotopy equivalence, so that N - f (M) and N - 6 (f)(M) 
are also homotopy equivalent. 

4. Example: Non-PL Knots. Among the peculiarities which arise in the 
study of knots, one of the most spectacular is the family of non-PL locally flat 
3-knots in S5  [4]. These knots have been extensively studied by Cappell and 
Shaneson 121. One difficulty which arises is the absence of the topological 
transversality theory at dimension 4 which is needed to construct a Seifert 
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surface for the knot [3,8].This is overcome in [2]by taking the product of the 
knot complement with CP(2),then using topological transversality at dimension 
8 to define a "suspended" Seifert surface for the knot. 

Theorem 1.1 provides an alternative but equivalent definition of the Seifert 
pairing of a non-PL knot f :S 3+ S5. Iff is not isotopic to a PL imbedding, then 
9 ( f ):H+S5 is isotopic to a PL imbedding and so has a Seifert surface V , with 
aV= H, and an associated Seifert pairing. We define the Seifert pairing off (S3)  
to be that of V and show that this Seifert pairing is equivalent to that of [2]. 

First we outline the Cappell-Shaneson definition. For v an open tubular 
neighborhood off ( s 3 ) ,let h :s5- v+S ' be a homology equivalence extending 
a bundle trivialization i+S '.Let q be a point in S and p :( s 5- v)x Cp(2)+S5 
- v be the projection. Homotope hp :( s 5-v)X CP(2)+ S ' re1 boundary so that 
hp is TOP transverse to q [3].Then (hp)- ' (q)=N is a suspended Seifert surface 
for f (S3) ,and the Seifert pairing is the linking pairing on the quotient of the 
kernel of H,(N)+H,(s~ X CP ( 2 ) )by its torsion subgroup. 

Let v' be an open tubular neighborhood of B ( f ) ( H ) .By definition of 
9 ( f ) ( H ) ,  S5 -v=(S5 -v ' ) u , ( u ) ,  where ~ ~ ( H - x s ' ) , + v '  is a bundle map 
covering the inclusion H- cH.  By Siebenmann's splitting criterion [l l]the 
manifold U x CP(2),homotopy equivalent to cone(H) X S 'X CP(2),is the prod- 
uct with S1 of a manifold N', where aN'= H XCP(2) and N' is homotopy 
equivalent to cone(H) x CP(2).Clearly N =( V X CP ( 2 ) )u 
Seifert manifold for f (S3) ,where rp' is the natural homeomorphism of H- X 

CP(2)caN' to H- x CP(2)caV x CP(2).Since N' is homotopy equivalent to 
CP(2), the kernel of H,(N)-+H,(S~X C P ( ~ ) )is precisely H,(V). Thus the 
Seifert pairing as defined by Cappell and Shaneson is precisely the Seifert 
pairing of V .  

Finally we prove 

LEMMA4.1. Any PL imbedding of H in s5 is cobordant to an imbedding 
in Imb,(H, s5). 

COROLLARY4.2. 9 induces a natural equivalence between cobordim 
classes of non-PL 3-knots and cobordim classes of PL imbeddings of H in s5. 

Proof of Lemma 4.1. For a PL function f :H 4s 5,we must show that f 
is cobordant to an imbedding g such that i, : -g ( ~ ) )is trivial. T ~ ( H ) + T ~ ( s ~  
Let v :H- x D2+ s be a normal bundle trivialization extending f 1 H -, and, 
letting I = [O, 11 be the radial coordinate of D2, let v- = v ( H -  X a0 X [i,11). 
Then av- is naturally homeomorphic to a( U U ( ~ ~ 1 )U ) and ( U U ( 0 3  U )3 S1) 

U a V - = U u a ~ = s 4 X S 1 .Regarding S4 as a ~ this defines an imbedding ~ , 
h : v - + a D 5 x S ' ~ D 5 ~ S 1 .  

is a suspended (N ' ) ,  ,, 
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Attach D 5 x s1  to s 5 xI by identifying v - x ( 1 )c s 5 x { 1 )with h(v-) 
c aD X S ', and call the resulting manifold W. Since the inclusion h : v -+D 
X S ' is a homology equivalence, it follows easily that there is a PL homeomor-
phism G : w+s5x I which is the identity on S 5 X (0)c W. 

The boundary components of W are a,  W=S 5  x (0) and the manifold 
a , W obtained from s5X (1) by removing v - and replacing it with U 

~ ( D ' X S ' ) ,  U. 
Since the inclusion induced homomorphism n,(H-)+r1(U)is trivial, the 

imbedding f :H & d l  W is in Imb,(H, a , W) .Thus the composition 

defines a cobordism from f to an element of Imb,(H, s5). 
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