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ABSTRACT. We consider compact 3-manifolds M having a submersion
h to R in which each generic point inverse is a planar surface. The stan-
dard height function on a submanifold of $3 is a motivating example.
To (M, h) we associate a connectivity graph I'. For M C $3, T is a tree
if and only if there is a Fox reimbedding of M which carries horizontal
circles to a complete collection of complementary meridian circles. On
the other hand, if the connectivity graph of S* — M is a tree, then there is
a level-preserving reimbedding of A/ so that S — M is a connected sum
of handlebodies.

Corollary:

e The width of a satellite knot is no less than the width of its pattern

knot and so
o w(Ki#Ky) > max(w(Ky),w(Kz))

The notion of thin position, introduced by D. Gabai [G], has been em-
ployed with great success in many geometric constructions. Yet the under-
lying notion of the width of a knot remains shrouded in mystery. Little is
known about the width of specific knots, or how knot width behaves under
connected sum. By stacking a copy of K; in thin position on top of a copy
of K5 in thin position, it is easily seen that w(K;#K,) < w(K; )+ w(K3) — 2.
Here we establish a lower bound for the width of a knot sum: the width is
bounded below by the maximum of the widths of its summands and there-
fore also by one half the sum of the widths of its summands.

Knot width can be thought of as a kind of refinement of bridge number.
Interestin how the width of a knot behaves under connected sum is inspired,
in part, by the fact that bridge number behaves very well. Indeed for bridge
number, b(K1#K,) = b(K;) + b(K3) — 1, see the paper [S] by H. Schubert,
or [Sch] for a much shorter proof. The shorter proof in [Sch] crystallized
out of an investigation into whether or not thin position arguments clarify
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the behaviour of bridge number under connected sum. The answer to that
question appears to be no: width seems to be a much more refined invari-
ant than can be useful for the recovery of Schubert’s result. In particular,
the argument in [Sch] fails in settings where the swallow follow torus is
too convoluted. One suspects that degeneration of width under connected
sum of knots is possible, i.e., that there might be knots Kj, K5, such that
w(K1#K>) < w(K;) +w(K>) —2. The situation may be analogous to that
of another knot invariant, tunnel number. For small knots (knots whose
complements contain no essential closed surfaces), neither width nor tun-
nel number degenerate under connected sum; i.e., for small knots, width of
knots satisfies w(K;#K;) = w(Kj ) + w(K5) — 2 and tunnel number satisfies
H(K1#Ky) > t(Ky) 4+ t(K3). This is proven in [RS] and [MS], respectively.
On the other hand, it is known that tunnel number can degenerate under
connected sum, for knots that are not small. See for example [Mo]. Our
results on knot width are in a spirit similar to that of [ScSc], establishing an
upper bound for such possible degeneration. Explicitly:

Corollary 6.4 For any two knots K1, K5,

w(K1#K3) > max{w(Ky),w(Kz)} > =(w(K;) + w(K3)).

N =

We obtain Corollary 6.4 by applying the following more general result
to the swallow-follow companion tori that are associated to the connected
sum of knots (see [L, p. 10], or the discussion in Section 6).

Corollary 6.3 Suppose K’ is a satellite knot with pattern K. Then w(K') >
w(K).

Our approach to the latter result is to think of the companion solid torus
as a simple example of a handlebody in $°. We ask, in general, how a
handlebody H in $® might be reimbedded so that its complement is also a
handlebody, hoping in particular to find a reimbedding that preserves the
natural projection to R (called height: h: H C $* C R*—~R). There is a
theory of reimbeddings in $% going back to Fox [Fo], who showed that any
connected M C $? can be reimbedded so that its complement is a union of
handlebodies. What is new here is the concern about height /1 : M—R.

In Section 2 we associate to an arbitrary compact M C $3, a certain graph
I, and show that I is a tree if and only if there is a collection of horizontal
(with respect to height) circles in M which constitute a complete collection
of meridian circles after a reimbedding whose complement is a handlebody.
This discussion is in some sense only a digression; the main argument be-
gins with Section 3.
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Our goal is to reimbed a handlebody H (preserving height) so that the
complement M = $3 — H is also a handlebody. What we in fact study care-
fully is the complement M, hoping that by reconstructing it appropriately,
without changing /1 on M, we can turn M into a handlebody. One way to
recognize that we are done is to observe that if H can be made to look like
the neighborhood of a graph A and A lies in §2 C §3 then $° — H is in-
deed a handlebody. We call such a graph A unknotted. In Section 3 we
develop methods to construct and recognize unknotted graphs. In Section 4
we describe how, if the graph I' associated to M = §° — H is a tree, we can
reconstruct M, without affecting height /1, so that M becomes the comple-
ment of an unknotted graph, i. e. a handlebody. Such a reimbedding of H is
called a Heegaard reimbedding. In Section 5 we observe that the only effect
of this reconstruction of M on H is to alter it by braid moves; the corollaries
on knot width then follow in Section 6.

1. MATHEMATICAL PRELIMINARIES

Throughout the paper, all manifolds will be orientable and, unless other-
wise stated, compact. All embeddings will be locally flat. Since in dimen-
sion three there is little topological distinction between smooth manifolds
and PL manifolds, and it will be convenient to use ideas and language from
both smooth and PL topology, we will do so without apology, leaving it to
the reader to make the appropriate translation if a specific structure (smooth
or PL) is initially given on the manifold.

Definition 1.1. A planar presentation of a 3-manifold (M, M), dM # (0 is a
map h: M—R so that

(1) Dh: Tyy—Tg is always surjective
(2) h|oM is a general position Morse function and

(3) for t any regular value of h|oM, h=(t) is a planar surface, denoted
P

The motivating source of examples is this: Consider $* C R* and let
p: R*—R be a standard projection, so p|83 : $>—[—1, 1] has two critical
points in §3, typically called the north and south poles. Let M C $° be a
compact submanifold that does not contain either pole. Then & = p|M is a
planar presentation of M.

Consider an index one (i. e. saddle) critical value #; of 2|oM. The cor-
responding critical point is called an upper saddle (resp. lower saddle) if
dP"=~*¢ has one more (resp. one less) circle component than 9P, If the
number of components in P*¢ and P~ is the same, we say the saddle is
nested; otherwise the saddle is unnested. Here is an alternate description:
an upper (resp. lower) saddle is nested if and only if the outward normal
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from M points up (resp. down) at the saddle point. (In particular, if § C > is
a surface, then a saddle singularity of . is a nested saddle for the component
of $2 — § lying just above the singularity if and only if it is unnested for the
component of §% — § lying just below the saddle.) Similarly, a maximum
(resp. minimum) of /2 on 0M is called an external maximum (resp. mini-
mum) of 7 on M if the outward pointing normal from M points up (resp.
down) at the critical point. Other maxima and minima on 0H will be called
internal maxima and minima. See Figure 1. (This and other figures can be
computer viewed in color at this paper’s ArXiv site.)

lower Upper upper nested sacldle
unnested saddles

external maximum

mtermal minimun

FIGURE 1

2. THE CONNECTIVITY GRAPH AND FOX REIMBEDDING

Throughout this section, (M, 1) will be a planar presentation, s; < 55 <
... < s, will be the set of critical values at which /2|0M has an unnested
saddle or an external maximum or minimum. The points xq,...,x, € oM
will be the corresponding critical points.

Lemma 2.1. Suppose My is a component of M — U, P, Then for any
generic height T, Py = My N P is connected (possibly empty).

Proof. Choose any two points in Fy. Since My is connected, there is an arc
o C My that runs between them; a generic such arc will have its critical
heights at different levels than 0M does. Since o C Mp, a is disjoint from
{P%}. So for some i, the height of a lies between s; and s;y1. Let #1,...,1,
be the critical values (if any) of /2|0Mj between s; and 5,41 and choose a to
minimize the number of points in T, = {t; € h(a)}. If Ty is empty, then o
lies entirely in a region with no critical values, i. e. Mo N A~ (o) =2 Py x 1.
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Project a. to Py and deduce that the ends of Fy lie in the same component of
Po.

We now show that in fact T 1s always empty. For suppose ; is the
greatest value (if any) of T, that is greater than 7 (or, symmetrically, the
lowest value of T¢, below 7). The same argument as above shows that each
subarc of a that lies above P/ can be projected to lie in P41 for any small e.
Since, by assumption, passing through the critical level 7; does not connect
or disconnect any component of P, in fact such a subarc can then be pushed
below 7;. Once this is done for every subarc of a above 7;, T, 1s reduced by
the removal of 7;, a contradiction.

We have thereby shown that any two points in P can be connected by an
arc in Py, so Fy is connected. O]

Definition 2.2. The connectivity graph " of (M, h) is the graph whose ver-
tices correspond to components of M — U'_, P’ and whose edges corre-
spond to components of U?_, (P% — x;). An edge corresponding to a compo-
nent Py of P* — x; has its ends at the vertices that correspond to the compo-
nents of M — U?_, Pt that lie just above and below F,.

[tis an old theorem of Fox [Fo] that any compact connected 3-dimensional
submanifold M of $* can be reimbedded in $° so that the closure of $° — M
is a union of handlebodies. (This theorem has recently been updated to in-
clude other non-Haken 3-manifolds [Th].) As described above, let p: 3R
be the standard height function and M C $° be a 3-manifold in general po-
sition with respect to p. One can refine Fox’s question and ask if M can be
reimbedded in $3 so that the complement is a collection H of handlebod-
ies and, furthermore, each horizontal circle in M (that is each component
of each generic dP") bounds a disk in H. Put another way, the question is
whether a Fox reimbedding of M can be found so that in the complemen-
tary handlebodies a complete collection of meridian disks is horizontal with
respect to the original height function on M.

A first observation is that we may as well assume M does not contain
the poles. For if M contains the north pole, say, let 7 be the highest critical
value of i = p|M on dM, necessarily the image of a maximum on oM.
Alter M by simply removing the ball 171(z —&,%). The result does not
contain the north pole and (after a tiny isotopy) is homeomorphic to M via
a homeomorphism that preserves the height function 2 on dM. So, after this
initial reimbedding, we may think of the pair (M, ) as a planar presentation
of M.

Then the answer is straightforward:
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Proposition 2.3. There is a collection of handlebodies H so that MU y H =

S3. Moreover, there is a complete collection of meridian disks for H whose
boundaries are all horizontal (with respect to h) in M if and only if the
connectivity graph I" of M is a tree.

Proof. The first claim is the central theorem of [Fol].

The second claim follows from the central theorem of [Scl]. This says
that a collection of O-framed curves C C dM contains a complete collection
of meridians for some complementary handlebody H if and only if it has
this property: Any properly embedded surface S in M whose boundary is
disjoint from C separates M.

If T is not a tree then some component Py of some P is non-separating
and clearly such a component can be made disjoint from any finite collec-
tion of horizontal circles in M. If M could be imbedded in $* so that the
complement consisted of handlebodies H in which a complete collection
of meridian boundaries were horizontal with respect to /1, then F, could
be capped off in H by adding disks to dFy. The result would be a non-
separating closed surface in $°, and this of course is impossible.

Conversely, suppose C is a finite collection of horizontal circles in dM
chosen so large that any horizontal circle in 0M is parallel to an element of
C in 0M. Suppose S is a generic non-separating properly embedded surface
in M with boundary disjoint from C. Let o be a generic simple closed curve
in M which intersects S in an odd number of points. Choose such an S to
minimize |[S N (U2, P*)|, where, as above, {s;} is the set of heights of the
unnested saddles and of the external minima and maxima of M.

The first observation is that in fact SN (U2, P*) = (. For otherwise,
choose an innermost circle ¢ of intersection of § with a component Fy of
u?_, P. Here “innermost” means that ¢ cuts off from Py a subplanar surface
P_ whose boundary consists of ¢ and a collection of boundary circles of
Py. Then replacing a vertical collar of ¢ in § with two parallel horizontal
copies of P_ gives a surface which has fewer components of intersection
with UL, P but which still contains a non-separating component, since the
number of intersections with o is increased by 2 - |aN P—| and so remains
odd. Since the boundary of P- is horizontal, generically it is disjoint from
C.

So S lies in a component of M —U?_, P° whose closure we denote M. Let
I(Mo) = [si,5:41], 50 Mp lies in a slice of $> homeomorphic to 82 x [s;, s;11].
So as not to be distracted by other parts of M, let Q be a 2-sphere and
momentarily think of M as lying in Q X [s;,$;11]. Since every horizontal
cross-section of My is connected, at any generic height a cross-section of
Q — M, is a collection of disks. In particular, the boundary components of §
can be capped off in Q x [s;,s;11] to give a closed surface Sy C Q X [si, Siy1].
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Now consider how the arcs aN M, lie in Q x [s;,5;:41]. Any arc with both
ends in Q x (s;) or both ends in Q x (s;41) can be entirely homotoped in
Q X [si,8i+1] into that end and so be made disjoint from .. It follows that
such an arc intersects S an even number of times. Since o intersects § an
odd number of times, it follows that there are an odd number of arcs of
o.M My that run from the top of M, to the bottom. Then, returning again to
M C §3 there must be an odd number of arcs of o — M that run from the
top of My to the bottom of My in M — M. In particular, there is at least one
such arc, so one can construct a closed curve in M that intersects the bottom
of My in a single point p. Hence removing the edge in I" corresponding to
the component of P* — x; in which p lies does not disconnect I'. Since we
can remove an edge and not disconnect I, I" is not a tree. g

3. UNKNOTTED GRAPH COMPLEMENTS

Definition 3.1. For N a compact 3-manifold and A a finite graph, a proper
embedding A C N is an embedding so that ON N A consists of a collection
of valence one vertices of A. These vertices are denoted 0A. The other ver-
tices, some of which may also have valence one, are called interior vertices.

Incase N = B3, $° or §? x I, the pair (N —m(A),dN —n(A)) will be de-
noted (N , Py ) and will be called a graph complement with planar part Py .
Graphs A and N are equivalent if there is a homeomorphism (N,m(A)) =
(N,0(A"). In particular, if ' is any graph obtained from A by sliding and
isotoping edges rel OA then A and A’ are equivalent graphs.

Two graph complements (N, Pp) and (N1, Ppr) will be called equiv-
alent if they are pairwise homeomorphic. In particular, equivalent graphs
have equivalent graph complements.

An interval J C R is proper if it intersects any compact subset of R in a
compact set. Equivalently, it is proper if and only if J = R or J has one of
the forms [a, D], [a,®), (—, D).

Lemma 3.2. Suppose (M, I) is a planar presentation of a compact manifold
M, J C R is a proper interval with endpoini(s) generic for h, and suppose
that in a component M’ of h=1(J) all saddles are nested. Then M’ is home-
omorphic to a graph complement with planar part h=(3J) N M’.

Proof. Since M is connected and contains no unnested saddles, each generic
horizontal cross-section is a connected planar surface, by Lemma 2.1. Since
J is proper, M’ is compact, so we may as well assume J is compact (say
J = [0,1]), though we do not know that 2(M”) = J. We will describe the
graph A for which M” is the complement; the details of the homeomorphism
then follow from standard Morse theory. See Figure 2.
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FIGURE 2. M as graph complement (in B?)

Suppose first that J = i(M”), so each component of h~1(aJ) N M’ is a
non-empty connected planar surface. We will describe A C 8% x I. Each
(circle) boundary component of 2~1({1}) N M’ can be capped off with a
disk to give a two sphere; dually, ~*({1}) "M’ can be thought of as ob-
tained from $% x {1} by removing some vertices. These will be vertices
in dA. As 1 descends from 1 through generic values of 7, each boundary
component of P can be capped off by a disk to give a sphere S’. This gives
an embedding P’ C §'; dually P’ can be obtained from the sphere S by re-
moving a neighborhood of the center of each disk. As 7 varies, these points
form vertical edges in A incident to those vertices of dA that lie at height 1.

Now consider what happens as 7 descends through a critical point of
h|oM. Each such critical point corresponds to an interior vertex of A. In
particular, edges descend from those vertices that correspond to internal
maxima (and descend fo the vertices that correspond to internal minima).
At lower saddles two edges descend into the corresponding vertex and one
edge descends from it whereas at upper saddles one edge descends into the
corresponding vertex and two edges descend from it. There are no external
maxima or minima, for these would necessarily start (or end) a different
planar surface, which could never be connected to M’ since all saddles are
nested.

The argument is little changed if i(M;) # J. Say 1 ¢ h(M’); then there
is an external maximum on M’ at height #,,4, € J and at a generic height
just below it the ball M” N [f;qx — €, 1] can be thought of as the complement
of a radius of B?, and so as a graph complement in B>. The rest of the
construction proceeds as above, though now viewed as a construction in a
collar B> x I. Ultimately M is thereby described as a graph complement
in B3 (orin 8% if also O ¢ h(M”)). O

The case when the graph A is planar will be particularly important. Let
S' x I denote the standard vertical cylinder in $2 x I.

Definition 3.3. A properly imbedded graph Ain N = S° (resp. B> or §* x 1)
is unknotted if it lies in S*> C 3 (resp. B> C B3 or S' x1 C 8* x1I). The
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pair (Np, Py ) is then called an unknotted graph complement with planar
part P . (Note that the number of components of Py determines whether
the ambient manifold is S, B3 or 8% < I.)

More generally, any graph which is equivalent to an unknotted graph will
be called an unknotted graph.

Unknotted graphs are in some sense unique:

Proposition 3.4. Suppose A and A’ are unknotted graphs in N = $3, B>, or
82 x 1. Suppose that dA = A’ C oN.

Then there is a homeomorphism of pairs (N,n(A)) = (N, n(A")) which
is the identity on (0A) = n(0A') if and only if there is a correspondence
between the components of A and the components of A’ with two properties:

e The Euler characteristic of a component of A is the same as the
Euler characteristic of the corresponding component of N' and

e the boundary points of each component of A are also the boundary
points of the corresponding component of \.

Proof. The existence of such a homeomorphism clearly implies that the
partitions and the corresponding Euler characteristics are the same. The
difficulty is in proving the other direction. We consider the case N = §? x I,
for it is representative (and in fact the most difficult).

[t will be convenient to number the p components of A (and the corre-
sponding components of A') in some order A;,i = 1,..., p, and then order
the points AN (% x {1}) = {w;} and IAN (5 x {0}) = {vx} in some sub-
ordinate order, 1. e. so that in the ordering all the boundary points of any
earlier component of A come before all the boundary points of any later
component.

Since A is an unknotted graph we can assume (up to homeomorphism
of the pair (N,m(A)) rel n(d(A))) that A C S' x I C §? x I. In a small
neighborhood of A collapse a forest that is maximal in A among those not
incident to dA. Then each component is the cone on its boundary vertices,
wedged with some circles. (In particular, any component with no boundary
is just a wedge of circles.) Each circle (even those that are essential in the
vertical cylinder S! x I) can be moved (rel the cone point) in 82 x I until
it bounds a tiny disk in S' x I whose interior is disjoint from A. For the
purposes of the following argument, these tiny circles can be ignored, since
the assumption on Euler characteristic means there will be as many tiny
circles on a component of A’ as there are on the corresponding component
of A (namely 1 — ). Hence, with no loss of generality, we may assume A
(and A) consist entirely of collections of cones on (corresponding) subsets
of vertices. (In particular, we henceforth ignore any components with no
boundary.) See Figure 3.
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Since A contains no circles there is a spanning arc of the cylinder S! x I
that is disjoint from A. After an isotopy in ' x I, we may as well assume
the arc is vertical and then break up a neighborhood of this vertical arc
into a sequence of p vertical strips a;; x I C $' x I,i =1,..., p, where each
a;Nayp1,i=1,...,p—1is asingle end point of each.

Now push the first component A; of A into a vertical cylinder C parallel to
S' % I and, exploiting the fact that A; is just a cone on its end points, do this
so that the vertices in dA; appear in their correct order in a vertical strip in
C. Now move this vertical strip (and so A;) to S* x I by moving the strip to
a x I. Similarly place the second component A, in the second strip oy X 1
and continue through all of A. Call the resulting graph A(@omical) — g1 5 |
and observe that the process we have described gives a homeomorphism
of pairs g: (N,m(A))—(N,n(A)). Finally, observe that the process is
so canonical that if we had done the same process on A’ we would have
obtained a homeomorphism of pairs g' : (N,n(A"))—(N,n(A°)) that pre-
serves the orderings. In particular g and g’ could be taken to be the same on
N(0A)) =n(dA")). Then g~lg s the required homeomorphism of pairs. [

If A is unknotted, then M has a particularly simple structure:

Lemma 3.5. An unknotted graph complement is a connected sum of han-
dlebodies.

Note: Here we regard a 3-ball as a handlebody of genus 0.

Proof. The case in which the ambient manifold is B> is representative. We
have A C B> C B?. In a small neighborhood of A collapse a forest that is
maximal among all forests not incident to dA. Then each component is the
cone on its boundary vertices, wedged with some circles. Each circle can
be pushed out of B? (rel its wedge point) and made to bound a tiny disk.
Removing such a circle from A has the effect in the graph complement of
removing a 1-handle, dual to the tiny disk. In particular, with no loss, we
can assume that no such circles arise and so each component of A is a cone
on its boundary vertices.

The proof is then by induction on |dA|. If dA = @) then A is a collection
of isolated vertices, so its complement is a connected sum of balls. If any
component of A has a single boundary vertex, then that component is just
an arc with one end on 0B°; removing it from A has no effect on the com-
plement in B3. So without loss assume each component of A is the cone on
two or more points in §B%. A path in A between two such points divides the
disk B? into two disks. An outermost such path will cut off a disk D from
B? whose interior is disjoint from A. The disk D can be used to d-reduce
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FIGURE 3. Reimbedding A canonically

M and the effect on My is the same as if we had removed one of the edges
of A incident to D. The proof then follows by induction. g

We now describe a few situations that guarantee that a graph is unknotted
in §2 x I. We will be taking the standard height function on $? x I, namely
projection to I. A vertex v in a properly embedded graph A C § <1 is a
Y-vertex if two or more edges are incident to v from above and a A-vertex
if two or more edges are incident to v from below. (A vertex may be both a
A-vertex and a Y-vertex, or neither.)

Example 3.6. Suppose A C 8% x I is a properly embedded graph so that

(1) the edges in A are all monotonic with respect to the projection §? x
I—1.
(2) there are no Y-vertices.
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Then A is an unknotted graph.

Proof. We first simplify A up to graph equivalence. By a small edge-slide
arrange that each vertex is incident to at most two edges below; any vertex
that is incident to a single edge above and a single edge below can be i1g-
nored. If an interior vertex is incident to two edges below, and none above,
then add a small vertical edge above. After these initial maneuvers, each in-
terior vertex of A has valence zero, one or three; in the last case, the vertex
is a A-vertex.

Pick a circle C in % x {1} that contains all the vertices of dA that lie
in 82 x {1}. Ast € [0, 1] descends, the monotonicity of edges means that,
until another vertex of A is encountered, the cross-section AN (8% x {r})
is a collection of points moving by isotopy in $2. Extend the isotopy to
all of $? to get a continuously varying circle C; C $% x {r} that contains
all of AN (8% x {r}). When a valence one vertex (or an isolated vertex)
is encountered, it can be easily added to or deleted from C;, as appropriate,
depending on whether the edge incident to the vertex is incident from below
or from above.

So we only need to worry about A-vertices. As  passes through the level
of such a vertex (which we have arranged to lie in (}), a single point in C;
simply splits in two and we may incorporate the arc between the two points
as part of C. Continue the process down to = 0. Now, in a standard argu-
ment, the continuously varying family of circles C; bounds a continuously
varying family of disks in $? and so there is a height-preserving isotopy of
C; to the standard S x I. O

The fact that, in the proof, the original circle C was ours to choose imme-
diately leads to these additional examples:

Example 3.7. Suppose A C S? x 1 is a properly embedded graph and there
is a generic height t € I so that

(1) the edges in A are all monotonic with respect to the projection §? x
I—1.

(2) There are no A-vertices above t

(3) There are no Y -vertices below t

Then A is an unknotted graph.

Proof. Apply the argument of Example 3.6 separately to $2 x [0,] and (up-
side down) to §? x [z, 1], starting with a circle in 82 x {¢} that contains all
points in AN ($? x {t}). See Figure 4. O

More generally

Example 3.8. Suppose A C 8? x I is a properly embedded graph so that
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(1) there is a generic level sphere S* x {t} for which A intersects S* x
[t,1] in an unknotted graph
(2) the edges in AN [0,1] are all monotonic with respect to the projection
to [0,1]
(3) There are no Y-vertices in AN [0,1].
Then A is an unknotted graph.

Proof. Apply the argument of Example 3.6 separately to S x [0,7] starting
with the circle in $? x {7} which is the base of the vertical cylinder in $? x
[£,1] on which AN (82 x [£,1]) lies. O

The next two examples simply reinterpret earlier examples in light of
Lemma 3.2.

Example 3.9. Suppose (M,h) is a planar presentation of a manifold M
and for an interval J, M’ is a component of h=1(J). Suppose all saddles
in M’ are nested and that all lower saddles occur at higher levels than

all the upper saddles do. Then the pair (M’ ,Paj ) is an unknotted graph
complement.

Suppose (M, 1) is a planar presentation of a manifold M and Med js a
component of 17([a, c]). We will use the following notation: for.J a subin-
terval of [a,c] let M’ = M1~ (J) and for t € [a,c] let O = M@ P

Example 3.10. Suppose (M,h) is a planar presentation of a manifold M
and M%) is a component of ™ '([a,c]).
Suppose that for some b € |a,c]
(1) QY is connected
(2) the pair (M{b <l obu Q°) is an unknotted graph complement.
(3) all saddles in M%?) are nested upper saddles.

Then M%< is an unknotted graph complement.
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[t would be useful to know thatif A; C By, A, C B; are unknotted graphs
in 3-balls B;, and we are given some identification of dA; with dA;, that we
could find some way to attach 0B; to 0B, consistent with that identification
so that the resulting graph is unknotted. Ultimately we will succeed (see
Lemma 4.1) but first we observe that the most obvious way to try to prove
this fact is doomed to fail. Specifically, it may be impossible to match up
the boundary of a disk in B; containing A; to the boundary of a disk in B,
containing A; in a manner that preserves the identification of dA; with dA,.

To see that this is impossible, take the following simple example: let
each A; be three copies of a cone on three points, so that dA; is nine points.
Identify 0A; with dA, so that the resulting graph is the complete bipartite
graph K33. If one could identify the boundary of a disk containing A4
with the boundary of a disk containing A, in a way consistent with the
identification of dA; with dA;, we would have found an embedding of K3 3
into the 2-sphere, which is famously impossible.

Yet there is a way to attach 0B to dB; so that A; U P A, is an unknotted

embedding of K33 in $3: the argument above merely shows that, in order
to demonstrate that such an embedding is unknotted, edges will need to
be slid over edges, inevitably across the sphere dB;. In other words, the
demonstration that there is an unknotted embedding of K3 3 is inevitably a
bit harder than one might at first expect.

[t will be extremely useful to demonstrate that any bipartite graph has an
unknotted embedding in $°, via a construction much as above. That is the
goal of the following lemma. Recall that a bipartite graph with vertex sets A
and B is a graph so that each edge has one end among the vertices of A and
the other end among the vertices of B. We will show that any bipartite graph
can be imbedded in a very controlled way into a cube so that the embedded
graph is unknotted: that is, affer some edge slides the graph can be made to
lie in a plane. Some details of its structure will be crucial in the discussion
of braid equivalence in Section 4.

Lemma 3.11. Let A be a finite bipartite graph, with vertex sets A and B.
Then there is an embedding of A in the cube I x [—1,1] x I so that:
(3) Each edge in A is monotonic with respect to the y-coordinate. That
is, each edge projects to [—1, 1] with no critical points.
(4) The edges may be isotoped and slid over each other (perhaps de-
stroying the bipartite structure) in the cube, so that afterwards the
resulting graph lies entirely in the face I x [—1,1] x {0}.

Moreover, given a specific edge e in A, such an embedding can be found
so that e = {0} x [—1,1] x {0} and e never moves during the isotopy.



15

Remark: Note that the last numbered condition implies that A is an
unknotted graph, since this property is unchanged by edge slides. (Techni-
cally, A is unknotted only in a larger cube, for the given cube contains e in
a face and so does not contain A as a proper subgraph.)

Proof. We will assume A is connected; if not, the following argument can
be carried out in each component separately.

Place the designated edge e as described. Denote its ends by ap = (0, —1,0)
and by = (0, 1,0). The A-distance between two vertices in A will mean the
number of edges in the shortest path between them. With no loss, order the
indices of the remaining vertices @;, 1 <i < |A| — 1 of A subordinate to their
A-distance from ap, 1. e. so that, for any pair of indices i; and iy, if a;,
is closer in A to ag than a;, 1s, then iy < ip. (We do not care how vertices
are ordered among those that are A-equidistant from ag.) Similarly order
the indices of the remaining vertices b;,1 < j < |B| — 1 of B subordinate to
their A-distance from ag. After this reordering, place each a; at the point
(i/|A],—1,0) and each b at the point (j/|B|,1,0).

At each vertex of A add a vertical (1. e. z-parallel) arc of length 1. That
is, attach to each (i/|A|,—1,0) the arc {(i/|A],—1)} x [0,1] and to each
(j/|B|,1,0) the arc {(j/|B|,1)} x [0, 1]. In order to simplify somewhat the
description of A, the edges of A will originally be placed so that they are
horizontal (i. e. parallel to the x — y plane) with ends on these vertical arcs.
A'is then finally recovered from the simplified description by collapsing the
vertical arcs {(i/|A],—1)} x [0,1] and {(j/|B|,1)} x [0, 1] back down to A
and B respectively.

Let ¢ be the maximal A-distance of any vertex in A from ag. We will
place the edges of A in a sequence of ¢ stages; the edges placed at the k™"
stage lie near the horizontal square I x [—1, 1] x {k/(}. Specifically, at the
k'™ stage select all edges of A which have the property that their most A-
distant end is a A-distance k from ag. (The other end of each selected edge
must then be A-distance k — 1 from aq.) If there are p such edges, select
a sequence of p horizontal planes whose height (i. e. z-coordinate) is near
k/¢ and place each edge in a separate horizontal plane, as a linear edge
connecting the appropriate a; to the appropriate b, with parallel edges on
adjacent horizontal planes. The linear embedding ensures that each edge is
monotonic in the y-coordinate, a fact that is unchanged when the vertical
arcs {(i/|A],—1) x [0,1]and (j/|B|,1)} x [0, 1] are collapsed to A and B to
create A. We have thereby described an embedding of A into the cube that
clearly satisfies the first three requirements. See Figure 5.

[t remains to describe how the edges of A can be slid and isotoped, with-
out moving the vertices A, B or the edge e, so that afterwards the resulting
graph lies entirely in the face I x [—1,1] x {O}. The description of this
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7
) b, ’Lé ;

FIGURE 5. Putting A in the cube in layers

sliding mimics the k stages of the construction of A and we will describe
them in the graph above as if we had not collapsed the vertical arcs, but also
mostly focusing on the x — y coordinates.

At the first stage of the construction above, exactly those edges with one
end on aq are added, near the horizontal plane z = 1/¢. By our choice of
ordering of the b, the other ends of these edges lie exactly on the vertices
bo, ...,bq, for some g > 0. (If any two of these edges are parallel, slide
one over the other to form a tiny circle which we may henceforth ignore).
Then, if g > O the rightmost edge, i. e. that connecting ag to by = (¢/|B|, 1)
may be slid over the edge connecting ag to b, until instead it is just the
straight interval between b,_; and by, i. e. the interval [q —1,q] x {1}.
Continue in this manner until all the edges but e have been slid to the line
y = 1 to constitute the single interval [0, q] x {1}, still in the plane z = 1//.
See Figure 6. Now slide all these edges up vertically to height just below
7 =2/ and begin the second stage.

Because of our ordering of the a;, there is a p > 1 so that the vertices
ai,...,ap, constitute exactly the ends in A of edges included at the second
stage. Moreover the other end of each such edge lies among the by, ..., by,
which, after the slides we have done on the edges of the first stage, all lie
on the L-shaped graph e U (]0,q] x {1}). This L-shaped graph gives a way,
much as above, of sliding the edges added at the second stage until they are
either tiny circles (henceforth ignored) or constitute the straight line from ag
to ap, i. e. the line [0, p] x {—1} x2/(. See Figure 6. Now slide this whole
graph vertically up until it is near the plane z =3 /¢ and continue the process.
By the time we have reached the ¢/ stage, the graph consists (now at height
z = 1) of arcs in the lines y = 41 that contain all the vertices, together
with the original edge e between agp and by (and some tiny circles), all of
which then lie in the square I x [—1,1] x {1}. Now collapse the vertical
direction, bringing the graph down to I x [—1, 1] x {0}. This process (when
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reinterpreted as slides on the actual embedding of A, in which the vertical
arcs do not appear) verifies the last numbered condition. g

Slide 1

[R5t TSN Y

Slide 2

FIGURE 6. Sliding A in the cube by layer

4. BRAID EQUIVALENCE AND UNKNOTTED GRAPHS

Suppose (M, h) is a planar presentation and ¢ € R is a regular value of
h. Cut M along P' and reattach the two copies of P' by an orientation pre-
serving homeomorphism P'—P' that is the identity on the circles dP'. The
result is a possibly new manifold M’ and a planar presentation /' : M'—R.
Note that /i'|oM’' = h|oM. The two planar presentations (M, 1) and (M',1')
are called braid equivalent. More generally, two planar presentations (M, /1)
and (M’ I') are called braid equivalent if one is obtained from the other by
a finite sequence of such operations, called braid moves.

Under such braid moves, many more 3-manifolds with planar presen-
tation can be made unknotted graph complements. The following lemma
illustrates why. The setting is this: Suppose N4 and Np are each home-
omorphic to either B> or §2 x I and P4 (resp. Pg) is a sphere component
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of the boundary of Ny (resp Np). Let N be obtained from identifying Py
with Pp (so in particular N is homeomorphic to §3, B or §2 x I). Suppose
further that A C N is a properly embedded graph that is in general position
with respect to P4 = Pp;let Ay = ANN4and Ap = AN Np.

Lemma 4.1. If both A4 and Ap are unknotted graphs, then there is a home-
omorphism ¢ : PA— Pp such that

(1) ¢ coincides with the original identification of Py with Pp near the
points AN Py and
(2) ApUAp is an unknotted graph in Ny Uy Np.

Proof. The case in which both N4 and Np are copies of S? x I is repre-
sentative (and in fact the most difficult) and it will be convenient to take
Ny = 8% x[-2,0]and Ny = $? x [0,2].

Construct an abstract bipartite graph G with vertex sets A and B as fol-
lows: There is a vertex in A (resp B) for every component of A4 (resp Ap).
There 1s an edge for every point ¢ in P4N A = PN A. Identify the ends of the
edge corresponding to ¢ to the points in A and B corresponding to the com-
ponents in A4 and Ag on which ¢ lies. Imbed G in the cube I x [—1, 1] x I as
described in Lemma 3.11 and embed the cube in $? x [—2,2] with the x — z
square cross-section of the cube lying in the $? factor and the y-coordinate
of the cube projecting to the interval factor in §% x [—1,1] C §? x [-2,2].

For each vertex v in dA N ($? x {—2}) add a monotone edge e, C % x
[—2,—1] to G with one end of e, on v and the other end on the vertex in
A corresponding to the component of A4 on which v lies. Similarly, add a
monotone edge in % x [1,2] for each vertex in dA N ($? x {2}), with one
edge on the vertex and the other on the appropriate vertex in B. Call the
resulting graph G... See Figure 7.

The graph G4 as embedded, has three important properties:

e It follows from the Remark following Lemma 3.11 that G4 is an
unknotted graph in N.

e It follows from Proposition 3.4 and Example 3.7 that (perhaps after
wedging some tiny circles to G, and adding tiny bouquet-of-circle
components to Gy ) the graphs G4 N N4 and A4 are equivalent un-
knotted graphs, via an equivalence that is the identity near 0A4.

e Similarly, (again perhaps after wedging on tiny circles and adding
tiny bouquets of circles) the graphs G4 N Np and Ap are equivalent
unknotted graphs via an equivalence that is the identity near dAg.

Let g4 : P4—P4 and gp : Pp—Pp be the homeomorphisms given by the

latter two equivalences. Let ¢ = nggl : Po—Pp. Then the construction
N4 Uy Np changes A to a graph equivalent to G, which is unknotted. [
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FIGURE 7. A braid move makes A unknotted

This has as an immediate corollary, analogous to Example 3.10. Suppose
(M, ) is a planar presentation of a manifold M and Med js a component
of h=!([a,c]). We again will use the following notation: for J a subinterval
of [a,c] let M = M@= (J) and for t € [a,c] let @ = M@ P

Corollary 4.2. Suppose (M, h) is a planar presentation of a manifold M
and M%) is a component of ™ '([a,c]).
Suppose that for some b € |a,c]

(1) QY is connected
(2) the pair (M[b <l obu Q°) is an unknotted graph complement.
(3) all saddles in M@ are nested.

Then M1 js braid-equivalent to an unknotted graph complement.

Proof. The proof is by induction on the number of critical points of /i on
dM that occur in MI®]. If there are none then of course M%) 2 M{P<] and
there is nothing to prove. If the highest singularity in M) is a maximum
or a minimum (necessarily an internal max or min since Q” is connected
and all saddles in M%?] are nested) then for ¢ just below the corresponding
critical value, M) is a standard graph complement and we are done by
induction. Similarly, if the highest critical value in [a, D] is a (nested) upper
saddle then apply Example 3.10 to complete the inductive step.

The only remaining case is when the highest critical point is a lower sad-
dle, 1. e. it suffices to consider the case in which the only critical point in
M) s a single nested lower saddle. But even in the more general case
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that all saddles in M%*! are nested lower saddles, the proof is an immedi-
ate consequence of Lemma 4.1 and Example 3.9 with the latter applied to
M!*?! which has no upper saddles. g

We hope next to understand what happens to planar presentations of un-
knotted graph complements at unnested saddles. So let a be a critical value
with corresponding critical point xp, an unnested saddle. For small €, let
M=&+8 be the component of 1~ ([a— &, a+¢]) that contains xo. Here we
have taken € so small that xq is the only critical point of /2|oM in Ml¢—€a+€],
Then for, say, a lower saddle, P**¢ intersects M~ &4+¢€] in two connected
planar surfaces denoted P, and P> and P*¢ intersects M4~ &4+%l in a sin-
gle connected planar surface P5. The roles of +¢ are reversed for an upper
saddle. We will be interested only in the case in which each P; separates M.
The component of M — P, not containing the saddle point will be denoted
M;. See Figure 8.

FIGURE 8

The following two lemmas can be informally described as showing that
when two of the M; are known to be unknotted graph complements, so is the
result of their adjunction at the saddle point. The first (Lemma 4.3) does the
easy case: when the M, that are known to be unknotted graph complements
both lie above (or both lie below) the saddle point. The second (Lemma
4.4) covers the more complicated case when one of the two M; known to
be an unknotted graph complement lies above the saddle and the other one
lies below. In order to best connect to the framework of our earlier notation
and discussion, it will be advantageous to argue the former case at a lower
saddle and the second case at an upper saddle, but that strategy is just a
convenience. The distinction between the lemmas is not whether we are
at an upper or a lower saddle, but rather whether we are given information
about components M; lying on the same side (ie both above or both below)
of the saddle or on opposite sides of the saddle.
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Lemma 4.3. If (M;,P,) and (M,, P>) are unknotted graph complements in
B3, then so is (M — interior(Ms), Ps), the component of the complement of
P; that contains both My and M.

Proof. As remarked above, we will construct the argument for the case of a
lower saddle, but the proof extends immediately to an upper saddle by just
flipping everything over.

A useful model of an unknotted graph in B is this: Ina cube I x I x I, let
A be a subgraph of the square I x I x {1/2} with a single boundary vertex on
the top I x {1} x {1/2} and the rest on the bottom 7 x {0} x {1/2}. (Here
projection to the y-coordinate models height /). The single vertex on the top
reflects the description in Lemma 3.2 of how a planar presentation with a
single external maximum gives rise to an unknotted graph complement in a
ball (the center of the ball corresponds to the highest vertex). Furthermore,
if we think of the vertex at the top of the box as stretching over the top and
all the sides of the box, the planar part of the complement of A is precisely
the bottom of the box, namely (I x {O} x I) —n(dA). See Figure 9.

FIGURE 9. Modelling unknotted graph complements occur-
ing above a lower saddle

The effect of passing through an unnested lower saddle is to take two such
boxes (each containing one P; on its bottom) and glue the side {1} x I x 1
of one to the side {0} x I x I of the other, obtaining a graph complement
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with planar part the boundary sum of the original two planar parts. The
result is again a cube with the same sort of graph deleted, with the sole
difference that now there are two boundary vertices of the graph on the
top of the box. But since the top of the box is entirely disjoint from the
planar part of the graph complement, up to graph complement equivalence,
nothing is changed by sliding one top boundary vertex to the other along
the top arc 7 x {(1,1/2)}, and then sliding an end of one edge down the
end of the other, after which there is again a single boundary vertex on the
top. In particular, the result is again an unknotted graph complement in the
cube. 4

A much harder situation to analyze is this:

Lemma 4.4. If (M5, P5) and (M,, P>) are unknotted graph complements in
B3, then the pair (M — interior(M, ), Py) is braid equivalent to an unknotted
graph complement in B3.

Proof. As remarked above, we will construct the argument for the case of
an upper saddle, but the proof extends immediately to a lower saddle by just
flipping everything over.

The initial difficulty is to determine a good model for what we are trying
to show, analogous to the model in Lemma 4.3. Let A4, Ap be unknotted
graphs in the 3-ball whose complements give M, and M5 respectively. In-
spired by the model above (with the y-coordinate again modelling the height
function /, but this time for an upper saddle) choose two cubes C,,C3 in R>,
as follows (see Figure 10:

() &= [07 1] X [_270] X [_17 1]
(2) GG = [072] X [072] X [_17 1]

Let C, = G, U Gs, which is itself homeomorphic to a 3-ball.

Construct an abstract bipartite graph G with vertex sets A and B as fol-
lows: There is a vertex in A (resp B) for every component of A4 (resp Ap).
There is an edge for every component ¢ of dFP;. Identify the ends of such an
edge to the points in A and B that represent the components of A4 and Ap
on which ¢ lies. Imbed G in the cube I x [—1,1] x I C Cy as described in
Lemma 3.11 with the special edge e chosen to be that which corresponds to
the boundary component of P which is incident to the saddle singularity.
(Notice that e lies on the face {0} x I x I of dCy.)

The vertices of B are strung out along the interval 7 x {1} in the x —y
plane, and all of them but a vertex of e lie in the interor of Cy. Add
edges to G that connect these vertices of B linearly to the corresponding
vertices in the interval {1} x [1,2] in the x — y plane. Explicitly, add an
edge e;,j=1,...,|B| — 1 that connects the point b; = (j/|B|,1,0) € B to
the point (1,2 — j/|B|,0). Next add edges that connect these points linearly
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to a collection B’ of points in the line [1,2] x {(0,0)} C dCs. This collection
B’ is chosen so that each point in B’ corresponds to a boundary component
of P;, other than the one containing the saddle singularity. Equivalently,
each point ' € B’ corresponds to a vertex in dAp that doesn’t also naturally
correspond to a vertex in dA4. Such a boundary vertex lies on a compo-
nent of Ap to which a vertex b; has been assigned; append a linear edge in
[1,2] % [0,2] x [—1, 1]from the other end of ¢, to b'. (We pick the ordering
of B’ in the interval [1,2] x {(0,0)} so that these edges do not intersect.)
Finally, append an appropriate number of tiny circles to GNC, and GN G5
so that each component has the same Euler number as the corresponding
component of A4 and Ap. Let Gy be the graph in Cy given by this con-
struction. Note that it is a proper graph in Ci; whose planar part P, we take
to be ([1,2] x {0} x [-1,1]) =m(G4), i. e. the complement of G4 UC; in
the bottom face of Cs3. See Figure 10.

v
-1

0

FIGURE 10. Modelling unknotted graph complements
above and below an upper saddle

Let P,_; C R® denote the plane y = 0. The graph G has been constructed
to have these properties:
(1) For i = 2,3, the graph I'; = G4 N (; is unknotted, with planar part
(Pc—;NC;) —n(G4 ), by Example 3.6.
(2) Each component of I'; (resp I'3) is homeomorphic to a correspond-
ing component of Ay4 (resp Ap) so that the homeomorphisms agree,
where they are simultaneously defined, namely on 0", C dI'5.
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(3) The graph G4+ C Cy is unknotted by Lemma 3.11.

The first two properties guarantee (via Proposition 3.4) that there is a
homeomorphism of pairs (M;,P;) = (C; —m(Gy), (P—;NG) —n(Gy)). In
particular, much as in Lemma 4.1, M5 can be cut off from M and reattached
so that the pair (M — interior(M;), P; ) becomes pairwise homeomorphic to
(Cu —n(G4),Py). Butsince Gy is unknotted, the latter is an unknotted
graph complement. Hence (M — interior(M ), Py) is braid equivalent to a
standard graph complement. g

5. HEEGAARD REIMBEDDING

Theorem 5.1. Suppose (M, h) is a planar presentation of a 3-manifold with
connectivity graph a tree. Then (M, i) is braid-equivalent to an unknotted
graph complement.

Proof. 1f the connectivity graph I" is a vertex (i. e. all saddles are nested)
the result follows easily from Corollary 4.2. So we will assume that I" has at
least one edge. In that case, Lemma 4.1 demonstrates that the proof of the
theorem will follow from the proof of the following relative version. g

Proposition 5.2. Suppose (M, h) is a planar presentation of a 3-manifold
and I is its connectivity graph. Suppose y C I' is an edge such that a com-
ponent T'o C T of the complement of y is a tree. Let Py C M be the planar
surface corresponding to y and My C M be the component of M — Py that
corresponds to T'g. Then (Mo, Py) is braid equivalent to an unknotted graph
complement.

Proof. The proof will be by induction on the number of edges in I'y. Let v be
the vertex of I'g that is incident to y and, in the terminology of Lemma 2.1,
let M, be the component of M — U, P corresponding to v, with (M, ) =
[$i,8i11]. We will assume that the saddles at heights s; and s;11 both involve
the particular component M, since the argument is easier if either or both
do not.

Without loss of generality we will assume that the planar surface corre-
sponding to the edge vy is at the bottom of M,, 1. e. near height s;. Consider
first the saddle x4 at height s;1;. Let Q be the connected planar surface
M, N PBi+178) and M, be the component of M — Q that contains x. If x 1s
an upper (unnested) saddle then Q corresponds to an edge in Iy and so by
inductive assumption the pair (Mp, Q) is braid equivalent to an unknotted
graph complement. See Figure 11a. If x; is a lower saddle then the two
contiguous components of 2~ !(s;y1 +¢) each represent edges in 'y and
(Mp, Q) is again an unknotted graph complement by inductive assumption
combined with Lemma 4.3. See Figure 11b. So in any case, (Mp, Q) is
braid equivalent to an unknotted graph complement.
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FIGURE 11

Now consider the saddle x_ at height s;. See Figure 12. If it’s a lower
saddle, then the planar surface P*¢ N M, is Py, the planar surface corre-
sponding to the edge y and the proposition follows from Corollary 4.2. If
the saddle x_ is an upper saddle, then Py is one of the two connected pla-
nar surfaces in P5~% contiguous to the saddle. Let by be the other one,
with corresponding edge y' C Ty, and let P be the connected planar surface
M, N P5T8. Now by inductive assumption, the component of My — by not
containing x_ is an unknotted graph complement and by Corollary 4.2 so is
the component of My — P not containing x_. Then the proposition follows
from Lemma 4.4.

FIGURE 12

4

Corollary 5.3. Suppose N C $°, p: S—R is the standard height function,
N contains both poles, and the connectivity graph of > — N is a tree (so in
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particular S° — N is connected). Then there is an embedding f: N—S° so
that

(1) p=pfonN,i.e. | preserves height and
(2) S — f(N) is a connected sum of handlebodies.

Proof. 1t follows from Theorem 5.1 that M = $® — N is braid-equivalent to
a connected sum of handlebodies. We will show that a braid move on M
defines a reimbedding of N.

Let S be the 2-sphere p~1(7) and P = ' — N = SN M. Then a braid
move of M ata generic level 1 is given by cutting M open along P and then
reattaching P’ to itself by a homeomorphism ¢ : P'— P’ that is the identity
on dP'. In particular, the homeomorphism ¢ extends via the identity on S —
P' 10 a self-homeomorphism of $2. But any (orientation preserving) self-
homeomorphism of the sphere is isotopic to the identity, so in fact there is
a level-preserving self-homeomorphism S? x [t — ¢,7 4 €] that is the identity
on one end and the extended ¢ on the other. Use this self-homeomorphism
to redefine the embedding of N in the region h~![f — &,7 + ¢]. The effect on
the complement M is to do the original braid move. g

Corollary 5.4. Suppose p: S>—R is the standard height function and H C
83 is a handlebody for which horizontal circles constitute a complete col-
lection of meridian disk boundaries. Then there is a reimbedding f : H—S>
so that

(1) p=pfonN,i.e. | preserves height and
(2) HU(S® — H) is a Heegaard splitting of $°.

Proof. As noted before Proposition 2.3, we may as well assume that H con-
tains both poles. The condition on horizontal disks guarantees, via Propo-
sition 2.3, that the connectivity graph of $* — H is a tree. Then Corollary
5.3 says there is a height-preserving reimbedding of H so that $*> — H is a
connected sum of handlebodies. But since dH is connected, S° — H is in
fact simply a handlebody. g

6. KNOT WIDTH

For standard definitions about knots in $3, see [BZ], [L] or [R].

Definition 6.1. As above, let p: S° — R be the standard height function
and let S' denote p=1(1), a sphere if |t| < 1. Let K C S° be a knot in general
position with respect to p and c,...,c, be the critical values of h = p|K
listed in increasing order; i.e., so that c; < --- < ¢,. Choose ry,...,1r,_1
so that ¢; < ri < ¢iy1,i = 1,...,n—1. The width of K with respect to 7,
denoted by w(K,h), is 3; KN 8"i|. The width of K, denoted by w(K), is the
minimum of w(K', ) over all knots K' isotopic to K. We say that K is in thin
position if w(K, ) = w(K).
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We note as an aside that there is an alternative way to calculate width,
inspired by a comment of Clint McCrory. For the levels r; described above,
call r; a thin level of K with respect to /1 if ¢; is a maximum value for /1 and
Ci+1 1s a minimum value for . Dually 7; is a thick level of K with respect to
I if ¢; 1s a minimum value for /1 and ¢y 1s a maximum value for /1. Since
the lowest critical point of /i is a minimum and the highest is a maximum,
there is one more thick level than thin level.

Lemma 6.2. Letr;,,...,r; bethe thick levels of K andrj,,...,r;_, the thin
levels. Set a;, = | K NS"1| and bj, = | K N S"i|. Then

k k-1
2w(K) = 2 a; — ,z b3
=1 =1

Proof. This can be proven by a direct computation and repeated use of the
Gauss Summation Formula. It is illustrated in Figure 13. Each dot repre-
sents two points of intersection with a regular level surface between two
critical level surfaces. For instance, the dots in Figure 13 represent the case
in which the critical values, listed from the highest to the lowest are a max-
Imum, maximum, maximum, maximum, minimum, minimum, maximum,
maximum, minimum, minimum, maximum, maximum, maximum, mini-
mum, minimum, minimum, minimum, minimum. O

FIGURE 13. Dark dots indicate squares that are added;
white dots indicate overlap squares that are subtracted

Corollary 6.3. Suppose K is a knot in an unknotted solid torus W C $°.
Suppose f: W—S is a knotted embedding and K' = f(K). Then w(K') >
w(K).
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Proof. Let p: $°—R be the standard height function. Isotope K’ so as to
minimize its width with respect to this height function and let H denote
the image of f(W) after this isotopy. Each generic 2-sphere §* = p~1(r)
intersects dH in a collection of circles, each of them unknotted since they
all lie in S”. By standard Morse theory, there must be a generic value of ¢
for which one of the circles ¢ C dH NS is essential in dH and that circle
can’t be a longitude, since H is a knotted torus. Hence ¢ must be a meridian
circle. It follows from Corollary 5.4 that there is a reimbedding g of H in
$3 that preserves height but after which H is unknotted. The reimbedding is
defined via braid moves on M = 3 — H; after perhaps adding a number of
Dehn twists to one of the braid moves near a meridinal boundary component
of P =MnN S, we can take this reimbedding to preserve a longitude of H.
Soin particular, g(K') is isotopic to K in % and still has the widthof K. 0

Corollary 6.3 can be applied to composite knots, via the following stan-
dard construction. Let K = K;#K, be a composite knot with decomposing
sphere S. Then 9(S® —n(K U S)) has two components. Each of these com-
ponents is a torus, called a swallow-follow torus. Each of these tori bounds
a solid torus in S> that contains K ; the torus 7 whose core is parallel to K;
is said to follow K; and swallow K. Similarly, the other torus 7, follows K;
and swallows K;. The torus 77 exhibits K as a satellite knot of K; with pat-
tern K>, and symmetrically for 75. Therefore, when Corollary 6.3 is applied
to each 7; in turn, we get

Corollary 6.4. For any two knots K1, K,
1
w(K1#K5) > max{w(Ky),w(Ky)} > E(W(Kl) +w(K3)).

Of course the construction can be iterated to give

Corollary 6.5. w(K #...#K,) > max{w(Ky),...,.w(Kyp)} > %(W(Kl)—l—- .

Proof. For each K; there is a torus that swallows K; and follows the con-
nected sum of the remaining summands. g

It appears that the inequality w(K #K>) > max{w(K;),w(K>)} may in
fact be the best possible. It is argued in [ST] that there are knots K so
that for any two-bridge knot L, w(K#L) = w(K) and, less persuasively, that
similar examples can be constructed for any given bridge number higher
than two.
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