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IT HAS long been conjectured that surgery on a knot in S3 yields a reducible 3-manifold if 
and only if the knot is cabled, with the cabling annulus part of the reducing sphere (cf. [7.8, 
9, 10, 111). One may regard the Poenaru conjecture (solved in [S]) as a special case of the 
above. More generally, one can ask when surgery on a knot in an arbitary 3-manifold A4 
produces a reducible 3-manifold M’. But this problem is too complex, since, dually, it asks 
which knots in which manifolds arise from surgery on reducible 3-manifolds. In this paper 
we are able to show, approximately, that if M itself either contains a summand not a 
rational homology sphere or is a-reducible, and M’ is reducible, then k must have been 
cabled and the surgery is via the slope of the cabling annulus. Thus the result stops short of 
proving the conjecture for M = S3, but (see below) does suffice to prove the conjecture for 
satellite knots. 

The results here are broader than this; for a context recall the main result of [3]: 

GABAI’S THEOREM. Let k be a knot in M = D2 x S’ with nonzero wrapping number. If_ci’ 
is a manifold obtained by non-trivial surgery on k then one of the following must hold: 

(1) M = D2 x S’ = M’ and both k and k’ are 0 or l-bridge braids. 
(2) M’ = WI # W,, where W2 is a closed 3-manifold and H, ( W,) isjnite and non-tritial. 
(3) M’ is irreducible and aM ‘ is incompressible. 

It is this theorem we generalize to many other manifolds M. We also examine case (2) 
and show that it only arises (i.e. M’ is only reducible) if k is cabled with cabling annulus 
having the slope of the surgery. (For a detailed look at case (I), see [6] or Cl].) Specifically 
we have: 

THEOREM. Let M be a compact orientable 3-manifold. Suppose k is a knot in M with 
M - k irreducible and d-irreducible. Let M’ be a manifold obtained by Dehn surgery on _ci, 
with k’ c M’ the core of thefilling torus. If dM compresses in M or M contains a sphere not 
bounding a rational homology ball then either 

(a) M’ = D2 x St = M and both k and k’ are 0 or l-bridge braids 

(b) M’ = D2 x S’, M = D2 x S’ # Lfor some Lens space L, k is the knot sum of the core 
of L and a O-bridge braid in D2 x S’, and k’ is the cable on a O-bridge braid. 

(c) k is cabled and the slope of the surgery is that of the cabling annulus or 
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(d) iU’ is irreducible. No torus component of 2M compresses in both M and M’. Any pair 
of simple closed curves c, c’ c dM which compress in .M and M’ respectively must intersect. In 
fact, ifill contains a sphere not bounding a rational homology ball, M’ is d-irreducible. 

Remarks. Gordon-Litherland [8] give examples of two reducible 3-manifolds M and 
M’, each obtained from the other by surgery on a non-cabled knot. But in each the unique 
reducing sphere bounds a rational homology ball. This shows we need the assumption that 
some reducing sphere in M bounds no rational homology ball. 

In case (d) we cannot hope to conclude that M’ is also d-irreducible. Indeed, take for M a 

solid handlebody and for k a knot parallel, via an annulus A, to a curve c in dM for which 
SM - c is incompressible. Let M’ be obtained by surgery on k with slope that of ZA n rj( k). 
Then clearly c compresses in M’ yet M and M’ satisfy none of (a), (b), (c) above. 

A sample application of the theorem: 

4.5 COROLLARY. If surgery on a satellite knot k in S3 yields a reducible 3-manifold, then k 
is cabled. 

We assume familiarity with the terminology of [13]. 
Here is an outline of the paper. $1 and 2 are fairly technical. The goal is to show that if a 

/I-taut sutured manifold has a particular kind of disk or sphere in it, then one can construct, 
as in [ 131, a P-taut sutured manifold hierarchy for which every term contains such a disk or 
sphere. On first reading, Definition 1.1 and Theorem 2.5 suffice for understanding the rest of 
the paper. 

In $3 we formalize an object first used by Gabai in his proof of the Poenaru conjecture 
[S]. This “Gabai disk” is used here in two entirely distinct ways: first, as in [YJ, it guarantees 
the existence of an x-cycle (terminology from [2]) which in turn provides a new homologous 
surface intersecting the knot in fewer points. Second, an Euler characteristic argument on 
the graph inside the Gabai disk provides a cabling annulus for k (see 3.4). 

$4 can be regarded as the heart of the argument and 4.3 as the central theorem. Its proof 
exploits sutured manifold hierarchies of the special type created in $1 and $2. Hierarchies are 
needed on the manifold both before and after surgery. 

$5 prepares to translate the results of $4, which are results about sutured 3-manifolds, 
into standard 3-manifold notions of d-reducing disks and reducing spheresThe central 
point is that a 3-manifold with a pair of disjoint simple closed curves on its boundary can 
usually be given a taut sutured manifold structure for which the curves are disjoint from the 
sutures. This is perhaps of independent interest. 

$6 then contains the proof of the main theorem stated above. 

41. ADMISSIBLE DISKS A&i SPHERES 

1.1 Definition. Suppose (M, y) is a /I-taut sutured manifold. A special torus is a torus 
T c M in general position with respect to fi and having a compressing disk D so that the 

decompositions (M, y) f (M’, 7’) -f: (M “, 7”) are B-taut. A proper disk (D, cYD) c (M, R, ) 

is admissible if it compresses a component of R * other than a special torus. A sphere in M is 
admissible if it does not bound a rational homology ball in iM. Note that since M is fi- 
irreducible and R * is /?-incompressible, any admissible disk or sphere intersects /I. Note also 
that if a 2-handle in M is attached to an admissible 2-sphere, one of the two resulting 
2-spheres is also admissible. 
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The goal of this section and the next is to show that if (M, 7) has an admissible disk or 
sphere then it has a &taut sutured manifold hierarchy with an admissible disk or sphere at 
each stage. In this section we show how to construct a single decomposition preserving the 
existence of an admissible disk or sphere. In the next we show how to complete an entire 
hierarchy. 

1.2 LEMMA. Suppose (M, y) is a P-taut sutured manifold with H,( M, S&i) # 0, and E is 
an admissible disk or sphere for M. Then there is a p-taut sutured mantfold decomposition 
(M, y) + (M ‘, y’) along a non-separating surface S so that (M ‘, 7’) also admits an admissible 
disk or sphere. 

Moreover, the decomposition by S may be made to respect a given parameterizing surface 
in M. 

Proof If image( H,( M) + Hz (M, dM)) # 0, choose a B-taut closed non-separating 
connected surface S in M. Alter E rel dE so that among all such choices 1 S A E 1 is minimized. 
Let (M’, y’) be the sutured manifold obtained by decomposition along S. Since S is closed 
and B-taut, (M’, y’) is P-taut. If S is disjoint from E, then E remains admissible in M’. If some 
component of S n E were inessential in S, then a disk switch along an innermost such circle 
in S would alter E, lowering IS A E I. So S intersects E only in circles essential in S. An 
innermost disk E’ of E cut off by S is a compressing disk for S in M. If S is not a torus, then 
E’ is an admissible disk for M’. If S is a torus, then S compressed along E’ is an admissible 
sphere for M’, since S is non-separating. 

Henceforth we therefore make: 

Assumption A. a: Hz (M, aM) + H, (aM) is injective and non-trivial, i.e. M contains 
non-separating surfaces, but none of these are closed. 

Claim 1. There is a non-empty disjoint collection C of closed oriented simple closed 
curves in aM such that 

(a) C bounds a non-separating surface in M (i.e. [C] # 0 is in image(Z: H, (M, aM) --* 

H, (aM)) 
(b) C is disjoint from aE 
(c) any given component of y intersects every component of C with the same orientation 
(d) no subcollection of C is null-homologous in dM. 

Proof of Claim 1. If E is non-separating then by Assumption A, E is a disk and SE is 
non-separating in dM. Then just take for C a curve parallel to dE. So assume E is separating. 

At least one component M0 of M - E has H,(M,, aM,) # 0; let (T, 2T) c (M,, aM,, 
- E) be a non-separating surface in Mo. Then aT satisfies (a) and (b). If some component of 
y intersects dT in points of opposite sign, tube together adjacent points of opposite sign in 7, 
cancelling them all by pairs. This modifies Tuntil dT satisfies (c) as well. Finally, remove any 
collection of components of aT which is null-homologous in aM. This doesn’t change [aT] 
in H, (dM) so (a) is still satisfied, but ensures that dT satisfies (d) as well. This proves the 
claim. 

Proof of 1.2 (resumed). According to [13,2.5 and 2.61 there is a connected taut surface 
(S, 8s) c (M, dM) such that 

(a) dS lies in the oriented train-track given by C u y 
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(b) SS passes at most once through any arc of C - 7 
(c) S induces a taut-sutured manifold decomposition (M, 7) + (M’, 7’) respecting the 

given parameterizing surface. 

Let i-,.CI denote the union of all components of ?M containing elements of C along 
which some component of ?S runs. By Claim 1 (d) no component of 8, M is a sphere. 

Case 1. There is a component ye of y which bounds a disk in c?,M. 
With no loss, assume yO bounds a disk D_ lying entirely in R_ . We may assume &S is 

disjoint from D_, though dS may contain some components parallel (with orientation) to yO 
in R + . Since no component of de M is a sphere, ye does not bound a disk in R + . Neither 
does it bound a disk in R’,. Indeed, if ye bounded a disk D in R’+, which is the union of S and 
pieces of R + glued together along components of dS n R + , D would have to contain S. But 
then D u D _ , when pushed slightly into M, would be a non-separating closed surface in M, 

contradicting Assumption A. 
Since ‘me bounds no disk in R’+, a curve parallel to ye in R’+ is incompressible in R’+ but 

bounds a disk in M parallel to D_, which is then an admissible disk for M’. Thus the 
Lemma is satisfied in this case. 

So henceforth make 

Assumption B. a, M contains no inessential sutures. In particular, if c?E lies on ZO M, it is 

essential. 

Claim 2. Every component a of &S is essential in dM. 

Proof of claim. A component a is carried by the traintrack determined by a u C, and so is 
either parallel to a suture, parallel to a closed component of C above, or, by (c) of claim 1 has 
non-trivial algebraic intersection with some suture. Since by (B) there are no inessential 
sutures, and by Claim 1 (d) there are no inessential components of C, Q must be essential in 
dM, proving claim 2. 

Case 2. S is disjoint from E. 

Then E persists in M’. If E was an admissible sphere in M then it remains admissible 
in M’. 

dE does not compress a special toral component T of R (7’) because if it did then either 
T c R(y) or S c T. The latter is impossible since T would then be a non-separating closed 
surface in M. Therefore if E is not admissible in M’ then dE bounds a disk F in R’+, say. R’+ 

is the union of S and pieces of R + , attached along components of aS n R + . Moreover it 
cannot lie entirely in R + , since dE is essential in R + . Consider an innermost circle a of 
aS n R, in F. By Claim 2 a must bound a component of S. Since S is connected, S is a disk 
and F - S is an annulus between aS and aE in R, . 

In aM’, S appears twice, once in F and once as a component S_ of R’_ bounded by a 
suture y. If 7 does not bound a disk in R'+ , then a push-off of S_ is an admissible disk in M’. 
If y does bound a disk F ’ in R’, , then, as above, F’ consists of an annulus A in R + attached 
to S. In M, the two boundary components of A are both I%, and so comprise a torus 
component To of R+ in dM, for which E and S are both compressing disks. But the 
compression by S shows To is special, contradicting our assumption that E is admissible. 

Case 3. S intersects E. 
Since SS is in the train-track defined by C u 7, dS is disjoint from E. Hence all 

components of intersection are simple closed curves. If any such curve were inessential in S, 
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we could do a disk-swap along an innermost circle of intersection in S, altering E so that it 
intersects S in fewer components. Hence we can assume every component of S n E is 
essential in S. (In particular, S is not a disk.) 

An innermost circle of S n E in E bounds a disk E’ in E which compresses S and whose 
boundary lies entirely in R;. We claim E’ is an admissible disk for R; . For otherwise dE’ 
bounds a disk F in R’ *, but not one entirely in S. Let IX be an innermost circle of ZS n R + in 
F. The disk in F it bounds cannot lie in R + by Claim 2, nor in S, since S is connected and not 
a disk. The contradiction proves the claim. II 

42. HIERARCHIES 

We wish to use 1.2 to construct, for (M, 7) a /?-taut sutured manifold admitting an 
admissible disk or sphere and Q a parameterizing surface for M, a /?-taut sutured manifold 
hierarchy for (M, y) respecting Q so that every manifold in the hierarchy contains an 
admissible disk or sphere. In principal this should follow easily from 1.2 but recall from Cl33 
that in a hierarchy, decompositions along product annuli and disks may be required. A 
decomposition along a product annulus one of whose ends is inessential in R(y) may 
produce a sutured manifold without admissible disks. This is a technical glitch which forces 
us to alter the hierarchy slightly when such a product annulus is encountered, replacing the 
annulus with the disk obtained from it by capping off its inessential end. We will show that 
the disk together with some arc amalgamations is as effective as the annulus at eliminating 
index zero disks, which is its role in the hierarchy. 

So we modify slightly the definitions from [13] and show that the central properties 

from Cl33 still hold. 

2.1 Dejinition. A B-taut sutured manifold hierarchy is a finite sequence 

s’ ‘” (M,? Yo)- (M,, Yi)Z . ..- (M,, y.) of B-taut sutured manifold decompositions for 
which 

(a) each Si is either a conditioned surface, a product disk, a product annulus both of 
whose ends are essential in R(yi _ 1 ), or a disk whose boundary is p-essential in R ( yi _ 1 ) 

(b) no closed component of any Si separates 
(c) H2 (M,, 8M,) = 0, so in fact 8M, is a union of spheres. 

2.2 Definition: Let (M, y, /?) be a suture manifold and & an arc component of /I with 
one end in each of R, (y). Let (M’, y’, /I’) be the sutured manifold obtained from (M, ‘/,/I) 

by setting M’ = M - q(&,), 8’ = B - j?,,, and y’ = y u (core of annulus rj&)). Then say 
(M’, y’, j?‘) is obtained from (M, y, 8) by conoerting the arc component /I0 of @ into a suture. 

2.3 LEMMA. Suppose (M’, y’, /_I’) is obtainedfrom (M, 7, f3) by converting &, into a suture. 
Then (M’, y’, /I’) is /T-taut if and only if( M, y, /I) is @aut. 

Proof: By excision, H, (M’, y’) z H, (M, y u a(&,)) z Hz (M, y). Let (S, aS) c (.\I, cYM) 
be a /?-taut surface homologous rel 8S = y to R, (y). Then S intersects PO precisely once, 
since R, does, and S’ = S - q(j$,) c (M’, ZM’) is homologous to R,’ rel SS’ = y’. 
Similarly, if (S’, ZS’) c (M’, I) is homologous to R; rel 2s’ = y’, then filling in a 
meridian disk of q(&,) produces a surface (S, ZS) c (M, ?M) which intersects /&, exactly 
once. Furthermore x@(S) = xa,(S’). Thus R, is /?-norm minimizing if and only if R; is 
@‘-norm minimizing. 
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Essentially by definition, R, is fl-incompressible if and only if R; is fi’-incompressible 
and M is P-irreducible if and only if M’ is @‘-irreducible. II 

2.4 Suppose (M, 7) 1 (M’, y’) is a B-taut sutured manifold decomposition along a non- 

trivial product annulus, such that one (or both) ends of A are inessential in R(y). Let D be 
the disk obtained by capping off an inessential end of A in R (7) and pushing slightly into M. 
Let (M”, y”) be the sutured manifold obtained by decomposing along D. 

LEMMA. After a series of amalgamations of arcs of p” in M “, and the conversion of an arc 
to a suture, we have (M”, ‘J”, /?I’) 2 (M’, y’, B’). 

In particular, (M, 7) : (M “, y”) is /?-taut and, after some arc amalgamations (M “, 7” ) has 

the same index zero disks and reduced complexity as (M’, j). 

Proof Let E c R(y) be a disk bounded by an inessential end 6 of A. Choose the 
orientation of A so that 6 is oriented oppositely by A and E, so A and E induce the same 
orientation of A ud E. Let E’ be the disk gotten by pushing E into int (M), so D = A ud E’, 
and recall M” is the manifold obtained by decomposing along D. Between E and E’ in M” 
lie a collection of parallel arcs of /I”, one for each end of /I lying in E. Amalgamate them into 
a single arc and convert it to a suture. The result is the same sutured manifold as (M’, y’, /3’) 
(see Fig. 2.1). 

disks 

Fig. 2.1. 

We know from [13,4.4] that arc amalgamation does not affect B-tautness and from 2.3 
that arc conversion doesn’t. Finally, the definition of index zero disks in [13,4.6] does not 
distinguish between meridians of arc components of /I and sutures, so the arc conversion 
does not introduce or eliminate index zero disks. II 

2.5 THEOREM. Any /I-taut sutured manifold (M, 7) admits a p-taut sutured manifold 
hierarchy respecting a given parameterizing surface. 

Moreover, if( M, y) has an admissible disk or sphere then such a hierarchy can be found so 
that every term in the decomposition has an admissible disk or sphere. 

Proof The proof is a variant of [ 13,4.19]. First we will eliminate index zero disks and 
verify that afterwards the manifold contains an admissible disk or sphere. Then we will 
decompose along a non-separating surface chosen via 1.2 and show that the result again 
contains an admissible disk or sphere. 

Let E denote an admissible disk or sphere in M. 
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Eliminating index zero non-self-amalgamating disks. First eliminate as many index zero 
disks in (M, y) as possible without using self-amalgamating disks. This process may require 
decomposition along a product disk S. Such a product disk S intersects E in a l-manifold 
with all its ends on one end of S, since 8E c R(y). If E n S consists of simple closed curves, 
then an innermost disk argument provides an admissible sphere or disk E’ disjoint from S 
with 8E’ = dE. (Decomposition along S cannot produce a new component of TM without 
sutures, so E’ still cannot compress a special toral component of R(f).) If En S contains 
intervals, then E is an admissible disk and an outermost arc argument in S provides a 
compressing disk for R(f) whose boundary lies in a component of 8M’ containing a copy 
of S, hence sutures. Thus again E’ does not compress a special toral component of R (7’) and 
so is admissible. 

Eliminating self-amalgamating disks. To eliminate self-amalgamating disks we need to 
decompose along product annuli which are non-trivial (i.e. none just cuts off a copy of 
D2 x I disjoint from /I). 

Suppose first that A is a product annulus with both ends essential in R(y). If A is 
incompressible in M then an innermost disk, outermost arc argument as above shows there 
is an admissible disk or sphere E’ in M disjoint from A. If E’ is an admissible disk in M then 
as in Claim 2, Case 2 in the proof of 1.2 E’ remains admissible in M’. (Any toral component 
of R(y’) belongs to R(y) since A will produce a suture in R(y’) at each of its ends.) If A is 
compressible in M, then a compressing disk becomes an admissible disk in M’. 

So now assume an end of A is inessential in R(y). Cap it off as in 2.4, decompose along 
the resulting disk D, and amalgamate arcs as in 2.4. By 2.4 the effect on B-tautness, index 
zero disks, complexity, and parameterizing surfaces is as if we had decomposed along the 
original product annulus. Moreover an innermost disk outermost arc argument as above 
shows we may take E in M to be disjoint from D. 

If dD is essential in R(y) then as in Claim 2, Case 2 in the proof of 1.2 either D is a p-taut 
compressing disk for a torus component of R(y), or after the decomposition a push-off D’ of 
D is the required admissible disk for M’ not compressing a special toral component of R (7’). 

In the first case, aD lies on a special toral component of R(y). Since ZE does not, 
decomposition along D leaves E an admissible disk or sphere in M’. 

Finally, if dD is inessential in R(y) then we had a choice which end of A to cap off in the 
construction of D from A. In particular, we can guarantee that dD and dE do not lie on the 
same component of R(y). Then decomposition along D leaves E admissible in R(y’). 

Continue the process until all index zero disks are eliminated. Note that in eliminating 
index zero disks as above, any decomposing product annulus has both ends essential in 
R(y) and any decomposing disk is either a product disk or has its boundary B-essential in 
R(y), so the decompositions satisfy 2.1(a). As in the proof of [13, 4.191, the final sutured 
manifold (M,,y,) has complexity C(M,,y,)= d(M,,y,)= d(M,y) and (M,,y,) is 
still /Ii-taut. 

Decomposing along a non-separating surface. The argument now proceeds as in [13, 
4.191: if dM, is not a union of spheres then /?-taut decomposition along any surface not 
boundary parallel will decrease complexity. According to 1.2 there is a P-taut sutured 

manifold decomposition (M, y) : (M’, y’) respecting the parameterizing surface so that 

(M’, y’) contains an admissible disk or sphere and S is non-separating. In particular the 
decomposition decreases sutured manifold complexity. Begin the argument again on M’ 
and continue until H,(M,, JM,,) = 0. II 
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Now we show that this modified notion of hierarchy still satisfies the following critical 
property: If a B-taut sutured manifold hierarchy for (M, y) terminates in a manifold (M,, y,,) 
which is also taut in the Thurston norm (denoted +-ram) then either a component of M is a 
solid torus with no sutures or every term in the decomposition is also #+taut. We need the 
following variant of [13, 3.93: 

2.6 LEMMA. Suppose (M,, yO)L (M,,y,)A... S’(M,, y.) is a sequence of 

sutured manifold decompositions in which 

(a) no component of MO is a solid torus disjoint from fi and yO 
(b) each Si is either a conditioned surface, a product disk disjointfrom /?, a product annulus 

disjoint from /3 with both boundary components /&essential in R (yi _ 1 ) or a disk D such that 

0) 81) t WG-,) 
(ii) If c?D is /3-inessential in R(yt _ 1) then D is disjoint from /I 

(c) no closed component of any Si separates. 

Then if(M,, y.) is p-taut, so is every decomposition in the series. 

Proof The proof follows from [13, 3.93 unless some Si is a disk D as in b) for which 

(Ml-r,yi-i)+ ” (Mi,Yi) is not B-taut. Let D = St be the last for which 

(Mi-i,Yi-r) ” 
&+ L 

- (Mt, yt) is not b-taut. Then we know each term in the series ( Mi, yi)+ 

(M i+l,Yi+l *** 1 A( M,, y.) is /I-taut, and in particular ( Mi, yi) is B-taut. 

If dD is /3-inessential in R(yi_ 1) then by b(ii), D is disjoint from fi. Consider the 
component V of dMI which is the union of D and the subdisk of R(y, _ 1) disjoint from /3 
which aD bounds. This is a sphere disjoint from /3, hence bounds a ball component N of Mi 
disjoint from fl. If V contains no sutures it lies entirely in R(y,) and compresses via N, 
contradicting p-tautness of Mi. Otherwise I/ contains exactly 8D as a suture and N can be 
viewed as D x I with its natural sutured structure, i.e. just a collar on D. But then 
( Mi _ t, yi _ I ) z (Mi, yi) contradicting the assumption that one is taut and the other not. 

If aD is p-essential then from [13,3.6] some component of MI_ I is a solid torus disjoint 

from /Ii and yi. Hence by (a) there is a decomposition (Mj _ f, Yj _ 1 )A (Mj, Yj) for which 

the number of components which are solid tori disjoint from Bj and Yj increases. 

” Let (Mj- l,Yj- 1)~ (M,, yj) be the last such decomposition. As in the proof of [13, 

3.91, Sj can be neither a conditioned surface nor a product annulus, and so must be a disk D 

with aD essential in R(yj _ 1). Then decomposing along D creates a solid torus W disjoint 
from /? and y, so D must separate M, _ 1 and that component of M, containing the copy of D 
having no suture on its boundary must be IV. In particular, D is disjoint from fij _ 1. Let M’ 
be the other component of M, containing D and consider the restriction of the rest of the 
decomposition to M’. Since no further decompositions increase the number of solid tori 
disjoint from /? and y, the argument above shows M’ is Bj-taut. But aM’ has a suture 
bounding D, disjoint from fij. Then to be flj-taut, M’ must be a ball disjoint from B 
containing a single suture, i.e. just the product D x I. AS above, (Mj - 1, Yj - 1) s (Mj, ?I), 
contradicting the choice of j. II 
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2.7 COROLLARY. Suppose a @auf sutured maniJold hierarchy for (M, y) terminates in 
(M,, y.). If (M,, y,) is &taut then either a component of M is a solid torus whose boundary lies 
in R( 7) or else (M, y) and every decomposition in the series is &taut. 

Proof By definition of a hierarchy the /?-taut hierarchy satisfies 2.6(b) and (c) if we 
replace /? by 4. The corollary follows. II 

93. GABAI DISKS 

3.1 Definitions: Let M be a compact 3-manifold containing a knot k. Let p denote a 
meridian curve in rj(k) and ,A denote a curve in e(k) intersecting ~1 once. A simple closed 
curve c in 4 (k) for which c. p = s and c * A = r is said to have slope r/s E Q/Z. (Ambiguity in 
the choice of I forbids taking r/s in Q unless there is a preferred longitude, e.g. M a 
homology sphere). A manifold M’ is obtained from M by doing Dehn surgery with slope c if 
q(k) in M is replaced with a solid torus S’ x D2 in M’ so that dD* is isotopic to c. The core 
S’ x (0) of the filling torus S’ x D* is a knot denoted k’ c M’. Note that a meridian circle 
of q (k’) in 3 (k) intersects a meridian of q(k) in s points. 

Let k t M and k’ c M’ be as above, with slope of the surgery r/s. Let Q be a sphere or 
properly imbedded disk in M’ intersecting k’ transversally in p > 0 points. Suppose D is any 
disk in int (M) intersecting Q and k transversally. Q and k give rise to a “graph” r in D with 
vertices the points k n D, edges the arcs of Q n U, and circles the simple closed curves of 
Q n D. The valence of each vertex in I- is p * s. A loop or circle in r is trioial if the subdisk of 
D it bounds contains no other part of I-. A component of D - r is bounded if its boundary 
lies completely in r, i.e. its boundary is disjoint from dD. 

3.2 Definition. A disk D c int (M) is a Gabai disk with respect to Q t M’ if 

(a) 1 k n int(D)l = q > 0 and all points of intersection have the same orientation and 
(b) IQ n aDl < p. s, i.e. r has fewer than p. s end points on dD. 

3.3 LEMMA. Suppose M’ - n( k’) is irreducible. Let Q’ be a sphere (resp. proper disk) in 
M’ such that k’n Q’ # C$ and Q’ - n(k’) is incompressible in M’ - n(k’). 

If there is a Gabai disk for Q’ in M, then there is a sphere (resp. proper disk with the same 
boundary) P in M’ such that P is disjoint from Q’, P is homologous (reli3) to Q’ and 
1 P n k’ I < 1 Q’ n kl. Moreover the region between P and Q’ is a rational homology S3 x I 
(resp. rational homology ball). 

Proof This is essentially [13, 9.31 and is implicit in [2, 2.5.2, 2.6.1 and 21. II 

3.4 LEMMA. Suppose Q’ is a separating sphere in M’ with given complementary compon- 
ents X and Y. If a Gabai disk exists for Q’ in M then either 

(a) the interior of some trivial loop or circle of r lies in Y 
(b) a bounded region of D - r lies in X or 
(c) p = 2, s = 1, k is cabled, Yn M is a solid torus and the slope of the surgery is that of 

the cabling annulus. 

Proof We can assume there are no trivial loops or circles in r, for if an innermost one 
bounds a region in Y this is conclusion (a); if it lies in X we have (b). 
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Let e denote the number of edges of r with both ends on vertices in the Gabai disk D 
and e’ I ps - 1 denote the number of edges with exactly one end on a vertex. Then psq 

= 2e + e’ I 2e + ps - 1 so 

(1) ps(q - 1) I2e - 1. 
Let f denote the number of bounded faces in D - r. Let A denote the complex which is 

the union of all bounded faces and interior edges. Since A contains all bounded regions it is 
simply connected, and 

(2) q-e+f2 1. 
If any edge belongs to two faces of A then one such face lies in X yielding conclusion (b). 

Otherwise, since there are no trivial loops, e 2 2fand from (2) we then get q - e/2 2 1 or 

(3) 4(q - 1) 2 2e 
Combining (1) and (3) gives ps( q - 1) 5 4(q - 1) - 1. Since Q’ separates, p is even, 

so ps = 2 and s = 1. Since e’ < ps is even, e’ = 0 and every edge is internal. Viewed in 
M, Q’ - r](k) is then an annulus whose boundary components each intersect a meridian 
of k once. Hence k lies on a torus in M in which Q’ is the complement of q(k). Finally, 
a bounded component of D - r is a compressing disk for the torus. Since M - k is assumed 
irreducible the torus must bound a solid torus. This is conclusion (c). II 

$4. SURGERY OF KNOTS IN SUTURED MANIFOLDS 

Throughout this section, let (M, y) be a sutured 3-manifold containing a knot k. As in $3, 
let M’ be a manifold obtained by a Dehn surgery on k with slope r/s E Q/Z, and let k’ be the 
core of the filling torus in M’. Assume (M - q(k), y) is taut or, equivalently, (,cI, y) is 
k-taut ((M’, y’) is k’-taut). 

4.1 PROPOSITION. Let Q’ be a sphere or proper disk in M’ so that 

(i) lQ’nk’I=p>O 
(ii) M contains no Gabai disk for Q’ 
(iii) Q’ - v (k’) is incompressible and &incompressible in M’ - q (k’). 

Then for any k-taut sutured manifold hierarchy 

for (M, y) respecting the parameteriring surface Q’, either 

(a) the hierarchy is also &taut 
(b) M contains a reducing sphere which is disjointfrom all the decomposing surfaces Si and 

each component of M, has boundary a single sphere containing exactly one suture or 
(c) M = S’ x D2, Q’ is a disk, and k has winding number w(k) # 0 in M. 

Proof: Apply the argument of [ 13,9.1] using the assumption that M contains no Gabai 
disks wherever [13, 9.31 was used. Indeed [13, 9.1 claims l-lo] shows that, after cancel- 
lation and amalgamation of arcs of k in M,, all ends of k lie on a single spherical boundary 
component N of dM, and it contains a single suture. The k-tautness of M, implies that all 
other components of dM, (which are now disjoint from k) are spheres with a single suture 
and bound balls. 
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If the component V of M, bounded by N is not &taut then, since the disks R * clearly 
are taut, V must be reducible. Such a reducing sphere is also a reducing sphere for M and is 
clearly disjoint from all the Si. 

If Vis &taut then, by 2.7, either every decomposition in the hierarchy is &taut, yielding 
(a), or some component of M is a solid torus containing no sutures. In the latter case, since 
dM is incompressible in the complement of k, the solid torus must contain k and so we may 
assume it’s all of M. The surface S, in the first decomposition in the hierarchy is then a 
conditioned surface (2. la) (hence its boundary is a collection of meridia of the solid torus M) 

so the manifold (M t, yr ) obtained after the decomposition has sutures in each component. 
Then 2.7 implies (M,, yi ) is &taut as well as k-taut. Then Si is a disk, for otherwise it would 
be compressible in M, forcing R(y , ) to be compressible in M, contradicting &tautness. 
Finally, if Q’ were a sphere or w(k) = 0 then aQ’ n S, = C$ and S, would be a Gabai disk for 
Q’, contradicting (ii). Hence if V is &taut, (a) or (c) applies. II 

4.2 PROPOSITION. Suppose M’ has a reducing sphere disjoint from every surface in some 
k’-taut sutured manifold hierarchy for M’. Then there is a reducing sphere Q’ with Q’ - n( k’) 
incompressible and &incompressible in M’ - n( k’) so that either 

(a) there is no Gabai disk in M for Q’ or 
(b) k is cabled and the slope of the surgery is that of the cabling annulus. 

Proof If M’ contains a sphere whose fundamental class is non-trivial in H,(M’), let Q’ 
be one of minimal intersection with k’. Then 3.3 implies there is no Gabai disk for Q’ in M, 
conclusion (a). So henceforth assume all reducing spheres in M’ are null-homologous, hence 
in particular separating. 

Let (ML, 7,) denote the final stage in the given hierarchy of M. Since Mk contains a 
reducing sphere for M’, some component N of aMk is a reducing sphere for M’. Let Q’ be a 
reducing sphere for M’ chosen so that 

(i) Q’ is disjoint from the surfaces of the given hierarchy of M’ 
(ii) no subarc of k’ in the region R between N and Q’ has both ends on Q’ and 
(iii) subject to conditions (i) and (ii) 1 k’ n Q’I = p is minimized. [Note that a push-off of 

N into M:, satisfies (i) and (ii).] Q’ divides M’ into two components; let X denote that 
containing N and Y denote the other. 

We will assume M contains a Gabai disk for Q’ and deduce (b). Let D be a Gabai disk 
chosen so that 

(iv) 1 Q’ n D I is minimized 

and use the terminology of 3.1. 

We can assume I- contains no trivial loop bounding a disk in Y, for such a disk could be 
used to lower p by an isotopy of k’. Similarly a trivial circle in r bounding a disk in Y can be 
eliminated by a disk-swap with Q’. The same two arguments show that Y cannot contain a 
compressing or a-compressing disk for Q’ - n(k’). 

So by 3.4 either k is cabled, conclusion (b), or some bounded component of D - r lies in 
X. We henceforth assume the latter and derive a contradiction. An innermost such 
component, if not simply-connected, cuts off from D a Gabai disk, contradicting (iv). So we 
can further assume there is a bounded disk component D’ of D - r in X. 
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Case 1. dD’ c Q’ 
If dD’ were inessential in Q’ - n(k’) then a disk-swap would produce a Gabai disk with 

lower 1 Q’ A DI. Hence by (iv) we can assume both disks of Q’ bounded by dD’ intersect k’, so 

D’ compresses Q’ - q (k’) in X. We will show this is impossible (confirming thereby also 
that Q’ - q (k’) is incompressible in M’). We can alter interior (D’) so that it is disjoint from 
every decomposing surface Si of the hierarchy by doing disk swaps in each successive 
decomposing surface that intersects D’. Then D’ lies in the region R between Q’ and N in 
M’. Since every sphere in M’ is null-homologous, D’ is homologous rel d in R to a subdisk F 

of Q’ which we already know intersects k’. By (ii) there are proper arcs in R with one end on 
F yet disjoint from D’, which is absurd since D’ and F are homologous. 

Case 2. aD’ does not lie entirely in Q’. 
Then aD’ is the union of arcs alternately lying in Q’ (call these arcs ai,. . . , a,) and on 

meridia of k (call these arcs /Ii, . . . , fin). Consider now the intersections of the decomposing 
surfaces Si of the hierarchy with the disk D’. If the first decomposing surface to intersect D’ 

intersects it only in simple closed curves, then a disk swap replaces D’ with another disk 
disjoint from the decomposing surface and equal to D’ near its boundary. We know from 
condition (ii) that eventually some decomposing surface intersects each arc pi (which run 
parallel to intervals of k’ in M’). Combining these two facts, we may alter the interior of D’ 

so that the first decomposing surface Si to intersect D’ intersects it in a l-manifold J with 
aJ # 4. Since Si is k’-taut it must intersect k’ always with the same sign. Since D’ came from 
a Gabai disk, 3.2(a) implies each arc Bi c JD’ is oriented by k’ in the same direction. But 
then the orientation inherited by J from D’ and Si must induce the same sign on each end of 
aJ = dD’ n Si, which is absurd. The same argument shows that X cannot contain a 
a-compressing disk for Q’ - n(k’), confirming also that Q’ - q( k’) is a-incompressible 
in M’ - n(k’). II 

4.3 THEOREM. If M’ is reducible and either R(y) is compressible or M contains an 

admissible sphere, then k is cabled and the slope of the surgery is that of the cabling annulus. 

Proof Choose an admissible sphere E or compressing disk (E, dE) c (M, R (7)) having 
minimal possible intersection with k. Then apply 3.3 and 4.1, reversing the roles of M and 
M’ and using E for Q’: M’ contains no Gabai disk for E and for any k’-taut sutured 
manifold hierarchy of (M’, y’) respecting E, M’ contains a reducing sphere disjoint from the 
hierarchy. Moreover each boundary component of M:, contains exactly one suture. (Note 
(M’, 7’) cannot be &taut nor M’ = S’ x Dz since M’ is assumed reducible). Hence 

(*) (M’, y’) satisfies the hypotheses of 4.2. 
If aM contains a special torus then take for E above a k-taut disk. But E is then a Gabai 

disk for every reducing sphere in M’ so 4.2 implies k is cabled with surgery slope that of the 
cabling annulus. 

If dM contains no special torus, then E must be admissible. Construct, as in 2.5, a k-taut 
manifold hierarchy for M so that (M,, Y,,) contains an admissible disk or sphere. Then M, 
does not satisfy conclusion 4.1(b). Indeed, if there were only one boundary component per 
component of M,, then H2( M,) z H, (M,, dM,) = 0 (hence there would be no admissible 
spheres) and if there were only one suture per boundary component then R ( yn) would be all 
disks (so there would be no admissible disks). Since (M, y) contains an admissible disk or 
sphere it is not $-taut so does not satisfy conclusion 4.1(a). Thus by 4.1 we conclude M 
contains a Gabai disk for any reducing sphere Q’ in M’ such that Q’ - n(k’) is in- 
compressible and d-incompressible in M’ - n(k’). But from (*) above such a reducing 
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sphere can be found satisfying the hypotheses of 4.2 and we have just ruled out conclusion 
4.2(a). Hence 4.2(b) holds. II 

4.4 COROLLARY. Suppose k is a knot in a solid torus M, k does not lie in a ball and surgery 
on k yields a reducible manifold M’. Then k is cabled and the slope of the surgery is that of the 
cabling annulus. 

Proof: Regard M as a sutured manifold with no sutures. Since aM is incompressible in 
M - k, it is k-taut. II 

4.5 COROLLARY. If surgery on a satellite knot k in S3 yields a reducible 3-manifold then k 
is cabled. 

Proof: From [9] we know that the slope of the surgery on k must be integral, say n. We 
can assume n # 0 by [5].The result of surgery is a manifold W with IH, ( W)l = n. 

Let T be the companion torus and M the solid torus in S3 it bounds. If the manifold M’ 
obtained from M by surgery on k is reducible the conclusion follows from the theorem. If 
M’ is irreducible then an innermost disk argument shows T must be compressible in M’. 
Since M’ is irreducible, it is then a solid torus. 

But suppose M were a solid torus. Replacing M with M’ can itself be viewed as a 
Dehn surgery in S3 on the core of M. The slope of the surgery can be calculated to be n/o.?, 
where o is the winding number of k in M. Since n/o2 must be integral we deduce that 
lH, ( I+‘)1 = n/o2 = n, so w = 1. But by [3] k is braided in M (i.e. winds monotonically 
in S’ x O2 = M). But then k must be the core of M, and so is not a satellite. II 

$5. PU-ITING SUTURES ON MANIFOLD BOUNDARIES 

Theorem 4.3 above, while the central theorem of this paper, is difficult to apply because 
it is a theorem about sutured manifolds. In this section we show how to apply it to a general 
3-manifold, by constructing, in a fairly ad hoc fashion, a collection of sutures making the 
resulting 3-manifold taut. The difficulty is to ensure that there are no surfaces in the interior 
of the 3-manifold with small Thurston norm; the strategy is to place the sutures so that the 
smallest Thurston norm possible is that which the sutures already bound in the boundary. 

5.1 Dejnitions. Two disjoint simple closed curves c and c’ on the boundary of a 3- 
manifold M are co-annular if they bound a properly imbedded annulus A in M. Let S be a 
connected orientable surface of genus g > 1. A collection of 3g - 3 disjoint simple closed 
curves S is standard if each complementary component is a pair of pants, g - 1 of the curves 
are separating and 2g - 2 are non-separating. (See Fig. 5.1). A collection of disjoint simple 
closed curves on an orientable surface is standard if it is standard on each component. 
A collection of curves is substandard if it is contained in some standard collection. 

Let M be a a-irreducible compact orientable 3-manifold and 5 c aM be a substandard 
collection of simple closed curves. 

I... m 
Fig. 5.1. 
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5.2 LEMMA. 5 is contained in a standard collection E so that no curve in E-5 is coannular in 
M to a cume in Z. 

Proof The proof is by induction on 1 E - 5 I. 

If 5 is standard there’s nothing to prove. If not, there is a component E of dbf - 5 which 
is not a pair of pants. Contained in E is a curve c so that t; u {c] is also substandard. If c is 
not co-annular with any curve in r then replacing 5 by {u {c) completes the inductive step. 
So assume an annulus A in M has boundary cu a, where aE 5. 

If c is non-separating in E, there is a c’ in E intersecting E in a single point. Suppose A’ 
were an annulus with boundary c’up, BE 5. A small isotopy moves A and A’ into general 
position and makes a and /I disjoint. An A’ would then be a compact l-manifold with a 
single end, which is absurd. Thus c’ can’t be coannular with a curve in 5. There is an 
automorphism of E, preserving dE, which carries c to c’, so <u { c’} is also substandard. So 
replacing 5 by 5 u (c’} completes the inductive step. 

If c separates E then c lies in a 4-punctured sphere E’ contained in E with dE’ essential in 
dM and two components of LYE’ lying on each side of c. Consider the curve c’ shown in 
Fig. 5.2. 

I 
I 

a/ ; 
__--I , 

eg 
e- --f_- _- --__ cl3 ;; ----\ 

0: 1 oC’ \ 1 
\ 1 

Fig. 5.2. 

Suppose there is a proper annulus A’ with aA’ = c’u/?, fi in {. After a small isotopy 
putting A and A’ in general position, aA n aA’ consists of the four points of c n c’ and A n A’ 
contains two arcs with these as end-points. Each of the arcs cuts off a disk from A and A’. 
The union of two such disks along an arc of An A’ would be a compressing disk for I?M, a 
contradiction. Thus-c’ can’t be coannular with a curve in 5. There is an automorphism of E, 
preserving aE, which carries c to c’ (indeed a single Dehn twist suffices) so C; u {c’} is also 
substandard. Replacing < by 5 u {c’} completes the inductive step. II 

5.3 Definition. A standard collection of curves on aM such that no pair of curves is 
coannular in M is called a special collection. 

5.4 COROLLARY. Any curve (pair of non-coannular curves) iii dM is contained in a special 
collection. 

Proof Clearly any curve or pair curves which are non-co-annular (hence non-parallel in 
dM) is substandard. II 

5.5 Definition: A collection of curves on dM which is contained in some special 
collection is called subspecial. A subspecial collection of curves E on aM is pantsless if 
whenever three elements of E bound a properly imbedded pair of pants in M, all three lie on 
the same component of dM. 
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M be a d-irreducible compact orientable 3-manifold and 5 c M be a 
collection of simple closed curves. Then (I is contained in a pantsless 

Proof. We will show how to expand 5 to a larger pantsless subspecial collection. 
Repeating the argument sufficiently often yields the lemma. 

Let E be a special collection containing 5, and E a component of 8M - 5 not a pair of 
pants. Then E contains a curve c of E - 5. c is contained either in a once-punctured torus or 
a 4-punctured sphere E’ contained in E so that E’ is disjoint from any other curve in Z, each 
component of 8E’ is parallel in E to a curve in Z, and any two components of 8E’ parallel to 
the same curve in E are separated in E’ by c (see e.g. Fig. 5.3 in the case c is non-separating). 
We suppose <u (c} is not pantsless, i.e. there is a proper pair of pants P in M with 
JP = cu a1 u a2, so that aI and a2 are in 5 and a2, say, lies in a different component than the 
component S of aM containing c. 

Fig. 5.3. 

Case 1. E’ is a once-punctured torus. Let c’ be the curve intersecting c in a single point. 
Suppose there is an annulus A’ in M with 8A’ = c’ u /3, fi in E.. Then after isotoping A’ and P 
to minimize their intersection we discover IA’nPI is a compact l-manifold with a single 
end, which is absurd. Hence the collection Z’ obtained from E by replacing c with c’ remains 
special. Similarly if there is a pair of pants P’ in M with 8P’ = c’upr uB2, with /?r, o2 in 5. 
Hence 5 u (c’} is pantsless and subspecial. 

Case 2. E’ is a 4-punctured sphere. Let c’ be the curve shown in Fig. 5 .2, 5’ the 
collection obtained from E by replacing c with c’. 

Claim 1. E’ is special. 

Proof of Claim 1. Suppose there is an annulus A’ in M with JA’ = c’up, /I in E. Then 
after isotoping A’ and P to minimize their intersection, 1 A’ n P) is a compact l-manifold 
with the four end-points cnc’. After perhaps some disk and annulus swaps we may alter A’ 
so that ) A’ n P I is a pair of arcs, each of which must cut off a disk from A’. One of the arcs 
cuts off from P either a disk, or an annulus whose other boundary component is a2. The 
union of the disk in A’ and the disk (or annulus) in P is a disk (annulus) with boundary (one 
end) a component of 8E’ (and the other a2, which is not in S). This is impossible since M is & 
irreducible (Z is special). The contradiction proves the claim. 

Claim 2. r u (c’} is pantsless. 

Proof of Claim 2. Suppose P’ is a proper pair of pants in M with aP’ = c’u/?r u/12, with 
/II, p2 in 5 and p2 not in S. After a small isotopy, PnP’ is a compact l-manifold with ends 
the four points of cnc’, so PnP' is a union of two arcs and some circles. Since L?M is 
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incompressible, the interiors of P and P’ may be altered by disk-swaps to eliminate any 
inessential circles in P n P’. Suppose there is a circle of intersection parallel to f12 in P’. The 
corresponding circle in P must be parallel to a2 in P since Z is special, so an annulus swap 
alters P, replacing a2 with f12 and lowers 1 P n P’I. Continue until no circle of intersection is 
parallel to p2. Since Z is also special we may similarly eliminate any circles parallel in P to 
r2, and then proceed to eliminate circles of intersection parallel to a1 and /3r. If there are any 
circles of intersection left, they must be parallel to c and c’, which forces the arcs of 1 P n P’I 

to cut off disks from P and P’. As above, the union of two disks along an arc would produce 
a &reducing disk in M, which is impossible. Hence we may assume I Pn P’I consists 
precisely of two arcs yi and y2. 

Suppose one of the arcs cuts off a disk in P or P’. Say yr is an outermost arc cutting off a 
disk from P. Then yr cuts off from P’ either a disk or an annulus containing B2. Then the 
union along y1 of the disk in P and the disk (annulus) in P’ is a disk (annulus) which 
contradicts either the &irreducibility of M or the assumption that E is special. Thus we can 
assume that no yi cuts off a disk from either P or P’, so yr is parallel to y2 in both P and P’. 

The union of the rectangle R lying between yr and y2 in P and the rectangle R’ between 
tern in P’ is an annulus whose boundary consists of two components of a,?? lying on the 
same side of c, hence parallel to distinct curves in E This contradicts the assumption that Z 
is special. The contradiction proves the claim, and with it, 5.6. II 

5.7. Dejinition In any standard collection of curves in a connected oriented surface S of 
genus g > 1 there are two curves each of which lie on the boundary of a single pair of pants. 
Call these redundant (see Fig. 5.4). Suppose Z is a standard collection of curves on dM. Let y 
be Z with all redundant curves removed and label the complementary regions of T in S 
alternately R, and R_ as shown in Fig. 5.4. Assign any toral components of ZM to either 
R, or R_. Say that the resulting sutured manifold structure (M, y) on M is associated 
with Z 

Fig. 5.4. 

5.8 PROPOSITION. Let M be an irreducible, d-irreducible compact orientable 3-manifold. 

(a) If aM has a unique non-toral component S, then any satured manifold structure (M, y) 
associated to a special collection of curves in S is taut. 

(b) If dM has two non-toral components S and s’, then any sutured manifold structure 
(M, ;1) associated to a pantsless collection of curves in Sus’ is taut. 

Proof: (a) Letg=genusSandnotethatX_(R+)=X_(R_)=g-landI;,I=3g-5.It 
suffices to show that any oriented surface Tin M with d T = y has x _ (T) 2 g - 1. Since M is 
Z-irreducible no component of T is a disk and we may assume none is a sphere. Since E is 
special T contains no annuli. If T’ is a component of T with genus (T’)> 1 then l_(T’) = 
-~(T’)=Z(genus T’)-2+IaT’I2laT’I.Ifgenus(T’)=OthenlaT’I23so~_(T’)= -2 
+ IdT’I 2 laT’I/3, with equality only if IdT’J = 3. Hence x-(T)> laTl/3 = 171/3 = (39 
- 5)/3. Since I_ (T) is an integer, we conclude x- (T) 2 g - 1 as required. 
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(b) Let g denote the genus of Sus’ and note that x_(R+)=x_(R_) = g-2 and 
1 y 1 = 3g - 10. Suppose T is an oriented surface in A4 with ZT = ‘J. 

If each component of Thas its entire boundary on the same component of dM, the proof 
is exactly as in (a). So suppose some component T,, of T has part of its boundary on S and 
part on 5’. If T, is planar, then since B * ispantsless,laT,,l 24andX_(T,)=IdT,l-2.IfT,,is 
not planar then x-(T,,) 2 laT,I. Hence in general x-(To) 2 (IaT,, + 2)/3. The argument of 
(a) above shows that x_(T-T,,)~~~(T-T,,)I/~. Hence x_(T)>(ldTJ+2)/3=(3g-8)/3 
= g - 8/3. Since x _ (r) is in fact an integer, x_(T) 2 g - 2, as required. II 

5.9 PROPOSITION. Let M be an irreducible, &irreducible compact orientable 3-manifold 
and suppose dM contains at most two non-coral boundary components. 

(i) If c is an essential simple closed curve in dM then there is a taut sutured manifold 
structure on M for which c lies in R(y). 

(ii) If c and c’ are disjoint essential, simple closed curves on dM which are non-co-annular 
in M then there is a taut sutured manifold structure on M for which both c and c’ lie in R(i). 

Proof We prove (ii), since (i) is similar but easier. By 5.4 the pair (c, c’} is subspecial; 
since there are only two elements it must then be pantsless. By 5.6 there is a pantsless special 
collection E in dM disjoint from c and c’. Indeed, there is a pantsless special collection 
containing whichever of c and/or c’ lie on non-toral boundary components. Push c and c’ 
slightly off Z By 5.8 a sutured manifold structure associated to Z is taut. II 

$6. PROOF OF THE MAIN THEOREM. 

In this section we combine results from $4 and $5 to produce a proof of 

6.1 THEOREM. Let M be a compact orientable 3-manifold. Suppose k is a knot in M with 
M - k irreducible and d-irreducible. Let M’ be a manifold obtained by Dehn surgery on M, 
with k’ c M’ the core of thefilling torus. If dM compresses in M or M contains a sphere not 
bounding a rational homology ball then either. 

(a) M’ = D2 x S’ = M and both k and k’ are 0 or l-bridge braids 
(b) M’ = D’ x St, M = D2 x S’ # Lfor some Lens space L, k is the knot sum of the core of 

L and a O-bridge braid, and k’ is the cable on a O-bridge braid. 
(c) k is cabled and the slope of the surgery is that of the cabling annulus or 
(d) M’ is irreducible. No torus component of aM compresses in both M and M’. Any pair of 

simple closed curves c; c’ c aM which compress in M and M’ respectively must intersect. In 
fact, tf M contains a sphere not bounding a rational homology ball, M’ is &irreducible. 

Proof 

Case 1. M - n(k) is an i-cobordism (cf. [4]). In particular dM is a torus. 
In this case, apply 4.3 to M and M’, regarding M as a k-taut sutured manifold with 7 = 4. 

The hypothessis implies that M contains a compressing disk for R(y) or an admissible 
sphere. If M’ is reducible then 4.3 implies (c). If M’ is irreducible, &irreducible, this is case 
(d). If M’ is irreducible but d-reducible then M’ is a solid torus. If M is irreducible then also 
M = S’ x.D2 and [3] shows that k and k’ are both 0 or l-bridge braids. This is case (a). 
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So finally suppose M’ is a solid torus and M is reducible. From 4.3 reversing the roles of 
M and M’:k’ is cabled with surgery the slope of the cabling annulus. This implies 

(i) M = W# L, L a Lens space 
(ii) k is the knot sum of a knot I in Wand a core of L 

(iii) W can be obtained from M’ by surgery on the core I’ c M’ of the solid torus on 
which k’ is cabled. The slope is that of k’ in the solid torus: p/q E Q/Z where q 2 2 since k’ is 
not isotopic to I’. 

Since M was &reducible, so is W. Repeat the above argument on Wand M’. This time 
we know that the surgery slope on I’ is not that of a cabling annulus, since a cabling annulus 
always has integral slope. Hence Wmust be irreducible, i.e. S’ x D2. By [3] I and I’ are then 
0 or l-bridge braids. Furthermore, if either is a l-bridge braid then the surgery slope is 
integral [6, 3.21 on both. We conclude that I and I’ are O-bridge braids. 

Case 2. M - q(k) is not an i-cobordism, M’ is reducible. 
M either contains a reducing sphere or there is a simple closed curve cc dM which 

compresses in M. We will assume the latter; the former case is similar. Let S be the 
component of 8M on which c lies. 

If every other component of 8M is a torus then by 5.9 there is a taut sutured manifold 
structure on M - q(k) so that c lies in R(y). Case (c) then follows from 4.3. 

Otherwise, attach to each non-toral component Tof dM - S an irreducible, Xrreducible, 
atoroidal and an-annular 3-manifold W, with aW, % T and H,( W,) #O (see [12]). c 
continues to compress in 0, @’ remains reducible, and fi - q(k) remains irreducible and d- 
irreducible. (Also a sphere in M not bounding a rational homology ball will not bound one 
in fi since each H2( W,) # 0.) Apply the above argument to fi and fi’ and deduce that k is 
cabled in A with surgery the slope of the cabling annulus A. Consider 8M n A. We can 
assume no component is inessential in A since M - q(k) and each W, is &irreducible. We 
can assume no component of A - dM is an annulus lying outside M since W, is an-annular. 
Hence A is disjoint from dM. Since T is incompressible in fi - q(k), it can’t lie inside the 
solid torus on which k is cabled.Thus k is in fact cabled in M, conclusion (c). 

Case 3. M - q(k) is not an i-cobordism, M’ is irreducible. 
We will suppose c’ c i?M’ is a simple closed curve compressing in M’ and derive a 

contradiction if either c c dM =G 8M’ is a disjoint simple closed curve compressing in M or 
M contains a sphere not bounding a rational homology ball. In fact we will suppose the 
former: the contradiction in the latter case would be derived similarly. Let S and s’ be the 
components of 8M on which c and c’ respectively lie. If c and c’ are co-annular in M - q(k) 
then c compresses in both M and M’. Hence we may assume that either c = c’ or that c and c’ 
are not co-annular in M - q(k). 

Subcase (i). All components of cYM other than S, S’ are tori. 
Then by 5.9 there is a taut sutured manifold structure on M - q(k) and c and c’ lie in 

R(‘J). Since c and c’ compress in M and M’ respectively, the structure is not taut after k and k 

are filled in. There is a separating torus T, in M-q(k) for which the component N of 
M -(q(k)u T,) containing To = d(k) is an i-cobordism between T,, and T, (see [4]). 
Moreover, N has a taut sutured manifold structure with a non-empty set of sutures y, all of 
which lie on T,, but after filling in q(k) and q(K), N is no longer taut. 
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Since N is an i-cobordism, only one of the two fillings makes R, compressible. Hence 
the other makes N reducible. Since M’, hence N u q(Y), is irreducible, N u q(k) is reducible. 
Furthermore, an innermost disk argument shows that T, is compressible after both fillings. 
Then by 4.3, k’ is cabled and the surgery on k’ is that of the cabling annulus. As in case (i) this 
implies that 

(i) M = W# L, L a Lens space 
(ii) k is the knot sum of a knot 1 in Wand a core of L 
(iii) W can be obtained from M’ by surgery on the core I’ of the solid torus on which k’ is 

cabled. The slope is that of k’ in the solid torus: p/qEQ/Z where q 2 2. 

c and c’ are still compressible in Wand M’ respectively, so repeat the argument above to 
obtain that I’ is cabled, and the slope of the surgery is that of the cabling annulus, hence 
integral. This contradicts conclusion (iii) that q 2 2. 

Subcase (ii): c?M - (Sus’) contains components not tori. 
Construct A and @ as in case 2, attaching to each non-toral component of 

dM - (SuS’) an irreducible, a-irreducible, atoroidal and an-annular 3-manifold W, with 
d W, z T and H,( W,) # 0. c and c’ still compress in fi and h?, &?’ remains irreducible, and 
ti - q(k) remains irreducible and %irreducible. Then the argument of Subcase (i) applied to 
fi and fi’ again yields a contradiction. 

Acknowledgements-I would like to thank Abby Thompson for helpful conversations. 

Added in proof: Y.-Q. Wu has pointed out the following omission. In the Proof of 4.3, when 4.1 is applied with 
the roles of M and M’ reversed, it is tacitly assumed that M’ has a sutured manifold hierarchy, i.e. that 
H,(M’; Q)#O. If, in fact, H,(M’; Q)=O then /?*(M)sI, so any 2-sphere in M not bounding a rational homology 
ball must be non-separating. This case is not covered by 4.3 and so should be added to 8.1: 

(e) M’=(S’ x S*) # W, M’= W, # IV,, where W, W, and W, are rational homology spheres. 

We may further conclude, using the techniques above, that either H,(W) 20 or IV, is a Lens space. 
This correction does not affect the main applications, 4.4 and 4.5. 
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