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THE FOUR-DIMENSIONAL SCHOENFLIES CONJECTURE
IS TRUE FOR GENUS TWO IMBEDDINGS

MARTIN SCHARLEMANNT
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IT was established by Brown[2] that any locally-flat imbedding of S$"~! in S" divides S”
into two domains, each of whose closures is an n-ball. Somewhat later[5] the h-cobordism
theorem further established that if $”~' is a smooth of PL submanifold of S” then so are
the resulting n-balls, provided that n >5. (The case » <3 had been known since
Alexander[1].)

For n = 4 little is known. The goal of this paper is to present an elementary proof of
the conjecture for the special case described below.

A collared handlebody decomposition of a 3-manifold M will be a decomposition
d=WicW cW,cW,cW,c...cW,_ cW,_,«cW,~M such that, for
0 <i <n, W,is obtained from W;_, by attaching a handle h,~ D* x D*~*to W;_, along
oD* x D3~* and W] is obtained from W, by attaching a collar to oW,

It will be convenient to regard S* as the two-point compactification of S° x R, so
S*x Rc S% Let p:S*x R—R, n:5°x R—S* be the standard projections. A PL
imbedding g: S°—S° x R < §* is a critical level imbedding if there is a collared handle-
body decomposition W, Wic ...c W, of g(S°) and a collection ¢, <...<¢, for
plg(S®) such that, for 1<i<n, h=(S*x{t})Ng(S?) and, for f<t<t,,,
7((S® x {t})Ng(S*) = n(g(6W})). Thus the handles of g(S?) are all horizontal in S* x R
and the collars are all vertical. It is known that any PL imbedding is PL isotopic to a
critical level imbedding][3].

A critical level imbedding g: S*—S* is said to have genus n if the associated handlebody
decomposition of S* has k 0-handles and (k + n — 1) 1-handles. The goal here is to show
that any PL critical level imbedding g: $°— S* of genus <2 is standard, that is, it is PL
ambient isotopic to the standard imbedding. ,

We work in the PL category exclusively; all maps, imbeddings and isotopies are
undarstood to be PL.

§1. RESTRICTED 0-1 HANDLE CANCELLATION

First some notation. A handle of dimension » and index k (a k-handle) is a PL
homeomorph of D* x D"~*. The disks D* x {0} and {0} x D"~* are called, respectively,
the core and the cocore of the handle.

For g: §°+ 83 x Rc §* a critical level imbedding we will let S3=S°x J for J an
interval in R, W,=g(S*)NS{_, 5 and M,=0W, < S}. The handles {h,,... h,} of the
associated handlebody decomposition of g(S?®) will always be listed in order of ascending
critical value {7, ...,1,}.

We denote the core of A; by ¢; and the cocore by ¢;. Note that for 1, <t <1, ,, n(c))
and n(c,,,) are imbedded disks in the complement of n(M,) < S°.

LEMMA 1.1. If there are ambient isotopies, with n(M,) invariant, of n(c;) and n(c;..,) to
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disjoint disks in S°, then g is isotopic to a critical level imbedding with the same critical levels
and handlebody structure, except h,., = S} and h, = S .

COROLLARY 1.2. If h; | has lower index than h, the critical levels on which they occur
may be switched.

The proofs of both are elementary.

Following 1.2 we may isotope any critical level imbedding g: $*—S* to one in which
the handles appear in order of increasing index. Such an imbedding is called rectified.

Suppose a rectified imbedding has 0-handles 4, ... .4, and t, <t <1,,,. Then n(M))
consists of a collection of 2-spheres {(dh,)} in S°, each dividing S* into two components,
called the interior (= 7 (7)) and the exterior of the 0-handle. Note that if #(dk") is in the
interior of n(0h) then A’ must occur at a higher critical level than A; in particular the
interior of n(h’) must be in the interior of n(h). We say in this case that 4 < 4’; then
S is a partial order on the 0-handles consistent with the total order given by the height
at which the handles appear in S° x R.

LEMMA 1.3. Suppose g:S*—>S* is a rectified imbedding with O-handles h,, ..., h,
appearing at levels t, < ....<t,. For any O-handle h; and t > ¢, there is an isotopy of g with
support in W, to a rectified imbedding g’ with critical levels t, < ...<t, and handles
hi<...<h, such that

(@) hy="h] for i>j

(b) There is a permutation o € S(j) such that n(0h) = n(dh,,) for i <j

(c) For exactly the i such that h; < hy, the interior of n(h,y) is the exterior of n(h) and
vice versa.

Proof. Suppose 4; is minimal under <, so m(dh) lies in the interior of the projection
of no other 0-handle. Then by 1.1, g can be isotoped so that 4, has the lowest critical level,
1. But the 4-ball lying below S is then an isotopy rel M, between the component of S}
lying over the interior and exterior of n(dh,).

The proof then follows by induction on the number of handles 4, < A. Apply the
previous argument to the minimal 0-handle such that 4, < A, thereby reducing the number
of handles such that 4, h. O

Suppose g: §°—5*is a rectified imbedding with 0-handles 4,, . .. ,4,. Then by general
position it is easy to arrange that for any 1-handle & ~ (D' x D?) of g(S?) the attaching
disks D' x D? project under = into n(6h)U ... U(dh,). If they lic on the projection of
distinct O-handles, 4 is called a connecting 1-handle.

LemMA 1.4. (0-1 handle cancellation) Suppose g: S*—S* is a rectified imbedding with
O-handles h,, . . . ,h, and 1-handles ., \, . . . ,h,and h, and h; are a 0 and 1-handle respectively
such that

(a) a single attaching disk for h; projects into m(oh,).

(b) No 1-handle with critical value less than t; has an attaching disk projecting into m(0h,).

Then g is isotopic to a rectified imbedding with one fewer 0-handle and one fewer 1-handle.

Proof. By 1.3 we can assume that 7 (k) lies in the exterior of n(dh,). By 1.1 there is,
for ; <t <, an isotopy of W, fixed on M, to a critical level imbedding in which the
handles {#,, ... A} appear in the following order: First {A,,... ,h;_,} then those handles
of {h,\,...,h;_,} which project to the exterior of n(dh,), then 4, then h;, then those
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handles in {4, ,,...,h;_,} which project to the interior of k. Now isotope so that 4; and
h; occur at the same level. Then the union of A; and A; can be “tilted” slightly and viewed
as an isotopy rel boundary of the attaching disk of A; not contained in 4. This isotopy
can then be made vertical as in [3] (by incorporating h;UA; into or deleting it from the
0-handle to which A, attaches h;) to produce a critical level imbedding with two fewer
handles. Now use 1.1 to rectify the imbedding. OJ

PROPOSITION 1.5. A critical level imbedding g: S*—S* of genus n is isotopic to a critical
level imbedding with k 0-handles and (k + n — 1)-handles, k < n.

Proof. All but the requirement that k < n is true by definition of genus. Since the union
of the O-handles and 1-handles is connected, there must be at least (k — 1) connecting
1-handles. Then if k > n there is a 0-handle to which only connecting 1-handles are
attached. Rectify g(S*) and apply 1.4 to reduce k. [

§2. REMARKS ON THE GENERAL CASE

The dual of a critical level imbedding g: S*—S3 x R « S*is the critical level imbedding
obtained by refiecting S* through S* x {0}. All the i-handles of g(S*) become 3 — i handles
of its dual.

The critical level imbedding g: S*—S* is called compact if a component Y of S* — g(S?)
is contained in S* x R. Let X denote the other component and ¥,= Y NS, X, = X NS3.
Any critical level imbedding g may be made compact (if it isn’t already) merely by applying
1.3 to the lowest 0-handle in the dual of g, that is, the highest 3-handle in g.

A handle 4; attached at the level ¢ is called an inside (resp. outside) handle if, for
L_, <t <t, n(h) lies in n(Y,) (resp. #(X;)). Furthermore, by applying 1.3 to the lowest
0-handle and, dually, to the highest 3-handle we can switch the inside and outside, so
simultaneously all inside handles become outside and vice versa.

2.1 Remark. Suppose t <t <t’ and A is an inside handle. Then YNS3__ ,is PL
homeomorphic to YNS{_,, ,; indeed, the latter can be obtained from the former by
attaching a collar to that part of ¥, = (Y NS?_.. ;) which lies over the complement of
n(h) in n(Y,). Hence, in particular, the outside handles alone describe a handlebody
structure for Y, and we have

LEMMA 2.2. For a compact critical level imbedding g: S*— S*, the sum of the number of
inside (resp. outside) 1- and 3-handles is one more (resp. less) than the sum of the number
of inside (resp. outside) 0- and 2-handles.

Proof. The component Y is a homotopy 4-ball. Thus the sum of the number of 1- and
3-handles is one less than the number of 0- and 2-handles. This proves 2.2 for outside
handles; for inside handles, first switch inside and outside, by applying 1.3 to the first 0
and last 3-handle. [

Note that the first 0-handle is always outside.

PROPOSITION 2.3. If g: §°—S* is a rectified compact imbedding such that all 0- and
1-handles (except possibly the first 0-handle) are on the inside or all on the outside then g
is isotopic to the standard imbedding.

Proof. The operation of 1.3 on the first 0-handle and last 3-handle shows that the cases
are symmetric. If the 2-handles also are on the same side (say the inside) then Y has no
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1- or 2-handles, so it is a standard PL 4-ball in S*. Then dY = g(S?) is isotopic to the
standard S° in S*.

If not all the 2-handles are on the same side (say the outside) as the 0- and 1-handles,
let A; be the first 2-handle to lie on the inside. Since each handle below /4, is attached on
the outside, W, | actually can be isotoped to lie entirely in S; .

For ¢, the core disk of A, S} _, ,Nn~'(n(c))is a PL 3-ball D in Y. The closure of
each component of ¥ — D has boundary a PL 3-sphere with a rectified imbedding in which
all the 0- and 1-handles are outside and there is at least one fewer 2-handle than for g(S°).
By induction, each component is a PL 4-ball. Then Y is the boundary connected sum of

two PL 4-balls along a 3-ball, so Y is a PL 4-ball. Then g(S°) = 0Y is standard. (]

COROLLARY 2.4. Any genus one critical level imbedding g: S*—S* is isotopic to the
standard imbedding.

Proof. By definition, the associated handlebody structure for g(S*) has as many
0-handles as 1-handles. Since y(S°) = 0 there are as many 3-handles as 2-handles. Apply
1.5 to the 0- and 1-handles and, dually, to the 2- and 3-handles, obtaining an embedding
with a single handle of each index. Then, after possibly applying 1.3, g is compact, and
has its 0- and 1-handle on the same side. The proof then follows from 2.3. ]

§3. THE GENUS TWO CASE

According to 1.5, a genus two critical level imbedding g: S°—S* is isotopic to one with
at most two 0-handles and three 1-handles. Also, since x(S*) = 0, there are k 3-handles
and k + 1 2-handles. Then 1.5 applied to the dual imbedding isotopes g so that g(S?) also
has at most two 3-handles and three 2-handles.

PROPOSITION 3.1. A genus two critical level imbedding may be isotoped so that g(S*) has
a single 0-handle, two 1-handles, two 2-handles, and a 3-handle.

Proof. From the remarks above, there could be at most one more handle of each index.
Suppose g is rectified and compact and there are two 0-handles 4,, ,, and three 1-handles
hs, hs, hs. If either A, or h, is a connecting 1-handle it can be cancelled by 1.4. Hence 4
is a connecting 1-handle. With no loss of generality suppose 4, is an outside 0-handle. If
both A, and A, are attached to the same 0-handle, A; may be cancelled by 1.4, so, with no
loss of generality assume #, is attached to k, and A, to A,. In order that Y be connected
(see 2.1) A5 is an outside 1-handle. If A, is also outside then, by 1.1, A, and As can be
interchanged and A cancelled via 1.4. If A, is inside and 4, is outside then, by 1.1, 4; and
h, can be interchanged, followed by A; and A5 and again A; can be cancelled. Thus 4, and
h, must both be inside. Then, by 2.2, either all 2-handles are inside or there is a single
outside 2-handle and an outside 3-handle. In the former case 2.1 implies that Y is a PL
4-ball with two O-handles, a single 1-handle and no 2-handles, hence is standard. Then
Y = g(S?) is also standard. In the second case an argument dual to that above shows that
the single outside 2-handle must be the first 2-handle 4. This case requires the following
extensive analysis.

Set t;,=i—1/2,i=1,...,6, and let W = n(X;5) = S°, T, and T, be the tori of n(M,)
which bound n(h) — n(h;) and n(h,) — n(h,) respectively, D, and D, the disks n(c;) and
n(c}) respectively (so 8D; is a longitude of 7}, i =1, 2), let E be the disk n(c;) = W and
parameterize m(hs) by I x B* so that n(c;)=1 x {0},{0} x B> T, and {1} x B* < T).
Isotope all these to general position so that in particular 7 x B? intersects D,UD, in a
collection {p,} x B* of disks parallel in I x B,
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Claim. There are disks D; and D) in W with 0D;=0D, i=1, 2, such that
(I x B)ND;UD)=0.

Proof of Claim 1. This is a standard innermost disk, outermost arc argument on
EN(D,UD,).

First observe that it suffices to find disks disjoint from I x B? and each other whose
boundaries are isotopic to longitudes of T, and T, since any two longitudes are isotopic
in a punctured torus (the punctures are 6 x B?). Choose new disjoint disks D, and D, to
minimize first the number of (transverse) intersections with I x {0} = I x B? and then to
minimize the numbet of components of intersection of EN(D,UD,).

Suppose, in fact, that EN(D,U D,) = ¢. Then either I x B? is disjoint from the D, and
we are done or 0E can be isotoped off 7 x dB? in 8W. In the latter case, since JE separates,
it must be parallel in (say) 7, to {0} x 0B Then D, and I x dB? lie in different components
of W-E and so are disjoint. The component of W-E containing / x dB* is then PL
equivelent to a solid torus; a longitude can then be found on its boundary disjoint from
the collared 2-cell EU (I x B?) and again we are done.

On the other hand, suppose E N (D, U D,) + &. By replacing a dlSk in the D, with a disk
in E we could eliminate a circle of intersection in EN(D,UD,) if any exists. Thus
E N(D,U D,) consists entirely of arcs. Let C be a cell in E~-D with 6C =a U f, a a subarc
of OE and B an arc in (say) END,. There are four possibilities.

(i) The ends of § both lie on D,

(ii) One end of f§ lies on 0D, and the other on the boundary of a disk component of
(I x BHYND,.

(iii) The ends of B lie on boundaries of distinct components of (/ x B)ND,.

(iv) The ends of § both lie on the boundary of the same disk component {p} x B? of
(I x BHND,.

In case (i), either (/ x BYN(D,UD,)= ¢ and we are done, or (I x B)—(D,UD,)
consists of two or more components and a intersects only that containing {0} x B2 In
particular, o is isotopic rel end points in W — (D, UD,) to an arc lying entirely in
T, — ({0} x B?). A regular neighborhood of D, U C then has boundary consisting of three
disks, one parallel to D,, the other two, D and D’, obtained by alternately replacing each
disk component of D, — B2 by C. The disks D and D’ cannot both have innessential
boundary in T, or D, would also. Hence one of them has boundary a longitude of T3;
it also intersects / x B? in no more components than does D, and intersects E in a least
one fewer, a contradiction.

In cases (ii) and (iii), C may be used to isotope D, so it intersects J x B2, in one or
two fewer disks respectively.

In case (iv), « cannot be isotoped in W to an arc in {p} x 0B for this transforms
B into a circle of intersection of E and D,, which can be eliminated as above. It follows
that o can be isotoped to an arc which travels along a component J x dB? of
(I x 0B%) — (D, UD,) (from {p} x 3B to either {0} x dB* or {1} x §B?) then around a
longitude of T, or T, then returns along J x B* to {p} x dB* Denote by T, the torus
which « intersects. The union of J x B? and a regular neighborhood of C has boundary
consisting of two cylinders F and F’ each with one end in D, and the other end a longitude
of T,. Let D and D’ be the disks in D, bounded by an end of F and F’ respectively, with
D c D’. Note that {p} x B*< D’ — D. Then FUD is a disk with boundary a longitude
of T, and having fewer intersections with I x {0} than has D,. Hence, i =2, and
#(( x{0})ND)=> #((I x {0})ND,. But then the disk (D, ~D’)UF UD, intersects
I x {0} in one less point than does D,, producing a contradiction and proving the
claim.

Claim 2. There is a homeomorphism ¢ : $°—S? such that ¢|n(Y,) is the identity and
¢(D3) = D..
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Proof. n(Y,) consists of two components, L, and L, bounded by T, and T, respectively.
Since §°— L,~ S' x D? there is an isotopy ¢,:S*—S?, fixing L,, from the identity to a
homeomorphism that carries D} to D,. Since D;NL, = ¢, ¢,(L,) = S*— (L,U D,). Now
L,U D, has regular neighborhood N a 3-ball, so exploiting a collar in S* between éN and
the boundary of a 3-ball well within L,, there is also an isotopy ¢/: S*—S?, fixed on N,
from the identity to a homeomorphism such that ¢{|L, = ¢,|L,. Then ¢{~'¢,: S*— 5 is the
required homeomorphism, proving Claim 2.

Proof of 3.1 (completion). Let HY -»S° x R be the PL imbedding defined as the
inclusion on Y NS§’x(—00,4] and the inclusion composed with ¢ xid on
Y NS?x[4, ©). Then H laYis a critical level imbedding, with handles 4,, A,, &, and A, those
of g(S5°) but the fifth handle is ¢ (k). Since n(hs) N D3 = ¢, n(hs) N 7(hy) = ¢ and h and
@ (hs) can be interchanged. As above, this means H(Y) is a standard PL 4-ball. Then so
is Y, so g(S°) =0Y is standard. []J

In order to complete the proof of the genus two case, the two following lemmas are
needed. The first is apparently due to Tsukui[6]; a much broader statement was proven
using different techniques in [4]. The second is really a corollary of the central theorem
of [4].

LemMMA 3.2. Suppose a 1-handle (I x D*, 98I x D*) = (S' x D%, S' x 0D?) is removed
from S' x D? producing a 3-manifold W < S' x D* with W a genus two surface. If OW is
compressible in W, then there is a properly imbedded disk in W whose boundary lies in
(S' x OD)NOW and which is properly isotopic in S'x 6D? to a meridional disk
(point) x D2,

Proof. See [6,3.6] or [4]. O

Define a knot y in a compact 3-manifold M to have tunnel number one if one can attach
some l-cell in M to y so that the regular neighborhood of the resulting complex has
complement a solid handlebody. The following was shown in [4]. Suppose 7 is a tunnel
number one knot in S* with regular neighborhood y x D2 If there is a planar surface
P = §*—(y x B? such that 8P is (2k + 1) longitudes of y x 0D?, then y is trivial. In
particular, 0-framed surgery on a tunnel number one knot y yields §? x S' only if y is the
unknot.

LEMMA 3.3. Let W be the 4-manifold obtained from S' x D* by attaching a 2-handle to
the tubular neighborhood y x D? of a curve y in 3(S' x D*) = S' x S? such that

(a) W ~ S?

(b) y has tunnel number one in S' x S>.
Then W is PL homeomorphic to D*.

Proof. The boundary of the cocore of the 2-handle is a circle 7 in S*=dW. The
complement of its tubular neighborhood in S? is just the complement of y x D?in S! x S?,
so 7 = S* has tunnel number one. Furthermore, 0-framed surgery on 7 = S, produces
S' x 87, by construction. Hence 7 is trivial in S*[4]. Thus there is a 2-disk.in oW ~ §?
whose boundary is 7. This can be isotoped to a disk in S' x S? — (y x I2) whose boundary
is a meridian of y x D% The union of the disk and a meridional disk of y x D2 is a
0-sphere intersecting 7y in precisely one point and bounding a copy of D3 in S' x D The
results follows by standard handle cancellation. []

THEOREM 3.4. A genus two critical level imbedding g: S*— S* is isotopic to the standard
imbedding.



THE FOUR-DIMENSIONAL SCHOENFLIES CONJECTURE 217

Proof. The previous discussion has shown the g can be simplified so that it has one
0-handle h, followed by two 1-handles h, and h;, two 2-handles 4, and ks and a 3-handle.
We can also assume that ,=i—1/2,i=1,...,6, h, is an inside 1-handle, and #; is an
outside 1-handle.

Case (i). h, is an inside 2-handle. The 4 is an outside 2-handle. This case is symmetric,
meaning that dual imbedding also has the 1- and 2-handles appearing in order: inside,
outside, inside, outside.

First note that n,(¥;) ~ n,(Y,)*Z, since Y, is obtained from Y, by attaching a 1-handle.
In general, if C is a component of the complement of a genus two handlebody in S°, either
7,(C)~Z * Z or there is at most one isotopy class of non-separating disks in C[6]}.
However, the projections of the cocore of 4, and the core of &, in S* cannot be properly
isotopic in n(Y;), for otherwise their union along the collar between Y, and Y; would be
a non-separating 2-sphere in g(S°). Therefore n,(Y,) ~ Z and M, is an unknotted torus in
S3.

Dually, M, is an unknotted torus in Sj.

Examine the 4-manifold ¥ = Y N S}, 4. The only outside handies added to Y through
level 4 have been h, and h,;, so ¥V =~ S' x D*. Furthermore, a collared handle description
of 3Y — Y, is given by the handles A,, h,, b, and the collars between their levels. Since M,
is unknotted, Y, is a solid torus; then M, provides a Heegaard splitting of d and Y, is
a tunnel number one knot in V. Now Y itself is obtained by attaching the 2-handle 4
to V via a longitude of Y,. Since dY ~ S?, 3.3 applies, and Y is a PL 4-ball.

Case (ii). h, is an outside 1-handle.

n(X,) is a solid torus S* x D? from which the 1-handle 7 (h;) is removed to obtain n(X}).
Furthermore, n(8X,) is compressible in 7 (X;), for the core of n(k,) is a compressing disk.
By 3.2 there is a non-separating disk D in n(X;) such that 9D lies in n(0X3) N7 (9X;) and
is isotopic in 7(8X,) to a meridian of n(X>), i.e. to the projection of the cocore of A,. Apply
1.1 to interchange h, and h,, then apply 1.3 to switch inside and outside. The 1- and
2-handles then appear in order: inside, outside, inside, outside as in case 1. (J
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