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ABSTRACT.

This is meant to be a genile introduciion io the theory of knots, aimed specifically
at physicists who want some background to Freedman and He's work (1991} relating
asymptolic crossing number of knots to estimates of the energy in a knotted divergence-
free flow.

1. Knotting and unknotting

DEFINITION 1. A knot K in a smooth J-manifold M3 1s the image of a
smooth non-singular imbedding f : S — M3,

Here “non-singular” means that the derivative of { is non-zero and is
included only to exclude the sort of pathological behavior shown in figure 1.

Two knots are regarded as equivalent, or isotopic, if you can move one to
the other in M3, Explicitly

DEFINITION 2. Two knots K and K are 1sotopic (write K ~ K')} if there
is a smooth non-singular level-preserving embedding F' : §1 x I — M x I
such that F(§' x {0}) = K and F(§* x {1}) = K.

Once again non-singular is thrown in to eliminate pathological behavior.
In particular, without it, all knots are unknotted! {See figure 2.)

Although these definitions are the most useful {rom the point of view of
differential topology, the pathologies above often tempt topologists to think
in a somewhat different category, called the PL category. In this category
M3 has a local linear structure, and in it knots are closed polygonal curves.
From the point of view of the topology of the knot, these viewpoints are
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Fig. 1. Singular, or “wild” pont,

SN

Fig. 2. A singular unknotting.

identical, but of course the corners may play havoc with any arguments
involving the knot’s differential structure {e. g. the curvature of the knot.)

Here we’ll only be concerned with knots in 3-space. Since topologists have
a preference for compact spaces, often they secretly regard the knots as lying
in the 3-sphere. For most elementary purposes, the distinction between R3
and S° is unimportant, for the difference is a single point at infinity. This
point can be taken to be disjoint from the knot and its isotopies.

An advantage of working with knots in the 3-sphere (or 3-space) instead
of an arbitrary 3-manifold, is the following theorem, called the Alexander
trick:

THEOREM 1. K ~ K" 1n S? if and only if there 1s an orentation preserning
diffeomorphism of S® carrying K to K'.

DEFINITION 3. K 1s unknotted (or the unknot) if it 1s 1sotopic 1o S* C S
(equivalently, 1o the round circle in the plene in J-space).

Here’s an equivalent formulation:

THEOREM 2. K s unknotted in 5° if and only if K bounds a smooth disk
in §°.
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Fig. 3. Polyhedral picture of trefosl knot.

Fig. 4. Seifers sucface for the trefoil knot.

Proof: Suppose K is unknotted in S3 | so there is a diffeomorphism of §3
taking K to S C S*, Now S! bounds a hemisphere of S < S%: carry the
hemisphere back by the inverse of the diffeomnorphism.

Conversely, suppose K bounds a smooth disk D in S . A tiny neighbor-
hood of the center of D is essentially a flat round disk D', whose boundary
ts a round circle, The aonulus D — [ then isotopes K = 8D to 8D/, O

2. Seifert surfaces and knot genus

Although only the unknot bounds a disk, a general statement holds for all
knots:

THEOREM 3. {Seiferi) Any knot bounds some omentable surface 1n 5%,

Such a surface is called a Seifert surface of the knot. A Seifert surface
of a knot isn’t unique, even up to isotopy, for one can always attach tubes
to a given surface and malke it more complicated. Even if we restrict to
the simplest possible Seifert surface, there are knots with infinitely many
non-isetopic such surfaces. Nonetheless, the complexity of such surfaces is a
useful indicator of the complexity of the knot.
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Fig. 5. A genus three surface.

n(K)

Fig. 6. A regular neighborhood 5 of 2 knot K.

DEFINITION 4. A knot K 1 S° has genus n if it bounds an orientable
surface of genus n, but not one of genus n — 1.

Note: The Seifert surface in figure 4 and the following 1
the trefoil knot has genus one. § corellary shor that

COROLLARY 1. A énot K has genus 0 if and ondy if it 15 unknotied.
Proof: A genus 0 surface with one boundary component is a disk. &
THEOREM 4. A smooth knot K has a tubuler nesghborhood. That 15, there

15 ¢ newghborhood ; i
5 (;gz‘oo)r: ood (K} of K so that the pair (n(K}; K) 15 diffeomorphic io

D_EFINITIQN 5. The boundary 9n(K) of a tubular newghborhood of K 13
diffeomorphic 1o the torus S* x 5. [t contains two special circles:
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Fig. 7. deridian 4 and longitude A

The meridian 1s the boundary of a cross-sectional disk {=} x D? C S*x D?
and 15 denoted p.
The longitude 15 denoied A and s the boundary of a Seifert surface.

THEOREM 5. The mendian and longitude of @ knot K are uniquely defined
i On(K) up to solopy.

Proof: The harder part is showing the uniqueness of A . This can be done by
studying the arcs of intersection of two different Seifert surfaces. Alternately,
there’s an easy proof from algebraic topology. First note that two simple
closed curves ¢ and ¢ imbedded in St x S' are isotopic if and only if the
algebraic intersection ¢ - ¢’ is trivial. If § and §' are two Seifert suzfaces for
K, then 85-8S' = 8[S 57| But 55" is in H1(M,dM), which is trivial. O

Remark: The natural choice of circles A and p then allows us to describe
any simple closed curve on 8n(K) by a number 1n the extended rationals
Q U (o). The curve homologous to pu -+ g4 we associate with the rational
number p/q. (e. g. p o).

3. Winding, (w)rapping, and satellifes

DEFINITION 6. Suppose k 15 @ knot in §' x D* Then the winding number
of k, denoted w(k), s the algebraic imtersection k - D? of k with a cross-
sectional disk {+} x D*® Here algebraic intersection meens that an mlersec-
tion in one direction across the disk will cancel an inlersection gomg in the
other direction. In conirast, the wrapping number (k) of k 15 the number of
times which k wtersects D? (regardless of direction), minimized by isotopies
of ki §' x D%,

Figure 8 illustrates a knot which has winding number zero, but wrapping
number Z.
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Fig. 8. How to “double” a knot.

One way of creating new knots is by imbedding simple closed curves in
the tubular neighborhoods of other knots. Specifically, suppose K is a knot
m 5% . We would like to make the following preliminary definition: k is a
setellite of K if & C p(K).

But a moments reflection shows that some caution is in order. Here are
some problems:

e} Any knot is a satellite of the unknot. Indeed, put a little loop [ around
a given knot . Then the complement of /in 52 is itself a (very large) regular
neighborhood of an unnamed unknot. Since £ lies in the complement of /, &
would automatically be a satellite of the unknot.

8} k may be isotopic to K in 7(K), so in effect & is K.

¢ If 7(k) = 0 then k misses a cross-sectional disk of 7(K). The comple-
ment of such a disk m p(K) is just a 3-ball. Any knot can be isotoped into
any 3-ball (just shrink R3), so if we were to allow r(k) = 0, then any knot
would be a satellite of any other!

With these things in mind we male the final

DEFINITION 7. a) k C 9(K) 15 a satellite of K if r(k) # 0 and k 1s not
1sotopic to K an g(K).

b) & 15 a satellite knot if it's a satellite of K, for K not the unknot.
(Note that a satellite of the unknot is not necessarily a satellite knot!)

DEFINITION 8. Suppasc k 15 ¢ satellite of K. The paitern of k is h(k), for
h:n(K) — S x D*. In general, ambiguily in the choice of h from possible
twisting of S' x D* would result in ambaguity of the pattern. This can be
carcumyented by insisting that the longitude mn n(K) go to S' x {+}, for
some poini = in O D%,
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Fig. 9. How to cable a knot.

Some important examples of satellite knots are those obtained from the
following patterns:

1) Double of a knot: Pick the simplest pattern with w(k) = 0, r{k) = 2.
See figure 8.

2) Parallels of a knot: Picl for k several paralle{ copies of the core knot
K. (Strictly speaking, this is a link, since there are several components).

3) Cables of a knot: Let the pafbtern be the torus knot on d9(K). See
figure 9.

In some sense, detecting satellite knots is fairly easy, thanks to the fol-
lowing theorem of Alexander.

THEQOREM 8. Any T* C 5% bounds e solid torus on at least one side.

COROLLARY 2. If there's a torus 7% < 5% — k which 15 not parallel to
an(k) end doesn't bound a solid torus i S3 — k, then k 15 ¢ satellite knot.

4, Band sums and connected sums of knots

DEFINITION 9. A link 15 en embedded disjoint union of circles in 53 A
link 15 split if it's the distan? wnion of twe proper sublinks.

DEFINITION 10. The band-sum K#,K' 15 obtained by banding together
distant copies of K and K'.

DEFINITION 11. The connected sum K#K' is obtained by banding together
distant copies of K and K' via a band crossing a splitiing sphere once. K&K’
is called o composite knot.
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Fig. 10. A split link.
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Fig. 11. The band sum K#; K’ of knots.

Fig. 12. The connected sum K#K' of knots.
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In general, the knot obtained from K, K depends heavily on the choice
of b as well as that of i and K. Not so, when we consider just the connected
sum. Indeed

THEOREM 7. K#K' 15 well-defined.
Praof: : The proof is surprisingly simple: Suppose in figure 12 a band had
been chosen so that it intersected the sphere once, but the part of the band
outside the sphere was complicated. Just shrink the ball on the left, contain-
ing one summand, down to the size of a pea, and unravel the band. Then
blow the ball up again. Now the band is straight outside the ball. Repeat
the process using a ball around the other summand to straighten out the
band inside the sphere. O

In light of this theorem, we can regard the connected sum as a binary
operation on the set of knots. It's easy to see that the operation is commuta-
tive (K3# K is isotopic to Ko# K1), associative ((K1#K2)# K3 is isotopic
to K;#(K#XK3)) and that the unknot O is an identity element (K#0 is
isotopic to K). To a mathematician this means that # induces a “commu-
tative monoid structure”. To be a commutative group, all that’s missing is
the existence of an inverse. Hence we get the natural question: Given a knot
K, is there a knot K’ such that K#K' = 07

As an applied problem, this can be translated to: i a garden hose is
knotted, is there a way of tying another knot in an end of the hose, so that
when slid down to the first knot, the two cancel and the hose is unknotted.
Experienced gardeners know that this is impossible, but the mathematician
requires proof. In fact, it’s an elementary corollary of the following more
general:

THEOREM 8. For K and K two knots in 5, genus(K#K') = genus(I )+
genus(I’).

Proof: 1} The inequality genus( K # K <genus{ K )+genus( &'} is immedi-
ate: If § and 5’ are minimal genus Seifert surfaces for K and K’ respectively,
just glue an arc on 85 = K to an arc on 85 = K'. (See figure 13.} The
genus of the resulting surface T is genus{ K )+genus(K"), and 8T =K #K'.
T may not be of minimal genus among all Seifert surfaces of K# K’ so we
only get an inequality, not an equality.

2) The inequality genus( K # K"} >genus(K }+4-genus(K") is more difficult.
What we need to show is that given a Seifert surface T for K#X, it can
be viewed, as above, as a Seifert surfaces for K and I glued together along
an arc. The idea is to start with T' and modify it in a way that does not
increase genus but so that it will eventually intersect a sphere 5% separating
K from K’ in a single arc. Now §%~ (K #K") is an annulus 4 whose ends are
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Fig. 13. Gluing together Seifert surfaces of K and K.

Fig. 14.TN4

meridians of K#K'. Since 8T = K#K', T'NA is a 1-manifold with precisely
Pwo ends, one at each end of A. Viewed in A, this means that either Tr A
i3 a single arc, and we're done, or 7' A contains also a bunch of circles (see
figure 14}.

In =f:im latter case, at least one component of TN A bounds a disk in A
containing no other component of T N A. Figure 15 shows how to use this
disk to modify T so that this component, and maybe more, is removed from
TrA.

The operation may decrease, but won’t increase, the genus of T After
sufficiently many such operations, all circles of intersection are removed. O

Remark: 1t is a much deeper result, proven only recently (Gabai (1987),
Scharlemann (1989)), that genus(K #,K') >genus(K )+genus(K").

COROLLARY 3. (Absence of inverses) If K#K' = O then K = K' = O.

Proof: : Since genus(K)+genus(K') = 0, genus(K) = genus(K’) = 0, so X
and K’ are both the unknot. © () = genus(K') 1 90
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Fig. 15. “Compressing” T

COROLLARY 4. Genus one knats are prime (= nol composite).

Proof:: Suppose_.—ffis composite, so K = KK’ with genus(K),genus(K") >
1. Then genus(K)} > 1+1=2. 0

THEORFEM 9. A knot k 15 ¢ satellite of ¢ knot K; with r(k) = 1 if and only
if k 15 the connected sum of K; with another knot Kg.

Proof: The proof is in the figure 16, which shows how Kq# K| is imbedded
in a tubular neighborhood of K. The illustrated torus T is called a “follow-
swallow” torus, because it follows Ay around, but swallows fp. O

5. Bridge number and curvature

DEFINITION 12. The bridge number § of a link 15 the nunimum number of
bridges needed to consiruct a freeway system supporting the link. The iraffic
rele 15 you cross over each bridge ezactly once, but can go under each bridge
any number of times. By convention. F{(0) =1 (not 0).

To see that this definition is symmetric, note that a path on the grouad is
travelled over once, though a bridge may pass over each path any number
of times.

Figure 17 shows a two-bridge link, with the bridges appearing as hori-
zontal segmments.

There is an equivalent definition: If we look at the link in bridge position
from the side, e. g. standing on the ground a good distance away, then the
bridges can be viewed as maxima of a height function on K, and the paths
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Fig. 16. The follow-swallow torus.

N

-

Fig. 17. A two-bridge link,

on the ground as minima. So we get: There's a height function on K with n
maxima if and only if K has bridge number < n.

Here’s yet a third picture. Imagine taking such a height function and
exaggerating it, so the knot is actually hanging from its maxima, and its
minima are pegged to a lower level. Then running between the top and the
bottom is a braid of 2n-strands. This is said to be 2 2n-plat presentation for
the link (see figure 18).

For a fourth picture, imagine a plane which cuts through the plat pre-
sentation just above the minima. Then below the plane the minima just
appear as a family of unknotted arcs. What's slightly more difficult to see
is that if we ignore everything below the plane, and just look at the arcs
lying above the plane, they too are isotopic (as proper arcs) to a family of
unknotted arcs, by sliding their end points around on the plane. So £ has
bridge number < n if and only if there is a plane cutting it into two families
of n unknotted unlinked arcs.
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Fig. 19. Trivializing arcs above the plane.

THEQREM 10. If K has bridge number one then K 15 the unknot.

Proof: : There is a single maxima, hence a single minima. Between these
two critical points K intersects each planeé in two points. In each level plane,
connect the two points of intersection with an arc, which can be taken to
vary continuously with the level. The result is a disk whose boundary is the
knot. O
Here is a deep theorem of Schubert (1954). For a modern proof, see Doll
(1991), where it is also shown that it’s possible to define a notion of bridge
number for surfaces more complicated than planes (equivalently spheres).

THEQOREM 11. o} If k 1s ¢ satellite of K then S(k) > r(k) - B(K).
b) B(K1) + B(K2) — 1= (K 1#Ka).

Remark: b) follows from a) by using the “follow-swallow” torus knot
above.
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Fig. 20. A nearly flat trefoil knot, with x near 47

COROLLARY 5. 2-br1dge knots are prime and not satellites.

There is a remarkable connection between the curvature of a knot and its
bridge number, discovered by John Milnor (1950) (when he was a teenager!).
It is interesting in its own right, but is included here also because of its pre-
scient connection to two notions of energy for a knot. Let x(k) denote the
total curvature of a lnot £ in $3 . It has the following polyhedral interpreta-
tion (indeed, this motivates the definition of curvature): For £ a polyhedral
knot in R? | let x(k) denote the sum of the exterior angles at corners of k.

THEOREM 12. r(k) > 2r3(k).
COROLLARY 6. If s(k) < 47 then k is the unknot.

Remark: In fact, x(k) < 47 implies that £ is unknotted. Figure 20 shows
that the estimate is sharp. The total exterior angle looks just like 4, but
this is an optical illusion. At least one of the straight lines must be bent or
broken slightly, raising (k) above 4.

Proof of Milnor’s theorem: We’'ll prove the polyhedral version; the smooth
version can be gotten by polyhedral approximation. Let py, ..., p. be the n
corners of the polyhedral approximation, and let o; denote the exterior angle
at pi. Then &(%) = 3~ ay.

For any angle « in J-space, there is a circular sector of directions o, in S2
so that a height function with gradient in that direction will have a maxima
at the angle’s vertex (see figure 21).

We have area(o.)/area(sphere) = /2w, so atea(v,) = 2 - a. Let oy
denote the angle corresponding to «;. In particular the vector v is in oy if
and oaly if «; is a maximum for a height function whose gradient is v. Put
another way, if the number of maxima for £ along such a height function is
n, then v lies in 7 of the ¢;. The average number of maxdma appearing over

9

Fig. 21. A corner and its associated sphere segment.

all directions v s then simply 3 area(o;) divided by the area of the sphere,
dr. If we then let ng be the minimum number of maxima appearing at any
direction v, it will clearly be no larger than the average, so we have

Blk) < ng < Zarea(a’;)/dﬁr = (ZZ cog) A o= (k(k)) /2 (5.1)

as required. O

6. Connections with knot energy

There are two connections here with notions of knot energy. The first is
directly mathematical. If we imagine the knot made from an elastic straight
wire, Bernoulli-Euler theory states that the amount of bending energy re-
quired to create the knot is the integral of x* around the knot. A gpiyhe—
dral approximation here is not allowed, for to create a corner requires an
infinite amount of energy. This notion of energy for a knot is relatively ac-
cessible, and much is known (the definitive treatment is Langer and Singer
(1985). For a knot theorist, however, the theory is ultimately disappointing.
Langer and Singer show that an energy-reducing flow will always fead to
self-intersections of a knot, changing its knot type. Eventually such a flow
will terminate n a round circle.

The second connection is not so direct, but leads to the Freedman-He
(1991) notion of average crossing pumber. We have seen how the r.ot.a.licgr—
vature of a knot describes an average bridge number for & specific position
of the knot in R3. Here the average is taken over all possible directions for
a linear height functions on the knot in R°.
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Instead of the bridge number, consider another invariant of a knot £ in
R®. Tor each direction in R® (i. e. unit vector v in §2), project the knot
onto the plane perpendicular to v, and count the number of crossings in
this projection. (Here v may have to be moved just a bit to ensure that the
projection intersects itself transversally}. Denote this number by {{v). If we
isotope k and pick v so as to minimize {(v) the number we get is called the
crossing number of k.

In analogy to the above discussion of bridge number and curvature, sup-
pose we fix £ in R* and don’t allow it to change by isotopies. Regard ((v)
as a function §2 — Z; and integrate it over 5%, After dividing by the area
of 5% we obtain a number { = (f5 ((v)dS)}/4r, which it’s natural to call
the average crossing number of £.

Here is another way of describing C. Any pair of points P ¥ g on the knot
k determine a line in R® whose direction may be regarded as a point in the
projective plane RP? (= the space of lines in R® going through the origin,
or the space derived from §2 by identifying each pair of antipodal points).
Thereby we have defined a map I : kxk — RP?, where by convention I'(p, p)
is defined to be the tangent line to & at p. A pair of points (p,q)in kx £ 18
mapped to a point v in RP? if and only if when £ is projected orthogonally
to v, p and g coincide. Generically, this means there is a crossing which
identifies p and ¢. So (generically) v is covered n times by the image of T
if and only if £, when viewed from the direction v, has n/2 crossings (since
there is a single crossing corresponding to both (p,¢) and (g, p)). Hence ¢
can also be interpreted as the total variation (i. e. the area of the image,
neglecting sign) of the map T, divided by twice the area 27 of RP?. That is,

T=( fk  ldet(dr)}ds)/am (6.1)

It's not hard to calculate ]det(dl')]. The formula goes back to Gauss, who
had to calculate det(dI') in a slightly different context, that of the Gauss
map I': k x k' — 52 between a link of two components & U k', In Gauss’s
situation tangent lines don’t need to be comsidered, so there is always a
natural orientation for the image line, say from p to gq. Hence I' can be
defined as a map into 5% not RP?. But his formula still applies: let y(p) and
+({q) be unit vectors tangent to &k at p # ¢q. Then

[det(dD(p, 1)) = [(v(p), ¥(a),p — DI/ 1P~ ¢ (6.2)

In the numerator is the vector triple product {(y{(p),7(¢),p— ¢) = {7(p) X
¥{(q)) - (p — ¢). This then gives rise to the Freedman-He “crossing number
version” of the Gauss formula.

It’s appropriate here to mention a remarkable theorem of W, Pohl (1968).
Let & be a knot, and consider the projection onto a plane perpendicular to a

3l

unit vector v. Assign a sign & to each crossing as follows: Pick either orien-
tation for k. At the crossing examine whether the pair of oriented arcs obey
the right hand rule (+) or the left hand rule (). The answer is independent
of the original orientation. If we add the signs of all the crossings, we get
the signed crossing number (+(v).

Just astin our development of {, it makes sense to define the average
signed crossing number of £, (4, where the average is taken over all direc
tions of projection v in §%, (Note that the sign of a crossing is also the same
when viewed from the other side of the projection plane.} (., too, can be
calculated via the Gauss integral, but to define T' here it’s necessary to sup-
press the problem of orientation for tangent lines by removing the diagonal
A = {(p,p)lp € k} from £ x k. That is, take X = (k x k) — A, and define a
map I : X — 5% as Gauss does for links. Then just as in the discussion of
average crossing number we discover that

4y = /X det(dT')dS (6.3)

Now (4 is rarely an integer. But what Pohl shows is that, as long as
the curvature » of k£ never vanishes, the sum of { and the average torsion
7 = (f, vds)/2n of k is an integer! This integer, called the self-linking number
{or writhe) of k, is not an invariant of isotopy. Ior example, consider the
unknot. A round circle clearly has trivial ¢, and 7, hence trivial writhe.
On the other hand, given any integer n, the unknot can be isotoped so a
projection to a plane has signed crossing number n. Use this projection to
jsotope the unknot near the projection plane, so ¥ approaches zero and (4
approaches n. Then this imbedding of the unknot must have writhe n. What
Pohl’s theorem does allow us to conclude is that one cannot perform such
an isotopy through curves which have everywhere non-vanishing curvature.

7. Entry into the literature i

This has just been the briefest of outlines of a rich and growing subject. Of
the many books in the literature, two deserve special mention. For an infor-
mal treatment that begins at the beginning, but assumes some background
in topology, e. g. homology theory, see Rolfsen {1976). For a more formal
approach, with a truly astonishing bibliography, see Burde and Zieschang
{1985).
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