THE FOUR-DIMENSIONAL SCHOENFLIES CONJECTURE IS TRUE FOR GENUS TWO IMBEDDINGS

MARTIN SCHARLEMANN[†]

(Received 1 May 1982)

It was established by Brown[2] that any locally-flat imbedding of S^{n-1} in S^n divides S^n into two domains, each of whose closures is an *n*-ball. Somewhat later[5] the *h*-cobordism theorem further established that if S^{n-1} is a smooth of *PL* submanifold of S^n then so are the resulting *n*-balls, provided that $n \ge 5$. (The case $n \le 3$ had been known since Alexander[1].)

For n = 4 little is known. The goal of this paper is to present an elementary proof of the conjecture for the special case described below.

A collared handlebody decomposition of a 3-manifold M will be a decomposition $\emptyset = W'_0 \subset W_1 \subset W'_1 \subset W_2 \subset W'_2 \subset \ldots \subset W_{n-1} \subset W'_{n-1} \subset W_n \simeq M$ such that, for $0 < i \le n$, W_i is obtained from W'_{i-1} by attaching a handle $h_i \simeq D^k \times D^{3-k}$ to $\partial W'_{i-1}$ along $\partial D^k \times D^{3-k}$, and W'_i is obtained from W_i by attaching a collar to ∂W_i .

It will be convenient to regard S^4 as the two-point compactification of $S^3 \times \mathbb{R}$, so $S^3 \times \mathbb{R} \subset S^4$. Let $p: S^3 \times \mathbb{R} \to \mathbb{R}$, $\pi: S^3 \times \mathbb{R} \to S^3$ be the standard projections. A *PL* imbedding $g: S^3 \to S^3 \times \mathbb{R} \subset S^4$ is a critical level imbedding if there is a collared handlebody decomposition $W_1 \subset W'_1 \subset \ldots \subset W_n$ of $g(S^3)$ and a collection $t_1 < \ldots < t_n$ for $p \mid g(S^3)$ such that, for $1 \le i \le n$, $h_i = (S^3 \times \{t_i\}) \cap g(S^3)$ and, for $t_i < t < t_{i+1}$, $\pi((S^3 \times \{t\}) \cap g(S^3)) = \pi(g(\partial W_i))$. Thus the handles of $g(S^3)$ are all horizontal in $S^3 \times \mathbb{R}$ and the collars are all vertical. It is known that any *PL* imbedding is *PL* isotopic to a critical level imbedding[3].

A critical level imbedding $g: S^3 \rightarrow S^4$ is said to have genus *n* if the associated handlebody decomposition of S^3 has *k* 0-handles and (k + n - 1) 1-handles. The goal here is to show that any *PL* critical level imbedding $g: S^3 \rightarrow S^4$ of genus ≤ 2 is standard, that is, it is *PL* ambient isotopic to the standard imbedding.

We work in the PL category exclusively; all maps, imbeddings and isotopies are understood to be PL.

§1. RESTRICTED 0-1 HANDLE CANCELLATION

First some notation. A handle of dimension n and index k (a k-handle) is a PL homeomorph of $D^k \times D^{n-k}$. The disks $D^k \times \{0\}$ and $\{0\} \times D^{n-k}$ are called, respectively, the core and the cocore of the handle.

For $g: S^3 \to S^3 \times \mathbb{R} \subset S^4$ a critical level imbedding we will let $S_J^3 = S^3 \times J$ for J an interval in \mathbb{R} , $W_i = g(S^3) \cap S_{(-\infty,i)}^3$, and $M_i = \partial W_i \subset S_i^3$. The handles $\{h_1, \ldots, h_n\}$ of the associated handlebody decomposition of $g(S^3)$ will always be listed in order of ascending critical value $\{t_1, \ldots, t_n\}$.

We denote the core of h_i by c_i and the cocore by c'_i . Note that for $t_i \le t < t_{i+1}$, $\pi(c'_i)$ and $\pi(c_{i+1})$ are imbedded disks in the complement of $\pi(M_i) \subset S^3$.

LEMMA 1.1. If there are ambient isotopies, with $\pi(M_i)$ invariant, of $\pi(c'_i)$ and $\pi(c_{i+1})$ to

†Supported in part by a National Science Foundation Grant.

disjoint disks in S^3 , then g is isotopic to a critical level imbedding with the same critical levels and handlebody structure, except $h_{i+1} \subset S^3_{i_i}$ and $h_i \subset S^3_{i_{i+1}}$.

COROLLARY 1.2. If h_{i+1} has lower index than h_i , the critical levels on which they occur may be switched.

The proofs of both are elementary.

Following 1.2 we may isotope any critical level imbedding $g: S^4 \rightarrow S^4$ to one in which the handles appear in order of increasing index. Such an imbedding is called *rectified*.

Suppose a rectified imbedding has 0-handles h_1, \ldots, h_k and $t_k \leq t < t_{k+1}$. Then $\pi(M_i)$ consists of a collection of 2-spheres $\{\pi(\partial h_i)\}$ in S^3 , each dividing S^3 into two components, called the interior $(=\pi(h_i^0))$ and the exterior of the 0-handle. Note that if $\pi(\partial h')$ is in the interior of $\pi(\partial h)$ then h' must occur at a higher critical level than h; in particular the interior of $\pi(h')$ must be in the interior of $\pi(h)$. We say in this case that $h \leq h'$; then \leq is a partial order on the 0-handles consistent with the total order given by the height at which the handles appear in $S^3 \times \mathbb{R}$.

LEMMA 1.3. Suppose $g: S^3 \rightarrow S^4$ is a rectified imbedding with 0-handles h_1, \ldots, h_n appearing at levels $t_1 < \ldots < t_n$. For any 0-handle h_j and $t > t_j$ there is an isotopy of g with support in W_t to a rectified imbedding g' with critical levels $t_1 < \ldots < t_n$ and handles $h'_1 < \ldots < h'_n$ such that

(a) $h_i = h'_i$ for i > j

(b) There is a permutation $\sigma \in S(j)$ such that $\pi(\partial h_i) = \pi(\partial h'_{\sigma(i)})$ for $i \leq j$

(c) For exactly the *i* such that $h_i \leq h_j$, the interior of $\pi(h'_{\sigma(i)})$ is the exterior of $\pi(h_i)$ and vice versa.

Proof. Suppose h_j is minimal under \leq , so $\pi(\partial h_j)$ lies in the interior of the projection of no other 0-handle. Then by 1.1, g can be isotoped so that h_j has the lowest critical level, t_1 . But the 4-ball lying below $S_{t_1}^3$ is then an isotopy rel M_{t_1} between the component of $S_{t_1}^3$ lying over the interior and exterior of $\pi(\partial h_j)$.

The proof then follows by induction on the number of handles $h_i \leq h_j$. Apply the previous argument to the minimal 0-handle such that $h_i \leq h_j$, thereby reducing the number of handles such that $h_i \leq h_j$. \Box

Suppose $g: S^3 \to S^4$ is a rectified imbedding with 0-handles h_1, \ldots, h_k . Then by general position it is easy to arrange that for any 1-handle $h \simeq (D^1 \times D^2)$ of $g(S^3)$ the attaching disks $\partial D^1 \times D^2$ project under π into $\pi(\partial h_1) \cup \ldots \cup (\partial h_k)$. If they lie on the projection of distinct 0-handles, h is called a *connecting* 1-handle.

LEMMA 1.4. (0–1 handle cancellation) Suppose $g: S^3 \rightarrow S^4$ is a rectified imbedding with 0-handles h_1, \ldots, h_k and 1-handles h_{k+1}, \ldots, h_i and h_i and h_j are a 0 and 1-handle respectively such that

(a) a single attaching disk for h_i projects into $\pi(\partial h_i)$.

(b) No 1-handle with critical value less than t_j has an attaching disk projecting into $\pi(\partial h_i)$. Then g is isotopic to a rectified imbedding with one fewer 0-handle and one fewer 1-handle.

Proof. By 1.3 we can assume that $\pi(h_j)$ lies in the exterior of $\pi(\partial h_i)$. By 1.1 there is, for $t_j < t < t_{j+1}$ an isotopy of W_i , fixed on M_i , to a critical level imbedding in which the handles $\{h_1, \ldots, h_j\}$ appear in the following order: First $\{h_1, \ldots, h_{i-1}\}$ then those handles of $\{h_{i+1}, \ldots, h_{j-1}\}$ which project to the exterior of $\pi(\partial h_i)$, then h_i , then h_j , then those

handles in $\{h_{i+1}, \ldots, h_{j-1}\}$ which project to the interior of ∂h_i . Now isotope so that h_i and h_j occur at the same level. Then the union of h_i and h_j can be "tilted" slightly and viewed as an isotopy rel boundary of the attaching disk of h_j not contained in h_i . This isotopy can then be made vertical as in [3] (by incorporating $h_i \cup h_j$ into or deleting it from the 0-handle to which h_j attaches h_i) to produce a critical level imbedding with two fewer handles. Now use 1.1 to rectify the imbedding. \Box

PROPOSITION 1.5. A critical level imbedding $g: S^3 \rightarrow S^4$ of genus n is isotopic to a critical level imbedding with k 0-handles and (k + n - 1)-handles, $k \le n$.

Proof. All but the requirement that $k \le n$ is true by definition of genus. Since the union of the 0-handles and 1-handles is connected, there must be at least (k - 1) connecting 1-handles. Then if k > n there is a 0-handle to which only connecting 1-handles are attached. Rectify $g(S^3)$ and apply 1.4 to reduce k. \Box

§2. REMARKS ON THE GENERAL CASE

The dual of a critical level imbedding $g: S^3 \to S^3 \times \mathbb{R} \subset S^4$ is the critical level imbedding obtained by reflecting S^4 through $S^3 \times \{0\}$. All the *i*-handles of $g(S^3)$ become 3 - i handles of its dual.

The critical level imbedding $g: S^3 \rightarrow S^4$ is called *compact* if a component Y of $S^4 - g(S^3)$ is contained in $S^3 \times \mathbb{R}$. Let X denote the other component and $Y_t = Y \cap S_t^3$, $X_t = X \cap S_T^3$. Any critical level imbedding g may be made compact (if it isn't already) merely by applying 1.3 to the lowest 0-handle in the dual of g, that is, the highest 3-handle in g.

A handle h_i attached at the level t_i is called an inside (resp. outside) handle if, for $t_{i-1} < t < t_i$, $\pi(h_i)$ lies in $\pi(Y_i)$ (resp. $\pi(X_i)$). Furthermore, by applying 1.3 to the lowest 0-handle and, dually, to the highest 3-handle we can switch the inside and outside, so simultaneously all inside handles become outside and vice versa.

2.1 Remark. Suppose $t < t_i < t'$ and h_i is an inside handle. Then $Y \cap S^3_{(-\infty, l]}$ is *PL* homeomorphic to $Y \cap S^3_{(-\infty, l]}$; indeed, the latter can be obtained from the former by attaching a collar to that part of $Y_i \subset \partial(Y \cap S^3_{(-\infty, l]})$ which lies over the complement of $\pi(h_i)$ in $\pi(Y_i)$. Hence, in particular, the outside handles alone describe a handlebody structure for Y, and we have

LEMMA 2.2. For a compact critical level imbedding $g: S^3 \rightarrow S^4$, the sum of the number of inside (resp. outside) 1- and 3-handles is one more (resp. less) than the sum of the number of inside (resp. outside) 0- and 2-handles.

Proof. The component Y is a homotopy 4-ball. Thus the sum of the number of 1- and 3-handles is one less than the number of 0- and 2-handles. This proves 2.2 for outside handles; for inside handles, first switch inside and outside, by applying 1.3 to the first 0 and last 3-handle. \Box

Note that the first 0-handle is always outside.

PROPOSITION 2.3. If $g: S^3 \rightarrow S^4$ is a rectified compact imbedding such that all 0- and 1-handles (except possibly the first 0-handle) are on the inside or all on the outside then g is isotopic to the standard imbedding.

Proof. The operation of 1.3 on the first 0-handle and last 3-handle shows that the cases are symmetric. If the 2-handles also are on the same side (say the inside) then Y has no

1- or 2-handles, so it is a standard PL 4-ball in S^4 . Then $\partial Y = g(S^3)$ is isotopic to the standard S^3 in S^4 .

If not all the 2-handles are on the same side (say the outside) as the 0- and 1-handles, let h_i be the first 2-handle to lie on the inside. Since each handle below h_i is attached on the outside, $W_{i_{i-1}}$ actually can be isotoped to lie entirely in $S_{i_{i-1}}^3$.

For c_i , the core disk of h_i , $S^3_{[t_{i-1}, t_i]} \cap \pi^{-1}(\pi(c_i))$ is a *PL* 3-ball *D* in *Y*. The closure of each component of Y - D has boundary a *PL* 3-sphere with a rectified imbedding in which all the 0- and 1-handles are outside and there is at least one fewer 2-handle than for $g(S^3)$. By induction, each component is a *PL* 4-ball. Then *Y* is the boundary connected sum of two *PL* 4-balls along a 3-ball, so *Y* is a *PL* 4-ball. Then $g(S^3) = \partial Y$ is standard. \Box

COROLLARY 2.4. Any genus one critical level imbedding $g: S^3 \rightarrow S^4$ is isotopic to the standard imbedding.

Proof. By definition, the associated handlebody structure for $g(S^3)$ has as many 0-handles as 1-handles. Since $\chi(S^3) = 0$ there are as many 3-handles as 2-handles. Apply 1.5 to the 0- and 1-handles and, dually, to the 2- and 3-handles, obtaining an embedding with a single handle of each index. Then, after possibly applying 1.3, g is compact, and has its 0- and 1-handle on the same side. The proof then follows from 2.3. \Box

§3. THE GENUS TWO CASE

According to 1.5, a genus two critical level imbedding $g: S^3 \rightarrow S^4$ is isotopic to one with at most two 0-handles and three 1-handles. Also, since $\chi(S^3) = 0$, there are k 3-handles and k + 1 2-handles. Then 1.5 applied to the dual imbedding isotopes g so that $g(S^3)$ also has at most two 3-handles and three 2-handles.

PROPOSITION 3.1. A genus two critical level imbedding may be isotoped so that $g(S^3)$ has a single 0-handle, two 1-handles, two 2-handles, and a 3-handle.

Proof. From the remarks above, there could be at most one more handle of each index. Suppose g is rectified and compact and there are two 0-handles h_1 , h_2 , and three 1-handles h_3 , h_4 , h_5 . If either h_3 or h_4 is a connecting 1-handle it can be cancelled by 1.4. Hence h_5 is a connecting 1-handle. With no loss of generality suppose h_2 is an outside 0-handle. If both h_3 and h_4 are attached to the same 0-handle, h_5 may be cancelled by 1.4, so, with no loss of generality assume h_3 is attached to h_1 and h_4 to h_2 . In order that Y be connected (see 2.1) h_5 is an outside 1-handle. If h_4 is also outside then, by 1.1, h_4 and h_5 can be interchanged and h_5 cancelled via 1.4. If h_4 is inside and h_3 is outside then, by 1.1, h_3 and h_4 can be interchanged, followed by h_3 and h_5 and again h_5 can be cancelled. Thus h_3 and h_4 must both be inside. Then, by 2.2, either all 2-handles are inside or there is a single outside 2-handle and an outside 3-handle. In the former case 2.1 implies that Y is a PL 4-ball with two 0-handles, a single 1-handle and no 2-handles, hence is standard. Then $\partial Y = g(S^3)$ is also standard. In the second case an argument dual to that above shows that the single outside 2-handle must be the first 2-handle h_6 . This case requires the following extensive analysis.

Set $t_i = i - 1/2$, i = 1, ..., 6, and let $W = \pi(X_5) \subset S^3$, T_1 and T_2 be the tori of $\pi(M_4)$ which bound $\pi(h_1) - \pi(h_3)$ and $\pi(h_2) - \pi(h_4)$ respectively, D_1 and D_2 the disks $\pi(c_3)$ and $\pi(c_4)$ respectively (so ∂D_i is a longitude of T_i , i = 1, 2), let E be the disk $\pi(c_6) \subset W$ and parameterize $\pi(h_5)$ by $I \times B^2$ so that $\pi(c_5) = I \times \{0\}, \{0\} \times B^2 \subset T_1$ and $\{1\} \times B^2 \subset T_2$. Isotope all these to general position so that in particular $I \times B^2$ intersects $D_1 \cup D_2$ in a collection $\{p_i\} \times B^2$ of disks parallel in $I \times B^2$. Claim. There are disks D'_1 and D'_2 in W with $\partial D'_1 = \partial D_i$, i = 1, 2, such that $(I \times B^2) \cap (D'_1 \cup D'_2) = 0$.

Proof of Claim 1. This is a standard innermost disk, outermost arc argument on $E \cap (D_1 \cup D_2)$.

First observe that it suffices to find disks disjoint from $I \times B^2$ and each other whose boundaries are isotopic to longitudes of T_1 and T_2 , since any two longitudes are isotopic in a punctured torus (the punctures are $\partial I \times B^2$). Choose new disjoint disks D_1 and D_2 to minimize first the number of (transverse) intersections with $I \times \{0\} \subset I \times B^2$ and then to minimize the number of components of intersection of $E \cap (D_1 \cup D_2)$.

Suppose, in fact, that $E \cap (D_1 \cup D_2) = \phi$. Then either $I \times B^2$ is disjoint from the D_i and we are done or ∂E can be isotoped off $I \times \partial B^2$ in ∂W . In the latter case, since ∂E separates, it must be parallel in (say) T_1 to $\{0\} \times \partial B^2$. Then D_1 and $I \times \partial B^2$ lie in different components of W-E and so are disjoint. The component of W-E containing $I \times \partial B^2$ is then PLequivelent to a solid torus; a longitude can then be found on its boundary disjoint from the collared 2-cell $E \cup (I \times B^2)$ and again we are done.

On the other hand, suppose $E \cap (D_1 \cup D_2) \neq \Phi$. By replacing a disk in the D_i with a disk in E we could eliminate a circle of intersection in $E \cap (D_1 \cup D_2)$ if any exists. Thus $E \cap (D_1 \cup D_2)$ consists entirely of arcs. Let C be a cell in E-D with $\partial C = \alpha \cup \beta$, α a subarc of ∂E and β an arc in (say) $E \cap D_1$. There are four possibilities.

(i) The ends of β both lie on ∂D_1

(ii) One end of β lies on ∂D_1 and the other on the boundary of a disk component of $(I \times B^2) \cap D_1$.

(iii) The ends of β lie on boundaries of distinct components of $(I \times B^2) \cap D_1$.

(iv) The ends of β both lie on the boundary of the same disk component $\{p\} \times B^2$ of $(I \times B^2) \cap D_1$.

In case (i), either $(I \times B^2) \cap (D_1 \cup D_2) = \phi$ and we are done, or $(I \times B^2) - (D_1 \cup D_2)$ consists of two or more components and α intersects only that containing $\{0\} \times B^2$. In particular, α is isotopic rel end points in $\partial W - (D_1 \cup D_2)$ to an arc lying entirely in $T_1 - (\{0\} \times B^2)$. A regular neighborhood of $D_1 \cup C$ then has boundary consisting of three disks, one parallel to D_1 , the other two, D and D', obtained by alternately replacing each disk component of $D_1 - B^2$ by C. The disks D and D' cannot both have innessential boundary in ∂T_1 or D_1 would also. Hence one of them has boundary a longitude of T_1 ; it also intersects $I \times B^2$ in no more components than does D_1 and intersects E in a least one fewer, a contradiction.

In cases (ii) and (iii), C may be used to isotope D_1 so it intersects $I \times B^2$, in one or two fewer disks respectively.

In case (iv), α cannot be isotoped in ∂W to an arc in $\{p\} \times \partial B^2$, for this transforms β into a circle of intersection of E and D_1 , which can be eliminated as above. It follows that α can be isotoped to an arc which travels along a component $J \times \partial B^2$ of $(I \times \partial B^2) - (D_1 \cup D_2)$ (from $\{p\} \times \partial B^2$ to either $\{0\} \times \partial B^2$ or $\{1\} \times \partial B^2$) then around a longitude of T_1 or T_2 , then returns along $J \times \partial B^2$ to $\{p\} \times \partial B^2$. Denote by T_i the torus which α intersects. The union of $J \times B^2$ and a regular neighborhood of C has boundary consisting of two cylinders F and F' each with one end in D_1 and the other end a longitude of T_i . Let D and D' be the disks in D_1 bounded by an end of F and F' respectively, with $D \subset D'$. Note that $\{p\} \times B^2 \subset D' - D$. Then $F \cup D$ is a disk with boundary a longitude of T_i and having fewer intersections with $I \times \{0\}$ than has D_1 . Hence, i = 2, and $\#((I \times \{0\}) \cap D) \ge \#((I \times \{0\}) \cap D_2$. But then the disk $(D_1 - D') \cup F' \cup D_2$ intersects $I \times \{0\}$ in one less point than does D_1 , producing a contradiction and proving the claim.

Claim 2. There is a homeomorphism $\phi: S^3 \to S^3$ such that $\phi \mid \pi(Y_4)$ is the identity and $\phi(D'_2) = D_2$.

Proof. $\pi(Y_4)$ consists of two components, L_1 and L_2 bounded by T_1 and T_2 respectively. Since $S^3 - L_2 \simeq S^1 \times D^2$ there is an isotopy $\phi_t: S^3 \to S^3$, fixing L_2 , from the identity to a homeomorphism that carries D'_2 to D_2 . Since $D'_2 \cap L_1 = \phi$, $\phi_1(L_1) \subset S^3 - (L_2 \cup D_2)$. Now $L_2 \cup D_2$ has regular neighborhood N a 3-ball, so exploiting a collar in S^3 between ∂N and the boundary of a 3-ball well within L_2 , there is also an isotopy $\phi'_i: S^3 \to S^3$, fixed on N, from the identity to a homeomorphism such that $\phi'_1|L_1 = \phi_1|L_1$. Then $\phi'_1^{-1}\phi_1: S^3 \to S^3$ is the required homeomorphism, proving Claim 2.

Proof of 3.1 (completion). Let $HY \to S^3 \times \mathbb{R}$ be the *PL* imbedding defined as the inclusion on $Y \cap S^3 \times (-\infty, 4]$ and the inclusion composed with $\phi \times id$ on $Y \cap S^3 \times [4, \infty)$. Then $H|\partial Y$ is a critical level imbedding, with handles h_1, h_2, h_3 and h_4 those of $g(S^3)$ but the fifth handle is $\phi(h_5)$. Since $\pi(h_5) \cap D'_2 = \phi$, $\pi\phi(h_5) \cap \pi(h_4) = \phi$ and h and $\phi(h_5)$ can be interchanged. As above, this means H(Y) is a standard *PL* 4-ball. Then so is *Y*, so $g(S^3) = \partial Y$ is standard. \Box

In order to complete the proof of the genus two case, the two following lemmas are needed. The first is apparently due to Tsukui[6]; a much broader statement was proven using different techniques in [4]. The second is really a corollary of the central theorem of [4].

LEMMA 3.2. Suppose a 1-handle $(I \times D^2, \partial I \times D^2) \subset (S^1 \times D^2, S^1 \times \partial D^2)$ is removed from $S^1 \times D^2$ producing a 3-manifold $W \subset S^1 \times D^2$ with ∂W a genus two surface. If ∂W is compressible in W, then there is a properly imbedded disk in W whose boundary lies in $(S^1 \times \partial D^2) \cap \partial W$ and which is properly isotopic in $S^1 \times \partial D^2$ to a meridional disk (point) $\times D^2$.

Proof. See [6, 3.6] or [4].

Define a knot γ in a compact 3-manifold M to have *tunnel number one* if one can attach some 1-cell in M to γ so that the regular neighborhood of the resulting complex has complement a solid handlebody. The following was shown in [4]. Suppose γ is a tunnel number one knot in S^3 with regular neighborhood $\gamma \times D^2$. If there is a planar surface $P \subset S^3 - (\gamma \times D^2)$ such that ∂P is (2k + 1) longitudes of $\gamma \times \partial D^2$, then γ is trivial. In particular, 0-framed surgery on a tunnel number one knot γ yields $S^2 \times S^1$ only if γ is the unknot.

LEMMA 3.3. Let W be the 4-manifold obtained from $S^1 \times D^3$ by attaching a 2-handle to the tubular neighborhood $\gamma \times D^2$ of a curve γ in $\partial(S^1 \times D^3) = S^1 \times S^2$ such that

(a) $\partial W \simeq S^2$

(b) γ has tunnel number one in $S^1 \times S^2$. Then W is PL homeomorphic to D^4 .

Proof. The boundary of the cocore of the 2-handle is a circle $\bar{\gamma}$ in $S^3 = \partial W$. The complement of its tubular neighborhood in S^3 is just the complement of $\gamma \times D^2$ in $S^1 \times S^2$, so $\bar{\gamma} \subset S^3$ has tunnel number one. Furthermore, 0-framed surgery on $\bar{\gamma} \subset S^3$, produces $S^1 \times S^2$, by construction. Hence $\bar{\gamma}$ is trivial in S^3 [4]. Thus there is a 2-disk in $\partial W \simeq S^2$ whose boundary is $\bar{\gamma}$. This can be isotoped to a disk in $S^1 \times S^2 - (\gamma \times D^2)$ whose boundary is a meridian of $\gamma \times \partial D^2$. The union of the disk and a meridional disk of $\gamma \times D^2$ is a 0-sphere intersecting γ in precisely one point and bounding a copy of D^3 in $S^1 \times D^3$. The results follows by standard handle cancellation.

THEOREM 3.4. A genus two critical level imbedding $g: S^3 \rightarrow S^4$ is isotopic to the standard imbedding.

Proof. The previous discussion has shown the g can be simplified so that it has one 0-handle h_1 followed by two 1-handles h_2 and h_3 , two 2-handles h_4 and h_5 and a 3-handle. We can also assume that $t_i = i - 1/2$, i = 1, ..., 6, h_2 is an inside 1-handle, and h_3 is an outside 1-handle.

Case (i). h_4 is an inside 2-handle. The h_5 is an outside 2-handle. This case is symmetric, meaning that dual imbedding also has the 1- and 2-handles appearing in order: inside, outside, inside, outside.

First note that $\pi_1(Y_3) \simeq \pi_1(Y_2) * Z$, since Y_3 is obtained from Y_2 by attaching a 1-handle. In general, if C is a component of the complement of a genus two handlebody in S^3 , either $\pi_1(C) \simeq Z * Z$ or there is at most one isotopy class of non-separating disks in C [6]. However, the projections of the cocore of h_3 and the core of h_4 in S^3 cannot be properly isotopic in $\pi(Y_3)$, for otherwise their union along the collar between Y_2 and Y_3 would be a non-separating 2-sphere in $g(S^3)$. Therefore $\pi_1(Y_2) \simeq \mathbb{Z}$ and M_2 is an unknotted torus in S_3^3 .

Dually, M_4 is an unknotted torus in S_4^3 .

Examine the 4-manifold $V = Y \cap S_{[0,4]}^3$. The only outside handles added to Y through level 4 have been h_1 and h_3 , so $V \simeq S^1 \times D^3$. Furthermore, a collared handle description of $\partial Y - Y_4$ is given by the handles h_1 , h_2 , h_3 and the collars between their levels. Since M_4 is unknotted, Y_4 is a solid torus; then M_3 provides a Heegaard splitting of ∂V and Y_4 is a tunnel number one knot in ∂V . Now Y itself is obtained by attaching the 2-handle h_5 to V via a longitude of Y_4 . Since $\partial Y \simeq S^3$, 3.3 applies, and Y is a PL 4-ball.

Case (ii). h_4 is an outside 1-handle.

 $\pi(X_2)$ is a solid torus $S^1 \times D^2$ from which the 1-handle $\pi(h_3)$ is removed to obtain $\pi(X_3)$. Furthermore, $\pi(\partial X_3)$ is compressible in $\pi(X_3)$, for the core of $\pi(h_4)$ is a compressing disk. By 3.2 there is a non-separating disk D in $\pi(X_3)$ such that ∂D lies in $\pi(\partial X_2) \cap \pi(\partial X_3)$ and is isotopic in $\pi(\partial X_2)$ to a meridian of $\pi(X_2)$, i.e. to the projection of the cocore of h_2 . Apply 1.1 to interchange h_2 and h_3 , then apply 1.3 to switch inside and outside. The 1- and 2-handles then appear in order: inside, outside, inside, outside as in case 1. \Box

Acknowledgement—The author would like to express his gratitude to the University of Texas for their kind hospitality during the preparation of this work.

REFERENCES

- 1. J. W. ALEXANDER: On the subdivision of 3-space by a polyhedron. Proc. Nat. Acad. Sci. 10 (1924), 6-8.
- 2. M. BROWN: A proof of the generalized Schoenflies theorem. Bull. Am. Math. Soc. 66 (1960), 74-76.
- 3. C. KEARTON and W. B. R. LICKORISH: Piecewise linear critical levels and collapsing. Trans. Am. Math. Soc. 170 (1972), 415-424.
- 4. M. SCHARLEMANN: Tunnel number one knots satisfy the Poenaru conjecture. *Topology and its Application* (Submitted).
- S. SMALE: Generalized Poincaré's conjecture in dimensions greater than 4. Annals of Math. 74 (1961), 391-406.
 Y. TSUKUI: On a prime surface of genus 2 and homeomorphic splitting of 3-spheres. Yokohama Math. J. 23 (1975), 63-75.

Department of Mathematics U.C. Santa Barbara Santa Barbara, CA 93106

U.S.A.