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ABSTRACT. Suppose a genus two handlebody is removed from a 3-
manifold M and then a single meridian of the handlebody is restored.
The result is a knot or link complement in M and it is natural to ask
whether geometric properties of the link complement say something about
the meridian that was restored. Here we consider what the relation must
be between two not necessarily disjoint meridians so that restoring each
of them gives a trivial knot or a split link.

1. BACKGROUND

For a knot or link in a 3-manifold, here are some natural geometric ques-
tions that arise, in roughly ascending order of geometric sophistication: is
the knot the unknot? is the link split? is the link or knot a connected sum?
are there companion tori? beyond connected sums, are there essential an-
nuli in the link complement? beyond connected sums, are there essential
meridional planar surfaces? One well-established context for such ques-
tions is that of Dehn surgery (cf [Go]) where one imagines filling in the
knot or link complement with solid tori via different meridian slopes and
then asks under what conditions two of the fillings have geometric features
such as those listed above.

Another natural context is this: Suppose W is a genus 2 handlebody em-
bedded in a compact orientable 3-manifold M. Suppose α,β are not nec-
essarily disjoint essential properly embedded disks in W (called therefore
meridian disks). Then W −η(α) (resp W −η(β )) is a regular neighbor-
hood of a knot or link L[α] (resp L[β ]) in M. Under what circumstances
do L[α] and L[β ] have geometric features like those outlined above? At the
most primitive level (and so presumably the easiest level) one can ask when
both L[α] and L[β ] are split (if a link) or trivial (if a knot). Put another way,
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suppose M[α],M[β ] are the manifolds obtained from M−W by restoring
neighborhoods of the meridians α and β . Under what circumstances are
both M[α] and M[β ] reducible and/or ∂ -reducible? (In the absence of Lens
space or S1×S2 summands in a closed 3-manifold M, a ∂ -reducing disk for
a knot complement is equivalent to an unknotting disk for the knot.)

Not only is this a natural question, the solution to it in specific cases has
been of significant interest in knot theory over the past two decades. Here
is a probably partial list of such results, for M = S3:

• [Sc3] (see also [Ga]) considers the case in which one meridian disk
is separating, the other is non-separating, and the two meridians
intersect in a single arc.

• [BS1] and [BS2] (see also [ST2]) consider the case (among others)
in which both meridian disks are non-separating and the two inter-
sect in a single arc.

• [EM3] extends these earlier results and unifies them within the more
general setting in which there are non-isotopic non-separating merid-
ian disks µ,µ ′ for W which are disjoint from both α and β .

If we extend the question to whether one of the links is a connected
sum, the literature becomes even more extensive, including [EM1], [EM2],
[EM3], [Sc2], [ST1].

We briefly describe a typical conclusion in the arguments above. First
some terminology: Say that the handlebody W ⊂ M is unknotted if it is
isotopic to the regular neighborhood of a figure 8 graph Σ that lies on a
sphere in M. If W is unknotted and Σ is such a spine and if µ and µ ′ are the
pair of meridian disks for W that are dual to the two edges of Σ, then µ and
µ ′ are called an unknotting pair of meridians for W . Put another way, the
meridians µ and µ ′ for W are called unknotting meridians, and W is said to
be unknotted, if there are properly embedded disks λ ,λ ′⊂M− interior(W )
such that |µ ∩λ |= |µ ′∩λ

′|= 1 and µ ∩λ
′ = µ ′∩λ = /0. What is typically

proven (most generally by Eudave-Muñoz in [EM3]) is this: We are given
specific conditions on the filling meridians α and β , including that they are
both disjoint from the same pair of non-isotopic meridians µ,µ ′ for W . We
suppose further that the manifolds M[α] and M[β ] are both either reducible
or ∂ -reducible, whereas M−W is irreducible. The conclusion is that W
is unknotted in M, and the meridians µ and µ ′ are an unknotting pair of
meridians for W .

Put in this way, one wonders if the various conditions on α and β can be
dropped to give a global theorem on the unknottedness of W . For example:

Naive Conjecture: Suppose α and β are meridian disks of a genus two
handlebody W ⊂ M. Suppose further that M−W is irreducible and ∂M is
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incompressible in M−W . Then either W is unknotted or at least one of
M[α], M[β ] is both irreducible and ∂ -irreducible.

This naive conjecture is plainly false. Most obviously, take M to be
merely a regular neighborhood of W ; no matter how α and β are chosen,
both M[α], M[β ] are ∂ -reducible. But there are easy counterexamples even
for M = S3. For example, attach an arc e to the unknot U ⊂ S3, an arc
chosen to be so complicated that the closed complement S3 −η(U ∪ e) is
both irreducible and ∂ -irreducible. Let W = η(U ∪ e) and choose both α

and β to be copies of the meridian of W that is dual to the arc e. Then
both L[α], L[β ] are the unknot. Of course, taking α and β parallel like this
might be regarded as cheating. Figure 1 (due to Kinoshita [Ki]) is a more
subtle counterexample in which α and β aren’t parallel. The complement
of Kinoshita’s graph is also called the Thurston wye manifold and is known
to be ∂ -irreducible, so W is knotted.

β
α

FIGURE 1

In view of these counterexamples to the naive conjecture, are there sim-
ple conditions that ensure the conclusion of the conjecture, that either W
is unknotted or at least one of M[α] or M[β ] is both irreducible and ∂ -
irreducible? With reasonable conditions on the original pair (M,W ), it ap-
pears that there are such conditions on filling meridians α and β . These are
outlined in the next section.

2. A CONJECTURE AND A WEAK CONVERSE

Suppose W is a genus two handlebody properly embedded in a compact
orientable 3-manifold M. The pair is called admissible if these conditions
are satisfied:

• any sphere in M is separating
• M contains no Lens space summands
• any pair of curves in ∂M that compress in M are isotopic in ∂M
• M−W is irreducible
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• ∂M is incompressible in the complement of W
These are reasonable conditions to assume in our context: The first two

guarantee that the complement of a knot in a closed M is ∂ -reducible only
if the knot is the unknot. The third condition (which is the most technical)
removes the first counterexample above, in which M is merely a regular
neighborhood of W . The last two conditions remove obvious counterexam-
ples in which reducing spheres or ∂ -reducing disks exist even before filling
meridians are added.

The precise conditions that we propose on the pair of filling meridians
α,β ⊂ W depend on whether α and β are separating or non-separating.
Suppose that α and β have been properly isotoped in W to minimize |α∩β |.
In particular α ∩β consists of a possibly empty collection of arcs.

Definition 2.1. If α and β are both non-separating then they are aligned if
• there is a non-separating meridian disk for W that is disjoint from

both α and β and
• all arcs of α ∩β are parallel in both disks.

Definition 2.2. If α and β are both separating then they are aligned if
• there is a non-separating meridian disk µ for W that is disjoint from

both α and β and
• There is a longitude in the boundary of the solid torus W −µ that is

disjoint from α and β .

Here a longitude of a solid torus means any simple closed curve in the
boundary that intersects a meridian disk in a single point. If α and β are
aligned and separating, then they both lie in the 4-punctured sphere ∂W −
(∂ µ ∪ longitude) and they separate the same pairs of punctures there.

Finally

Definition 2.3. If α is non-separating and β is separating, then the disks
are aligned if they are disjoint or, when they are not disjoint,

• one solid torus component of W −β has a meridian µ disjoint from
both α and β and

• the other solid torus component of W −β has a meridian β
′ that is

disjoint from β and furthermore
• β

′ is maximally aligned with α . That is, α and β
′ are aligned (as

defined in Definition 2.1) and |β ′∩α|= |β ∩α|−1 . See Figure 2.

For a pair of non-separating disks, the condition that all arcs of α ∩β are
parallel in both disks means that either α and β are disjoint, or exactly two
components of α −β (and two components of β −α) are outermost disks,
that is disks incident to a single arc component of α ∩β . The condition is
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FIGURE 2

clearly satisfied whenever there are at most two arcs of intersection, ie if
|∂α ∩∂β | ≤ 4.

Here is the main conjecture:

Conjecture 1. If (M,W ) is an admissible pair then either

• W is unknotted and M = S3

• at least one of M[α] or M[β ] is both irreducible and ∂ -irreducible,
or

• α and β are aligned in M.

In many appearances of this general problem cited in the literature above,
∂α and ∂β intersect in few points, so they are automatically aligned. In any
case, the conjecture would only partially recapture the known results but
would extend them to a more general setting. Conjecture 1 appears to be
true, at least with one additional technical hypothesis: When |∂α∩∂β | ≤ 4,
assume further that M contains no proper summand that is a rational homol-
ogy sphere. A complete proof is not yet written down; even for a weaker
result, in which ∂ -irreducible is removed from the second conclusion, the
combinatorial argument is extremely complicated. The intention here is to
offer the more straightforward proofs in these three important special cases:

• M−W is ∂ -reducible.
• |∂α ∩∂β | ≤ 4. (This requires the additional technical condition.)
• Both α and β are separating.

In addition, we explain why the combinatorics becomes so difficult once
non-separating meridians are considered.

Before starting to verify the conjecture in these special cases, here is a
sort of weak converse to Conjecture 1. The assumption in Theorem 2.4 that
α and β are aligned is meant to be the weakest natural condition for which
the theorem is likely to be true.
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Theorem 2.4. Suppose α and β are aligned meridians in W. Then there is
an unknotted embedding of W in S3 (hence in any 3-manifold) so that each
of L[α] and L[β ] is either the unknot or a split link.

Proof. Suppose first that α and β are both separating. Embed W as the
regular neighborhood of an eyeglass graph (ie two circles σ1,σ2 connected
by an edge e) in S2 ⊂ S3. Since α is separating, such an embedding of W can
be found so that α is the meridian dual to the edge e. Then L[α] = σ1∪σ2
is split. Further choose the embedding W so that in the framing of the tori
W −α , the longitude λ of the solid torus W −µ that is disjoint from α ∪β

(cf Definition 2.2) is one of the three curves ∂W ∩S2. Then λ bounds a disk
in S2−W , so one component of L[β ] bounds a disk in the complement of
the other, showing that the link L[β ] is also split.

In case α and β are non-separating, a more subtle construction is re-
quired. Begin with an annulus A in S2 ⊂ S3 and draw a pair P of disjoint
spanning arcs. Let µ± be points in ∂A− ∂P, one in each component of
∂A but both lying on the boundary of the same rectangle component of
A−P. A product neighborhood A× [−1,1] ⊂ S2 × [−1,1] ⊂ S3 is a solid
unknotted torus in which P× [−1,1] can be thought of as the union of two
disjoint meridians α and β . Connect disk neighborhoods of µ±×{1/2} in
∂A× [−1,1] by adding an unknotted 1-handle on the outside of A× [−1,1]
that lies above S2×{0}. The result is an unknotted embedding of W , with
the meridian µ of the 1-handle also a meridian of W that is disjoint from
α and β . Now repeat the construction after first altering exactly one of the
original spanning arcs in P by n ≥ 0 Dehn twists around the core of the
annulus A. The construction gives aligned meridians with exactly n−1 arcs
of intersection. It is not hard to show that, given a pair of aligned non-
separating meridians in W which have n− 1 arcs of intersection, there is
an automorphism of W that carries the pair to α and β . The corresponding
knots L[α] and L[β ] are easily seen to be unknotted. (In fact they are iso-
topic: the isotopy merely undoes the Dehn twists used in the construction
by adding twists around the meridian µ of the 1-handle.) See Figure 3.

In case β is separating and α is not, let µ and β
′ be meridians of the solid

tori M−β as given in Definition 2.3, so that
• both µ and β

′ are disjoint from β ,
• µ is also disjoint from α and
• β

′ is aligned with α .
Apply the previous construction to the aligned meridians α and β

′. The
definition requires that the aligned β

′ intersect α in almost as many compo-
nents as β does. Viewed dually, this implies that β intersects α only once
more than β

′ does. This constrains β to be a regular neighborhood of the
arc β− connecting µ+×{1/2} to µ−×{1/2} in the disk ∂ (A× I)− (A×



REFILLING MERIDIANS IN A GENUS 2 HANDLEBODY COMPLEMENT 7

A x {-1}

A x {1}

!

"

µ

!
!

A

µ

µ

+

-

FIGURE 3

{−1}∪∂β
′). As before, W −α is the unknot. W −β is a regular neighbor-

hood of the trivial link, with one component parallel to the core of A×{0}
and the other to the union of β− and the core of the 1-handle. See Figure
4. �

A first step towards the proof of Conjecture 1 is to note that we can restrict
to the case in which M−W is ∂ -irreducible.

Proposition 2.5. Conjecture 1 is true when M−W is ∂ -reducible.

Proof. Case 1: There is a ∂ -reducing disk P for M−W such that |∂P∩
∂α|= 1 (or, symmetrically, |∂P∩∂β |= 1).

In this case, W − η(α) ∼= W ∪ η(P) so any reducing sphere for M[α]
would be a reducing sphere for M−W ⊃ M− (W ∪η(P)), contradicting
the assumption that (M,W ) is an admissible pair. Similarly, if M[α] is
∂ -reducible via a disk whose boundary lies on ∂M, the disk would be a ∂ -
reducing disk for M−W , contradicting the assumption that (M,W ) is an ad-
missible pair. Hence either M[α] is both irreducible and ∂ -irreducible (the
second conclusion) or there is a ∂ -reducing disk for M[α] whose boundary
lies on ∂ (W −η(α)). Since M contains no Lens space summands, such a
disk is incident to the solid torus W −η(α) in a longitude and the union of
the disk with W −η(α) is a ball. Equivalently, there is a ∂ -reducing disk D
for M− (W ∪η(P)) so that W ∪η(P)∪η(D) is a ball. W is clearly a genus
2 Heegaard surface for the ball, so it follows from Waldhausen’s theorem
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[Wa] that W is unknotted, giving the first conclusion and completing the
proof in this case.

Case 2: There is a ∂ -reducing disk (P,∂P)⊂ (M−W,∂W −α) for M[α]
(or symmetrically for β and M[β ]).

In this case first note that W −η(α) consists of one or two solid tori (de-
pending on whether α separates W ) and ∂P lies on one of them. Since M
contains no Lens space or non-separating 2-spheres, ∂P is in fact a longi-
tude of the solid torus on whose boundary it lies. So ∂P is non-separating.

Suppose first that ∂P is disjoint from ∂β as well as ∂α; we show that
α and β are then aligned. Let µ be a meridian for W which is disjoint
from α and whose boundary is disjoint from ∂P. In particular, if α is non-
separating, take a parallel copy of α for µ . If β intersects µ then an outer-
most disk of β cut off by µ would be a meridian of the solid torus W −µ for
which ∂P is a longitude, a contradiction. Hence β lies entirely in the solid
torus W − µ . β can’t be essential in that solid torus for the same reason.
Hence β is inessential in W −µ and so is either parallel to µ (hence disjoint
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from and therefore aligned with α) or separating. If α is non-separating
then it is parallel to µ and so disjoint from and therefore aligned with β . If
α , like β , is separating, then ∂P is the longitude required by Definition 2.2
to show that α and β are aligned.

So henceforth assume that ∂P and ∂β are not disjoint. Apply the Jaco
handle-addition lemma [Ja] (as generalized by [CG] to the reducible case)
to the 2-handle η(β ) attached to the ∂ -reducible (via P) manifold M−W :
If M[β ] is reducible or ∂ -reducible then there is a ∂ -reducing disk J for
M−W whose boundary is disjoint from β . Since ∂M is incompressible
in M−W , ∂J lies on ∂W . Assume that such a disk J has been chosen to
minimize |J∩P|.

Suppose first that J ∩P 6= /0 and consider an outermost disk E cut off
from J by P. We can assume the arc ∂E − ∂P is essential in the surface
∂W − ∂P, else an isotopy of that arc across ∂P would reduce |J ∩P|. It
follows that ∂E is essential on the torus ∂ (W ∪η(P)), for the alternative
is that it cuts off a disk containing all of one copy of P in the torus but
only part of the other, and so, absurdly, ∂J intersects one side of ∂P more
often than the other. Then W ∪η(P)∪η(E) is the union of a solid torus
and an essential 2-handle. Since M contains neither non-separating spheres
nor Lens spaces, W ∪η(P)∪η(E) is a 3-ball. Cap the 3-ball off with a
3-handle and the result is a genus two Heegaard splitting of S3, in which W
is one of the two handlebodies. But Waldhausen’s theorem [Wa] states that
any Heegaard splittings of S3 is isotopic to a standard one. It follows that
W may be isotoped in the 3-sphere (hence in a neighborhood of the 3-ball
W ∪η(P)∪η(E)) so that it is standard. Thus W is unknotted in M and we
are done.

The remaining case is that J is disjoint from P. If ∂J is essential on the
torus ∂ (W ∪η(P)) then use J for E in the previous argument and again we
are done. Suppose then that ∂J is inessential on ∂ (W ∪η(P)). The disk
it bounds can’t contain just one copy of P, since ∂P intersects β and ∂J
does not. So the disk contains both copies of P, hence ∂J is separating
in ∂W . Since ∂J is disjoint from the meridian β , ∂J then also bounds a
separating meridian J′ ⊂ W . Since ∂β and ∂P intersect, β is a meridian
disk for the solid torus component of W − J′ for which ∂P is the longitude.
Hence |∂β ∩∂P|= 1 and we are done by the first case.

Now consider the general case:
Apply the Jaco handle-addition lemma to η(α) and conclude that ei-

ther M[α] is irreducible and ∂ -irreducible (the second conclusion) or a ∂ -
reducing disk (P,∂P) can be found whose boundary is disjoint from α .
Since ∂M is incompressible in M−W , ∂P⊂ ∂W −α . If ∂P is essential on
∂M[α] the proof follows from Case 2. If ∂P is inessential on ∂M[α] then
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it is coplanar (possibly parallel with) α , so ∂P bounds a meridian P′ for W .
In particular, ∂P is separating, since M contains no non-separating spheres.
Similarly there is a separating disk (Q,∂Q)⊂ (M−W,∂W −β ). If ∂P and
∂Q are parallel in ∂W then it follows easily that α and β are disjoint from
each other and hence aligned. If ∂P and ∂Q are not isotopic in ∂W then
they must intersect, and an outermost arc of intersection in Q cuts off a disk
(F,∂F)⊂ (M−W,∂W −∂P) whose boundary is essential on, and hence a
longitude of, one of the solid tori W −P′. If α is a meridian of that solid
torus, use F as P in Case 1. If α is the meridian of the other solid torus, use
F as P in Case 2. �

Following Proposition 2.5, Conjecture 1 is equivalent to the apparently
weaker

Conjecture 2. Suppose (M,W ) is an admissible pair and M −W is ∂ -
irreducible. Then either

• at least one of M[α] or M[β ] is both irreducible and ∂ -irreducible,
or

• α and β are aligned in M.

Proposition 2.6. When |∂α ∩ ∂β | ≤ 4, Conjecture 2 is true . If, further-
more, α is separating and M contains no proper summand that is a rational
homology sphere then one of M[α] or M[β ] is irreducible and ∂ -irreducible.

Proof. When |∂α ∩ ∂β | ≤ 4, there are at most two arcs of intersection, so
each arc of intersection is incident to an outermost disk in both α and β

and, moreover, all arcs of intersection are parallel in both disks. Gluing an
outermost disk of one to an outermost disk of the other gives a meridian
disk for W that is disjoint from both α and β . It follows that if α and β are
both non-separating, then they are aligned.

So it suffices to consider the case in which at least one of them, say α ,
is separating. We aim to show that the disks are aligned and, assuming M
contains no proper summand that is a rational homology sphere, if M[α]
is either reducible or ∂ -reducible, then M[β ] is neither reducible nor ∂ -
reducible. There are two cases to consider:

Case 1: |∂α ∩∂β |= 2.

In this case β must be non-separating and it is immediate from Definition
2.3 that α and β are aligned. The argument that one of M[α] or M[β ] is
irreducible and ∂ -irreducible now mimics in this more general setting the
central argument of [Ga], which in fact provides the complete argument
when M is the 3-sphere.
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Let L⊂M−W be the regular neighborhood of a circle parallel to ∂α , so
a longitude of ∂L bounds a disk D in M−L that intersects W in a single copy
of α . Since α ∩β is a single arc, D intersects the solid torus T = W −β in
two oppositely-oriented meridians. (For example, in Gabai’s setting, W −α

is a split link and W −β is obtained from the split link by a band sum. ∂D
encircles the band.)

First observe that M[β ]− L is irreducible and ∂ -irreducible. For sup-
pose first that a ∂ -reducing disk or reducing sphere Q̂ were disjoint from D.
Since M[β ]∪η(D) ∼= W , Q̂ would also be a ∂ -reducing disk or reducing
sphere in M−W , contradicting the hypothesis. Similarly, if Q̂ intersects
D an innermost disk E in Q̂−D provides a ∂ -reducing disk for ∂W in the
complement of M[β ]∪η(D)∼= W .

Let M[β ]0 be the manifold obtained from M[β ] by 0-framed surgery on
L, that is, surgery with slope ∂D.

Claim: If M[α] is reducible or ∂ -reducible, then so is M[β ]0
To prove the claim, suppose P̂ is a reducing sphere or ∂ -reducing disk for

M[α]. Then int(P̂)∩W is a collection of parallel copies of α . Let A ⊂ ∂W
be an annulus containing all their boundary components int(P̂)∩ ∂W . Let
A′ be a copy of A pushed into W rel ∂A. Then W −η(A′) is isotopic to
W ∪L and under this isotopy the boundary components of the planar surface
P = P̂−W that previously were on A become 0-framed curves on ∂ (L).
After 0-framed surgery on L to get M[β ]0, these components on ∂L can be
capped off to give a copy P̂′ ⊂ M[β ]0 of P̂ that either ∂ -reduces or reduces
M[β ]0. See Figure 5. That P̂′ does not bound a ball is obvious if P̂′ is
non-separating (eg m is odd). If P̂′ is separating, note that such a ball must
have come from the component of M− (W ∪L∪η(P)) not adjacent to W .
But this component is completed by attaching 2-handles in the same way in
both M[β ]0 and M[α], and we know that P̂ is a reducing sphere in M[α] and
so does not bound a ball. This completes the proof of the Claim.

Following the Claim, apply the central theorem of [Sc4] to the link L
in the manifold M[β ] and rule out possible conclusions a)-c): L ⊂ M[β ] is
not homeomorphic to a braid in D2 × S1 since, for one thing, L is null-
homologous. Nor does M[β ] contain a Lens space summand, since M
doesn’t. A longitude of ∂L bounds a disk in M−L so ∂L can’t be cabled in
M with the same boundary slope. Hence conclusion d) of the main theorem
of [Sc4] applies to M[β ] and M[β ]0. We now examine the consequences.

Suppose that M[α] is reducible. Then M[β ]0 is reducible, so by [Sc4],
M[β ] is irreducible and ∂ -irreducible.

Suppose that M[α] is ∂ -reducible via the disk P̂. We note that if ∂ P̂ lies
on the boundary of one of the solid tori components of W −α then that solid
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torus lies in a 3-ball in M, so M[α] is reducible. Then, via the previous
comment, M[β ] is irreducible and ∂ -irreducible. So we can assume that
∂ P̂ ⊂ ∂M. Then ∂ P̂ is disjoint from any ∂ -reducing disk for M[β ] since,
by hypothesis, any essential simple closed curves in ∂M that compress in
M are isotopic. Hence M[β ]0 is ∂ -reducible via a disk whose boundary is
disjoint from any ∂ -reducing disk for M[β ]. So by [Sc4] M[β ] is irreducible
and ∂ -irreducible. To summarize: If M[α] is reducible or ∂ -reducible, then
M[β ] is neither reducible nor ∂ -reducible. Thus we have the first conclusion
of Conjecture 2, completing the proof in this case.

Case 2: |∂α ∩∂β |= 4.

In this case β ∩α consists of two arcs; call the rectangles that lie between
them in α and β respectively Rα and R

β
. The outermost disks of β cut off

by α are both meridians of the same solid torus component W1 of W −α;
in fact they are parallel copies of the same disk meridian D

β
⊂W1 whose

boundary consists of an arc in Rα parallel to the arcs β ∩α and an arc on
∂W −α . See Figure 6. The meridian D

β
is properly isotopic in W to a

meridian that is disjoint from both α and β ; a meridian for the other solid
torus component of W −α intersects β in a single arc. It follows imme-
diately that α and β are aligned. It remains to show that if M contains no
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proper summand that is a rational homology sphere and if M[α] is reducible
or ∂ -reducible, then M[β ] is neither reducible nor ∂ -reducible.

α

β

α’

βD
W’

W
2

FIGURE 6

The union A = Rα ∪ R
β

is either an annulus or Möbius band in W
(depending on the orientations of the arcs β ∩ α in α) which, when ∂ -
compressed to ∂W along D

β
becomes β . Put another way, W− = W −A is

a handlebody or pair of handlebodies (depending on whether A is a Möbius
band or an annulus) which, when ∂ -reduced along D

β
becomes W −β . A

copy α ′ of α pushed into W1 intersects D
β

in a single arc. Essentially, we
intend to settle Case 2 by applying Case 1 to the disks D

β
and α ′, two

meridians of W− that intersect in a single arc.
If A is an annulus, then W− is the union of a solid torus W2 (essentially

the component of W −α that is not W1) and a genus two component. In this
case, let W ′ be the genus 2-component and M′ = M−W2. If A is a Möbius
band let W ′ = W− and M′ = M.

Claim 1: If M[α] is reducible or ∂ -reducible, so is M′[α].
Proof of Claim 1: M′[α] is obtained from M[α] by attaching A to ∂M[α]

via ∂A and thickening A. This operation can’t turn a complementary com-
ponent of a sphere or properly embedded disk into a 3-ball, so it can’t make
a reducible manifold irreducible or a ∂ -reducible manifold ∂ -irreducible.

Claim 2: If M[β ] is reducible or ∂ -reducible, so is M′[D
β

].
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Proof of Claim 2: By construction, ∂ -compressing A to ∂W via D
β

gives
β , so M[β ] is homeomorphic to M′[D

β
]

Claim 3: M′−W ′ is irreducible and ∂ -irreducible.
Proof of Claim 3: Suppose S is a reducing sphere or ∂ -reducing disk for

M′−W ′ and A′ is the annulus or Möbius band dual to A in W . That is,
W ′∪η(A′)∼= W if A is a Möbius band and W ′∪η(A′)∪W2 ∼= W if A is an
annulus. If S is disjoint from A′ then S is a reducing sphere or ∂ -reducing
disk for M−W , contradicting hypothesis.

On the other hand, suppose S and A′ are not disjoint. Closed components
of S∩A′ that are inessential in A′ can be removed by a standard innermost
disk argument; if any essential closed components of S∩A′ remain, then
an innermost disk of S−A′ would be a compressing disk for ∂W in M−
W , again contradicting hypothesis. Similarly, all arc components of S∩
A′ (which only can arise if S is a ∂ -reducing disk, not a reducing sphere)
that are inessential in A′ (ie non-spanning) can be removed by a standard
outermost arc argument. On the other hand, a spanning arc in S∩ A′ is
clearly impossible if A′ is an annulus, since the ends of A′ are on different
components of ∂ (M′−W ′) whereas ∂S can only be incident to one. If A′

is a Möbius band then an outermost disk cut off from S by A′ will be a
∂ -reducing disk for M−W , again contradicting hypothesis.

Following Claim 3, Case 1) may be applied to the disks α,D
β
⊂W ′ in

M′: If M′[α] is reducible or ∂ -reducible then M′[D
β

] is irreducible and
∂ -irreducible. Hence, following Claims 1 and 2, if M[α] is reducible or
∂ -reducible, M[β ] is irreducible and ∂ -irreducible. �

Proposition 2.7. If both α and β are separating Conjecture 2 is true. Fur-
thermore, if, in addition to the assumptions of Conjecture 2, |∂α ∩∂β | ≥ 6,
then one of M[α] or M[β ] is irreducible and ∂ -irreducible.

The rest of the section is devoted to the proof of Proposition 2.7. The
proof requires a few internal lemmas.

Following Proposition 2.6 we may as well assume |∂α ∩∂β | ≥ 6.
Since both α and β are separating, W −η(α) and W −η(β ) are each a

pair of solid tori. If M[α], say, is ∂ -reducible and the ∂ -reducing disk P is
incident to a solid torus component W1 of ∂ (W −η(α)) then ∂ (η(W1∪P))
is a sphere in M that separates the two solid tori, so M[α] is reducible as
well as ∂ -reducible. On the other hand, if M[α] is ∂ -reducible and the ∂ -
reducing disk P is incident to ∂M then P is a ∂ -reducing disk for M as well.
In that case ∂P lies in the unique isotopy class of ∂M which compresses
in M, following the assumption that (M,W ) is admissible. We deduce that
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if neither M[α] nor M[β ] are reducible but both are ∂ -reducible then the
∂ -reducing disks have disjoint boundaries, lying in ∂M.

The proof proceeds by assuming that both M[α] and M[β ] are ∂ -reducible
or reducible and derives a contradiction by examining components of inter-
section between a reducing sphere or ∂ -reducing disk in M[α] and a reduc-
ing sphere or ∂ -reducing disk in M[β ]. Following the comments above it
would be natural to view the case of reducing spheres as entirely represen-
tative, since when there are no reducing spheres the ∂ -reducing disks that
can be used necessarily have disjoint boundaries, so the combinatorics is
unaffected by the boundary. In fact we will ignore ∂ -reducing disks whose
boundaries lie on ∂M, because the combinatorics involved is identical to
that for reducing spheres. But for somewhat technical reasons, it is best to
allow another possibility, even when there are reducing spheres. Say that a
∂ -reducing disk for M[α] is special if its boundary p0 lies in ∂W and p0 is
parallel in ∂W to the end-point union of a subarc of ∂α and a component
β 0 of ∂β − ∂α . The curve p0 is necessarily a longitude of the solid torus
component W1 of W −α on which it lies. Furthermore, since each arc of
∂β −α in the punctured torus ∂W1−α is essential and lies in the annulus
∂W1 − (α ∪ β 0), it follows that each such arc component intersects p0 at
most once. There is a symmetric definition for a special ∂ -reducing disk for
M[β ].

To begin the combinatorial argument, let P̂ (resp Q̂) be either a reducing
sphere or a special ∂ -reducing disk for M[α] (resp M[β ]). Since M−W is
irreducible and ∂ -irreducible, P̂ must pass through the handle η(α) m ≥ 1
times. Among all reducing spheres and special ∂ -reducing disks for M[α],
choose P̂ to minimize m. Let P = P̂−W be the associated properly embed-
ded planar surface in M−W . Then ∂P has components α1, ...,αm,m ≥ 1,
each of them parallel on ∂W to ∂α and, if P̂ was a special ∂ -reducing disk,
a component p0 = ∂ P̂. Label the α i in the order they appear in an annu-
lar neighborhood of ∂α in ∂W . There are two choices for the direction of
the ordering. If P̂ is a ∂ -reducing disk, choose the ordering which puts α1
adjacent to p0; otherwise choose either ordering. For Q̂ there is a similar
planar surface (Q,∂Q) ⊂ (M −W,∂W ) whose boundary components are
similarly labeled β 1, ...β n,n ≥ 1 and possibly q0. Isotope P and Q so as to
minimize |P∩Q|. |P∩Q| > 0 since α and β intersect. Let α̂ i, β̂ j ⊂W be
meridian disks in W bounded by α i,β j respectively, for each 1≤ i≤m and
1 ≤ j ≤ n.

As is now a classical strategy, view P∩Q as giving rise to graphs Σ and ϒ

respectively in P̂ and Q̂. The vertices of the graphs correspond respectively
to the disks α̂ i ⊂ P̂ and β̂ i ⊂ Q̂. Edges of each graph correspond to the arcs
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of intersection in P∩Q. Circles of intersection are ignored. The valence
of each vertex in Σ is |∂α ∩∂β | ·n+ |∂α ∩q0| and in ϒ is |∂α ∩∂β | ·m+
|∂β ∩ p0|. When P̂ is a special ∂ -reducing disk, the number of ends of edges
that are incident to p0 = ∂ P̂ is less than half the valence of each vertex of
Σ, since each arc of ∂Q−α lying on the torus component of ∂ (W −α)
containing p0 contributes 2 to the valence of α1 but intersects p0 at most
once, and at least one such component is disjoint from p0. Similarly, the
number of ends of edges that are incident to q0 = ∂ Q̂ is less than half the
valence of each vertex of ϒ.

Consider a point x in ∂P∩ ∂Q, say x ∈ α i∩β j. To x assign the ordered
pair (i, j),1 ≤ i ≤ m,1 ≤ j ≤ n. When viewed in the graphs Σ and ϒ the
point x appears as an end of a unique edge. Assign to the end of the edge
in Σ the label j. Similarly assign to the end of the edge in ϒ the label i. For
each 1 ≤ j ≤ n, of the ends of edges incident to any vertex in Σ, exactly
|α ∩ β | will have label j. A similar remark holds for labeling around a
vertex of ϒ. Points (if any) in p0 ∩ β j, α i ∩ q0 and p0 ∩ q0 similarly are
assigned the ordered pairs (0, j),(i,0) and (0,0) respectively, giving rise to
ends of edges labeled 0 in respectively ϒ, Σ, and both Σ and ϒ.

An important difference between the topology exploited in this proof and
that used in the analysis of Dehn surgery (cf [CGLS]) is that in the lat-
ter, any two components α i,β j of the boundaries of P and Q respectively
always intersect in the torus boundary of the 3-manifold with the same ori-
entation. In the present situation, each α i will intersect each β j with both
orientations. Indeed, since both bound meridian disks of W , the sum of the
orientations of all points of intersection between the two will be trivial.

Let A⊂ ∂W be the annulus between α1 and αm whose core is ∂α . To any
proper arc in A that spans A and is properly isotoped to minimally intersect
the α i, assign the orientation that points from α1 to αm. This is called
the spanning orientation of the arc. Similarly let B ⊂ ∂W be the annulus
between β 1 and β n and define the spanning orientation for spanning arcs of
B to be the orientation that points from β 1 to β n. The spanning orientation
for A gives what is called the spanning normal orientation in ∂W to each
component α1, ...,αm of ∂P, namely the normal orientation that points from
α i to α i+1. Similarly define the spanning normal orientation for each β j ⊂
∂Q.

Fix normal orientations for P and Q. Following such a choice, an edge
in Σ whose corresponding edge in ϒ connects two vertices (so neither end
in Σ is labelled 0) is called incoherent if the normal orientation of Q along
the arc of intersection agrees with the spanning orientation at one end and
disagrees at the other. Otherwise (if it agrees at both ends or disagrees at
both ends) it is called coherent. Whether the edge is coherent or incoherent
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is independent of the original choice of orderings of the α i and the β j or
the choice of normal orientation for Q. Note that by definition an incoher-
ent edge cannot have ends with the same label j. If two coherent edges are
parallel and adjacent, one with ends labeled j1, j′1 and the other with cor-
responding ends labeled j2, j′2 then j1 − j′1 ≡ j2 − j′2 mod n. Similarly if
two incoherent edges are parallel and adjacent, then j1 + j′1 ≡ j2 + j′2 mod
n. Similar remarks hold for labels of ends of edges in ϒ. Note that if two
edges are parallel and if one is coherent and the other is incoherent, then the
spanning orientations agree on one end (i.e. induce the same orientation on
that component of ∂P) and disagree on the other. The only way that span-
ning orientations can disagree at adjacent labels is if the interval between
them does not lie on B, so one pair of adjacent ends are either both labeled
1 or both labeled n.

Lemma 2.8. There are no trivial loops in either ϒ or Σ.

Proof. We show that an innermost trivial loop in ϒ can be used to reduce
m. W − P̂ consists of m−1 copies of D2× I (labelled W1, ...,Wm−1) and two
solid tori W0 and Wm. Each 1-handle Wi,1 ≤ i ≤ m−1 lies between copies
α̂ i and α̂ i+1 of α; the solid torus W0 is incident to P̂ in α̂1 (and possibly p0)
and the solid torus Wm is incident to P̂ in α̂m.

An innermost trivial loop in ϒ cuts off a disk D from Q whose boundary
consists of an arc q on ∂Q− P ⊂ ∂W − P (in the component of ∂Q on
which the loop is based) and an arc γ in P∩Q. Suppose first that, q lies
in the annulus lying between some α i and α i+1, 1 ≤ i < m. q can’t be
inessential in the annulus, since |∂P∩∂Q| has been minimized up to isotopy
in ∂W . So q spans the annulus. The 1-handle Wi can be viewed as a regular
neighborhood of the arc q. Then D can be used to isotope Wi through γ ⊂ P,
removing both α̂ i and α̂ i+1 and reducing m by 2. A similar argument,
reducing m by 1, applies if q has one end on α1 and its other end on p0.

The only remaining possibility is that q is an essential arc in ∂W −η(α)
with both its ends on one of the components α1 or αm, say αm. (Both ends
have to be on the same curve α1 or αm, since α is separating.) That is, q is
an essential arc on the punctured torus ∂Wm− α̂m.

Claim: q passes through a meridian of Wm exactly once.
Proof of Claim: The arc γ together with a subarc p of αm form a closed

curve in P, and so a closed curve that bounds a disk in M[α]. If this disk
is attached to D along γ the result is a disk D+ in M[α] whose boundary
p∪q is an essential closed curve on the boundary of Wm. Since M contains
no Lens space summands or non-separating spheres, p∪q is a longitude of
Wm, and so intersects a meridian of Wm in a single point. By isotoping p to
be very short, the intersection point lies in q, establishing the claim.
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Following the claim, Wm can be viewed as a regular neighborhood of
q, attached to α̂m. The disk D+ appearing in the proof of the claim is a
special ∂ -reducing disk for W . The number of times D+ passes through α

is the number of vertices lying between γ and αm in P̂ and so in particular
is at most m−1. This contradicts the original choice of P̂. The symmetric
argument eliminates trivial loops in Σ. �

Following Lemma 2.8 we may immediately assume that m,n ≥ 2 since,
for example, if m = 1 the fact that fewer ends of edges of Σ lie on p0 (if it
exists) than on α1 guarantees that there will be a trivial loop at α1. In the
absence of trivial loops in the graphs, our analysis will focus on edges that
are parallel in the graph. Parallel edges cut off faces that are bigons. We will
be interested in large families of parallel edges. So consider a collection of
parallel edges e1, ...,et in ϒ, with ends on vertices v,w. Number them in
order around v, making an arbitrary choice between the two possible ways
of doing this. Arbitrarily call v the source vertex. Then the family of edges
defines a function φ from a sequence of labels around v (namely the labels
of the ends of e1, ...,et at v) to a sequence of labels around w (namely the
labels of the ends of e1, ...,et at w). In a typical setting we will know or
assume a lot about the label sequence at v (called the source sequence) and
a little about the label sequence at w. Typically we will only know that
the label sequence at w lies as a contiguous subsequence of a much larger
sequence called the target sequence.

In our setting, and momentarily assuming no labels 0 appear, the labels
around any vertex in ϒ appear in (circular) order

1, ...,m,m, ...,1,1, ...,m,m, ...,1 ... 1, ...,m,m, ...,1

with |∂α ∩∂β | ≥ 6 determining the total number of sequences 1, ...,m and
m, ...,1 that appear. When labels 0 do appear, i.e. when P̂ is a special ∂ -
reducing disk and p0 intersects ∂β , then a label 0 appears between some
(but not necessarily all) successive labels 1,1 . If the source sequence of
a set of parallel edges (that is, the sequence of labels at the vertex v) is of
length t ≤ m+1 then the above long sequence is a natural target sequence.
That is, we know that the ends of the edges e1, ...,et at w have labels some
ordered contiguous subsequence in the long sequence above (with perhaps
some 0’s inserted). But we could equally well have used the shorter target
sequences 1, ...,m,m, ...,1,1, ....,m or 1, ...,m,m, ...,1,0,1, ....,m since any
ordered sequence of t ≤m+1 contiguous labels in the long sequence is also
an ordered contiguous sequence in 1, ...,m,m, ...,1,1, ....,m or 1, ...,m,m, ...,1,0,1, ....,m.

The following lemmas are classical, going back at least to [GL], [Sc1]:



REFILLING MERIDIANS IN A GENUS 2 HANDLEBODY COMPLEMENT 19

Lemma 2.9. Suppose φ is a function as described above determined by a
set of parallel edges in ϒ, with source sequence 0,1, ...,m. For all 0 ≤ i ≤
m−1, if φ(i) = i+1, then φ(i+1) 6= i.

Proof. The case 1 ≤ i ≤ m− 1 is representative. The bigon between the
edges represents a rectangle embedded in M with one pair of opposite sides
lying in P̂. The other pair of opposite sides are parallel spanning arcs on
the annulus in ∂W between α i and α i+1. Moreover these spanning arcs are
oriented in such a way that if the rectangle between them in the annulus is
added, the result is a Möbius band A with its boundary on P̂. The union of
the Möbius band A and a disk component of P̂−∂A is a copy of RP2 in M,
whose regular neighborhood is then a punctured RP3 in M, contradicting
the hypothesis that M contains no Lens space summands. �

Lemma 2.10. Suppose φ is a function as described above determined by
a set of parallel edges in ϒ, with source sequence contained in 0,1, ...,m.
Then:

• For all 1 ≤ i ≤ m−1, if φ(i) = i, then φ(i+1) 6= i−1.
• If φ(1) = 1, then φ(2) 6= 1.
• If φ(m) = m, then φ(m−1) 6= m.

Proof. In each case, the hypothesis implies that an edge in ϒ with the same
label on each end is incoherent. �

Jointly call these lemmas the standard RP3 contradiction, and note that
they are typically applied to show that a set of mutually parallel edges can’t
be too numerous. For example, in our context:

Lemma 2.11. No label sequence 0,1, ...,m or 1, ...,m,m appears as a source
sequence for any set of parallel edges in ϒ. Moreover, if no label 0 appears
in the target sequence, no label sequence 1, ...,m can appear as a source
sequence.

Proof. We prove the last statement first. Consider the image of the label
sequence 1, ...,m in the target sequence 1, ...,m,m, ...,1,1, ....,m. If φ(1)
is the ρ th term in the target sequence, call 0 ≤ ρ < 2m, the offset of the
function. Consider the possible offsets.

If the offset is trivial (ρ = 0) or ρ = 2m then for all 1 ≤ i ≤ m, φ(i) = i.
This means that for each label 1≤ i≤m there is an edge in ϒ with that label
at both ends. Looking at the other graph, this means that every vertex in Σ

is the base vertex for a loop. An innermost loop then can have no vertices
in its interior, i.e. it would be a trivial loop, contradicting Lemma 2.8.

Suppose 1 ≤ ρ ≤ 2m−1. If ρ is even, then the label m− ρ
2 contradicts

Lemma 2.9. If ρ is odd then the label m− ρ−1
2 contradicts Lemma 2.10.
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FIGURE 7

The point is informally captured in the graph in Figure 7.
The case when the possible target sequence is 1, ...,m,m, ...,1,0,1, ....,m

is essentially the same argument, but requires using the entire source se-
quence 0,1, ...,m or 1, ...,m,m.

�

It is easy to complete the proof of Proposition 2.7 in the case that no
labels 0 appear (e. g. when P̂ is a sphere or is a special ∂ -reducing disk
whose boundary is disjoint from β ). Since |∂α∩∂β | ≥ 6, every vertex in ϒ

has on its boundaries at least six disjoint label sequences 1, ...,m or m, ...,1.
According to Lemma 2.11 no such sequence can be entirely at the end of a
parallel set of edges. It follows that there are at least six breaks between sets
of parallel edges at each vertex, hence at least six separate sets of parallel
edges incident to each vertex. This leads to a simple Euler characteristic
contradiction, see [GL, Lemma 4.1] for the case in which Q̂ is a sphere.

The remaining case, when P̂ is a special ∂ -reducing disk and p0 intersects
∂β , is only slightly more delicate. Note first that since β is separating,
|p0∩ ∂β | is even and hence ≥ 2. This implies that each vertex of ϒ has at
least two labels 0 in its boundary. Each label 0 stands at the center of a
sequence of edge labels

1, ...,m,m, ....1,0,1, ...,m,m, ...,1

and each of these can be written as the end-point union of four label se-
quences

1, ...,m,m
m, ...,1,0
0,1, ...,m
m,m, ...,1.

Each of these four must have a break by Lemma 2.11. Of the two sets of 4
breaks thereby identified, at most two from each group can coincide since
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|∂α ∩ ∂β | ≥ 6. Hence there are again at least 8m− 2 = 6 breaks around
each vertex, leading to the same contradiction. �

3. WHEN MERIDIANS ARE NON-SEPARATING – AN INTRODUCTION

Much complication is added if one or both of the meridians α or β is
non-separating. The most striking is that the graphs Σ and ϒ might have
trivial loops, as we now describe.

Just as in the proof of Proposition 2.7, no innermost trivial loop in ϒ can
have ends labelled i, i + 1, but there are three other possibilities: as before
they could have ends labelled 1,1 or m,m. Or they could have ends labeled
1,m since, as α is non-separating, some arc of ∂β − ∂α could have its
ends on opposite sides of ∂α . Only the last possibility (ends labeled 1,m)
withstands closer scrutiny:

Lemma 3.1. No innermost trivial loop in ϒ has both ends labelled 1 (or,
symmetrically, both ends labelled m).

Proof. Consider the twice punctured torus T ∗ = ∂W −α . The two punc-
tures (that is, ∂ -components) of T ∗ can be identified with α1 and αm.

Claim 1: Any pair of arcs of ∂β −∂α that have both ends at α1 (or both
ends at αm) are parallel in T ∗.

Proof of Claim 1: Two non-parallel such arcs with ends at α1 would have
complement in T ∗ a punctured disk, with puncture αm. All arcs of ∂β −∂α

that have one end on αm must then have their other end on α1 in order to
be essential in T ∗. But then ∂β would be incident to α1 at least four more
times than it is incident to αm. This is absurd, since α1 and αm are parallel
and |∂P∩∂Q| has been minimized up to isotopy. The contradiction proves
Claim 1.

Claim 2: Any arc of ∂β − ∂α that has both ends at α1 or both ends at
αm is meridional in T ∗. That is, the arc, together with a subarc of α1 (or
αm) joining the ends, form a meridian circle on the boundary of the solid
torus W −α .

Proof of Claim 2: Any outermost disk of β cut off by α intersects T ∗ ⊂
∂W in an arc γ which either has both ends at α1 or both ends at αm, say
the former. The outermost disk is a meridian of the solid torus W −α so
γ , together with a subarc of ∂α1 forms a meridian circle in the boundary
of the solid torus W −α . This and Claim 1 establish Claim 2 for arcs with
both ends at α1.

Any arc of ∂β − ∂α with both ends at αm (and a counting argument
shows that there must be as many such arcs as there are with both ends at
α1) must be meridional since if it had any other slope, it would necessarily
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intersect the meridional arc with both ends at α1. This establishes Claim 2
also for arcs with both ends at αm.

Following the claims, consider the disk D cut off from Q by an innermost
trivial loop λ in ϒ with both ends labeled 1. The two claims guarantee that
the curve ∂D intersects ∂W −α in a meridional arc. In particular, the union
of D with the disk in P̂ cut off by λ and a subarc of ∂P is a disk D+ in M[α]
whose boundary in W −α is a meridian circle on the boundary of the solid
torus W −α . The union of D+ with a meridian disk for W −α contradicts
the assumption that M contains no non-separating spheres. �

Following the Lemma, we have that any innermost trivial loop in ϒ has
ends labeled 1,m. The disk D⊂Q it cuts off can be used to ∂ -compress P to
∂W . This alters P, replacing the boundary curves α1,αm with a separating
curve bounding a separating meridian α∗ of W . Replace P then with a
planar surface (still called P) whose boundary components consist of curves
α1, ...,αk parallel to ∂α and curves α∗

1, ...,α
∗
s parallel to ∂α∗, each family

labeled in order, and in such an order that one complementary component
in ∂W is a pair of pants with boundary components α∗

s , α1 and αk. The
construction guarantees that ∂Q intersects the pair of pants in at least one
arc with ends on both α1 and αk, hence no arc with both ends on α∗

s . See
Figure 8.

1

α

αα

α∗

α∗

α∗

2
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1

2

FIGURE 8

After this replacement, the vertices of Σ now are of two different types
and the labeling of edges around any vertex of ϒ is therefore more com-
plicated. But by allowing two vertex types, choosing P and Q to minimize
|∂P∩∂Q| now guarantees that the corresponding graph ϒ in Q̂ has no trivial
loops. Indeed, such a trivial loop would have its ends either:
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• on α∗
1, which would allow s to be reduced by 1, via the argument of

Lemma 2.8;
• on parallel copies of a meridian α or α∗, which would allow s to be

reduced by 2, via the argument of Lemma 2.8;
• or on exactly two of the three meridians αk,α1,α

∗
s . In this case,

a ∂ -compression removes the two meridians incident to the loop
and adds a copy of the third meridian, reducing the total number of
meridians and with it |∂P∩∂Q|.

The whole construction can be done symmetrically if β is non-separating:
Trivial loops could arise in Σ but be dealt with by identifying a separating
meridian β

∗ and altering Q so that it intersects W in some curves parallel to
∂β and some other curves parallel to ∂β

∗.
Although, after this alteration, the graphs Σ and ϒ have no trivial loops,

the combinatorial argument now requires tracking four sets of circles. This
means that there are two sets of labels in each graph and two possible la-
beling schemes around vertices in each graph. Also, the possible target
sequences that arise are much more complicated than those that arise in the
proof of Proposition 2.7. For example, a target sequence might contain

1, ...,k,1, ...,k,1, ...,k, ...

intermixed with sequences of the form

s∗, ...,1∗,1∗, ...,s∗.

As of this writing, such a combinatorial argument can be constructed for
the case of reducing spheres. The argument appears likely to extend to the
case of ∂ -reducing disks, but the addition of an extra boundary component
(namely, the boundary component of the reducing disk) makes the final
result (Conjecture 2 hence Conjecture 1) still uncertain.

Scott Taylor [Ta] has found a sutured manifold argument that avoids
much of this combinatorial complication, in the same way that Gabai’s [Ga]
circumvented the combinatorial difficulties of [Sc3]. From slightly differ-
ent assumptions he is able to prove an analogue of Conjecture 2 that is even
stronger (namely, the first conclusion holds unless α and β are in fact dis-
joint) except in the most difficult but arguably the most interesting case:
when M = S3, α and β are both non-separating and at least one of M[α] or
M[β ] is an unknotted torus.
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