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Abstract

Any 2-bridge knot in S3 has a bridge sphere from which any other bridge surface can be
obtained by stabilization, meridional stabilization, perturbation and proper isotopy.

1. Introduction

One of the earliest approaches to understanding the topology of closed 3-manifolds was
to divide the 3-manifold into two very simple pieces, called handlebodies, and focus on the
properties that can be discerned from the way in which the two handlebodies are glued to-
gether. This naive way of decomposing the 3-manifold, called a Heegaard splitting, proved
only modestly helpful, until the breakthrough work of Casson and Gordon [CG] established
that a manifold without incompressible surfaces admitted a splitting (called a strongly irre-
ducible splitting) that could for many purposes be manipulated much like an incompress-
ible surface. This allowed some of the combinatorial theory of intersecting surfaces, which
had been quite successful in describing 3-manifolds, to be extended also to those manifolds
(called non-Haken manifolds) that did not contain incompressible surfaces. Some other more
recent applications of Heegaard theory have been to Heegaard Floer homology (see [OS])
and topological quantum field theory (see [Wi]).

One interesting and surprisingly difficult problem is to determine to what extent Hee-
gaard splittings for a particular manifold are unique. One of the earliest results was that of
Waldhausen [Wa] who proved that S3 has a unique Heegaard splitting up to stabilization.
In [BoO], Bonahon and Otal proved that the same is true of lens splaces (manifolds with a
genus one Heegaard surface). A later proof [RS1] made use of the fact that any two weakly
incompressible Heegaard splittings of a manifold can be isotoped to intersect in a nonempty
collection of curves that are essential on both Heegaard surfaces.

Much less studied has been the natural analogue to Heegaard splitting in the theory of
links in 3-manifolds. (By link, we include the possibility that K has one component, i.e.
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a knot is a link.) Consider a link K in a closed orientable 3-manifold M with a Heegaard
surface P (i.e. M = A �P B where A and B are handlebodies) and require that each arc of
K − P is P-parallel in the handlebody A or B in which it lies. We say that K is in bridge
position with respect to P and that P is a bridge surface for the pair (M, K ). Beyond the
philosophical analogy between Heegaard splittings for 3-manifolds and bridge surfaces for
links in 3-manifolds, notice that there is also this precise connection: If P is a bridge surface
for a link K in M , then the cover P̂ of P in the 2-fold branched cover M̂ of M is a Heegaard
surface for the manifold M̂ .

Questions about the structure of Heegaard splittings on 3-manifolds often have analogies
with questions about bridge surfaces. For example, it is natural to ask whether there are
pairs (M, K ) that have a unique bridge surface, up to some obvious geometric operations
analogous to Heegaard stabilization. In [Ot1] Otal proved that this is true for bridge spheres
of the unknot (this was extended to bridge surfaces in [HS2]). In [Ot2] Otal proves the same
for bridge spheres of 2-bridge knots. Here we use the philosophy of [RS1] to extend [Ot2]
to all bridge surfaces of 2-bridge knots. (And presumably for 2-bridge links as well, though
we do not pursue that here, because of the technical obstacle that the theory in [STo] so far
has not been explicitly extended to 3-manifolds with non-empty boundary. Compare [RS2]
to [RS1].) This result can be viewed as the analogue for bridge surfaces of the result of
Bonahon and Otal mentioned above.

Our approach will be analogous to that of [RS1], working from the central result of [STo]:
in the absence of incompressible Conway spheres, two c-weakly incompressible bridge sur-
faces can be properly isotoped to intersect in a non-empty collection of closed curves, each
of which is essential (including non-meridional) in both surfaces. Here is an outline: after
introducing notation and definitions (Section 2) we discuss in Section 3 some simple ways
in which one bridge surface can be changed to another and how to detect the change via the
topology of the bridge surface complements. Changes of this sort won’t be considered par-
ticularly significant because they are so simple. In Section 4 we focus on 2-bridge knots, ex-
ploiting the fact that intersection only along essential curves guarantees that in the standard
2-bridge sphere all intersection curves are parallel. This implies that parts of any proposed
alternate bridge surface are parallel to parts of the standard bridge surface. The parallelism
can then be used to lower the number of curves of intersection of the two surfaces; unique-
ness then follows by a careful case-by-case analysis.

Just as Bonahon and Otal’s work on Heegaard splittings of Lens spaces was the first
step towards the understanding of Heegaard splittings of Seifert manifolds [MS] (including
important examples of non-uniqueness of Heegaard splittings, see [BZ]) it is natural to ask
whether the approach here can be extended to larger classes of knots, e.g. Montesinos knots.

2. Definitions and notation

If X is any subset of a 3-manifold M and K is a 1-manifold properly embedded in M ,
let X K = X − K . A disk D ⊂ M that meets K exactly once is called a punctured disk. If
F is an embedded surface in M transverse to K , a simple closed curve on FK is essential
if it doesn’t bound a disk or a punctured disk on FK . An embedded disk D ⊂ MK is a
compressing disk for FK if D � FK = ∂ D and ∂ D is an essential curve in FK . A cut-disk for
FK is a punctured disk Dc in MK such that Dc � FK = ∂ Dc and ∂ Dc is an essential curve
in FK . A possibly punctured disk D∗ that is either a cut disk or a compressing disk will be
called a c-disk for FK . The surface FK is called essential if it has no compressing disks (it
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may have cut-disks), it is not a sphere that bounds a ball in MK and it is not ∂-parallel in
M − η(K ) where η(K ) is a regular open neighbourhood of K .

A properly embedded arc α ⊂ FK is inessential if there is a disk on FK whose boundary
is the endpoint union of α and a subarc of ∂ F . Otherwise α is essential. A ∂-compressing
disk for FK is an embedded disk D ⊂ M with an interior disjoint from FK such that ∂ D is
the endpoint union of an essential arc of FK and an arc lying in ∂ M .

Any term describing the compressibility of a surface can be extended to account not only
for compressing disks but also c-disks. A surface in M that is transverse to K will be called
c-incompressible if it has no c-disks. A surface F in M is called a splitting surface if M can
be writen as the union of two 3-manifolds along F . If F is a splitting surface for M , we
will call FK c-weakly incompressible if any pair of c-disks for FK on opposite sides of the
surface intersect. If FK is not c-weakly incompressible, it is c-strongly compressible.

A properly embedded collection of arcs T = �n
i=1αi in a compact 3-manifold is called

boundary parallel if there is a collection E = �n
i=1 Ei of embedded disks, so that, for each

1 � i � n, ∂ Ei is the end-point union of αi and an arc in the boundary of the 3-manifold.
A standard cut-and-paste arguments shows that if there is such a collection, there is one in
which all the disks are disjoint. If the manifold is a handlebody A, the arcs are called bridges
and disks of parallelism are called bridge disks. Let M be a closed irreducible 3-manifold
and let P be a Heegaard surface for M decomposing the manifold into handlebodies A and
B. A link K is in bridge position with respect to P if each collection of arcs A � K and
B � K is a collection of bridges. We say that P is a bridge surface for the pair (M, K ) and
the triple (M; P, K ) is a bridge presentation of K ⊂ M .

Two disjoint surfaces F, S ⊂ M transverse to K will be called parallel if they cobound
a product region and all arcs of the link in that region can be isotoped to be vertical with
respect to the product structure. F is properly isotopic to S if there is an isotopy from F to
S so that F remains transverse to K throughout the isotopy, i.e. the isotopy of FK to SK is
proper in MK . Unless otherwise stated, all isotopies will be proper isotopies.

3. New bridge surfaces from old

Given a bridge surface P for (M, K ), it is easy to construct more complex bridge sur-
faces for (M, K ) from P . There are three straightforward ways to do this. The first is easi-
est: simply add a trivial 1-handle to one of the handlebodies, say A. This creates a dual
1-handle in B. The new bridge surface, P ′ is said to be stabilized and it is characterized by
the presence of compressing disks for P ′, one in A and one in B, that intersect in exactly
one point.

A second way to construct a more complicated bridge surface is almost as easy to see:
Suppose there are a pair of bridge disks E A ⊂ A and EB ⊂ B so that the arcs E A � P and
EB � P intersect precisely at one end. Then K is said to be perturbed with respect to P (and
vice versa), and E A, EB are called cancelling disks for K . (This is one of two cases of the
notion of “cancellable” bridges, as defined by Hayashi and Shimokawa in [HS2]. The other
case occurs when a component of K is in 1-bridge position, and both bridges, and so a whole
component, can be simultaneously isotoped into the bridge surface.) The word perturbed is
used because one way a bridge presentation with this property can be obtained is by starting
with any bridge presentation for K and perturbing K near a point of K � P , introducing a
minimum and an adjacent maximum. The following lemma shows this is in some sense the
only way in which a perturbed link can arise.
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LEMMA 3·1. Suppose K is perturbed with respect to the bridge surface P. Then there is
a knot K ′ in bridge position with respect to P, such that |K ′ � P| = |K � P| − 2 and K is
properly isotopic to the knot obtained from K ′ by introducing a minimum and an adjacent
maximum near a point of K ′ � P.

Proof. Let E A, EB be the cancelling bridge disks, intersecting P in arcs α and β respect-
ively, so that α � β = E A � EB is a single point p ∈ P , an end point of both α and β. A
standard cut-and-paste argument shows that there is a disjoint collection of bridge disks for
K � A so that the collection contains E A. In fact:

Claim. There is a disjoint collection �A of bridge disks for K � A so that E A ∈ �A and
�A � β = ∂β.

We begin with a disjoint collection and redefine it so as to eliminate all intersection points
with the interior of β. The proof is by induction on the number of points in �A � interior(β).
If the intersection is empty, there is nothing to prove. Otherwise, suppose that q is the closest
point of �A � β to p in interior(β), and let β ′ be the subsegment of β between q and p.
Suppose E ′ � E A is the bridge disk containing q. Then a regular neighborhood of E ′ �β ′ �
E A has boundary consisting of two disks – one parallel to E ′ and the other a new bridge disk
for the bridge E ′ � K that is disjoint from all other bridge disks and intersects β in one fewer
point. This provides the inductive step, establishing the claim.

Following the claim, let E ′ � E A be the bridge disk in �A that is incident to the opposite
end of β from p; following the claim E ′, like E A, is disjoint from the interior of β. Use
EB to (non-properly) isotope the arc K � EB to β and push it through P . This reduces the
number of points in K � P by two, but P is still a bridge surface for the knot. It’s clear that
K � B still consists of bridges, since all we’ve done is remove one. The change in K � A
is to attach the bridge disk E ′ to E A by a band, and the result is clearly still a disk. It’s easy
to see that the original positioning of K is properly isotopic to a perturbation of the new
positioning of K with respect to P .

Here is a third way to produce a new bridge surface for (M, K ), called meridional stabiliz-
ation. Begin with a bridge presentation M = A �P B of K and suppose there is a component
K0 of K that is not in 1-bridge position with respect to P . Let β be a bridge in K0 � B
and let A′ be the union of A together with a neighbourhood of β. Let P ′ = ∂ A′ and let
B ′ be the closed complement of A′ in M . The decomposition M = A′ �P ′ B ′ is a Heegaard
splitting, indeed a stabilization of M = A �P B since a meridian for A′ dual to β intersects
the remnants of a bridge disk for β in B ′ in a single point. Moreover, K is in bridge position
with respect to P ′. It is obvious that K � B ′ is a collection of bridges, since K � B was. And
the new component of K � A′ has, as a bridge disk, the union of two bridge disks of K � A
attached together by a band running along β.

LEMMA 3·2. A bridge surface P ′ for K is meridionally stabilized if and only if there is
a cut-disk in A′ and a compressing disk in B ′ (or vice versa) that intersect in exactly one
point.

Proof. If P ′ is constructed by meridional stabilization, as described above, then, as we
have seen, a meridian disk in A′ dual to β is a cut disk for A′ that intersects the remnants of
a bridge disk for β in a single point.

Conversely, suppose there is a cut disk E A ⊂ A′ for A′ and a compressing disk EB ⊂
B ′ that intersect in a single point. Then P ′ is the stabilization of the Heegaard surface P
obtained by cutting A′ along E A.
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Fig. 1.

Claim. K is in bridge position with respect to P .
A standard cut and paste argument shows that the bridge disks for K � B ′ can be taken to

be disjoint from EB . They can also be taken to be disjoint from ∂ E A, for any time a bridge
disk for K in B ′ crosses ∂ E A, one can reroute it around ∂ EB , adding a copy of the disk EB to
the bridge disk, to get a bridge disk which intersects ∂ E A fewer times (see Figure 1). Once
all bridge disks for K � B ′ are disjoint from E A, they persist when P ′ is surgered along E A.
So all components of K � B have bridge disks, except possibly the new bridge β that is
produced in B, the bit of K that runs from one copy of E A (after the cut) to the other. But
EB itself provides a bridge disk for β.

A similar argument exhibits bridge disks in A: a standard cut and paste argument shows
that there is a complete collection of bridge disks for K � A′ that intersects E A in a single
arc, running from the point K � E A to ∂ E A. When A′ is cut apart by E A to produce A, the
bridge disk for the component of K � A′ that intersects E A is divided by this arc into bridge
disks for the two resulting components of K � A, establishing the claim.

With the claim established, it is easy to see that P ′ is a meridional stabilization of P
along β.

Here is yet a fourth way to construct one bridge surface from another. It will be useful here
to extend, in an obvious way, the definition of bridge surface to links in compact orientable
3-manifolds with boundary. Suppose M is a compact orientable 3-manifold. A connected
closed surface P ⊂ M is a bridge surface for K ⊂ M if P is a Heegaard surface for M (that
is, the complement of P consists of two compression bodies C1, C2 and P = ∂+Ci , i = 1, 2)
and K intersects each complementary compression body in a collection of boundary parallel
arcs.

With that clarifying extension, suppose K− is a link (possibly empty) in a 3-manifold N
that has a torus boundary component ∂0 N . Let P be a bridge surface for K− in N ; that is,
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P divides N into two compression bodies, and K− intersects each of them in a collection of
boundary-parallel arcs. Fill ∂0 N with a solid torus W whose core is a new curve K0. Then
P still divides M = N �∂ 0 N W into two compression bodies and K− still intersects each
compression body in a collection of boundary-parallel arcs. Moreover, the core curve K0

is isotopic in W to a curve on ∂W = ∂0 N , so K0 is isotopic in M rel K− to a curve on
P . Perturbing K0 slightly makes P a bridge surface for all of K = K− � K0 in M . If a
component of a link K in bridge position with respect to P in M can be constructed in this
way, then we say that the component is removable.

LEMMA 3·3. Suppose P is a bridge surface for a link K ⊂ M. Then a component K0 of
K is removable if and only if K0 can be isotoped rel K− = K − K0 so that K0 lies on P and
there is a meridian disk of one of the two compression bodies that is disjoint from K− and
intersects K0 ⊂ P in a single point.

Proof. One direction is fairly straightforward: if K0 is removable then, in the construction
above, K0 can be isotoped to a longitude of ∂W , i.e. to a curve in ∂W that intersects a
meridian disk µ of W in a single point. That is, the wedge of circles K0 ∨∂µ ⊂ ∂W = ∂0 N .
Let C be the compression body of N −P on which ∂0 N = ∂W lies. Then, using the structure
of the compression body, there is a proper embedding of (K0 ∨ ∂µ) × I into C − K−, with
one end of (K0 ∨ ∂µ) × I on ∂W and the other end on P . The end on P then describes an
embedding of K0 into P that intersects the meridian disk µ � (∂µ × I ) of the compression
body C �∂ 0 N W in a single point.

The other direction uses the “vacuum cleaner trick”: suppose that P is a bridge surface
for a link K in M , that a component K0 of K has been isotoped rel K− to lie on P , and
that µ is a meridian disk for one of the complementary compression bodies C so that µ is
disjoint from K− and µ intersects K0 is a single point. Picture the dual 1-handle to µ in C
as a vacuum-cleaner hose, and use it to sweep up all of K0 − η(∂µ) ⊂ P . Afterwards, µ is
the meridian of a solid torus that is a boundary-summand of C , a solid torus for which K0 is
a longitude. Push K0 to the core of this solid torus and remove a thin tubular neighbourhood
W of K0 from the solid torus. This changes the solid torus to torus × I , with the result
that C− = C − W is still a compression body. Moreover, K− � C− remains a collection of
boundary-parallel arcs.

LEMMA 3·4. If a bridge surface for K is stabilized then any 1-bridge component of K is
removable.

Somewhat conversely, suppose a component K0 for K is removable, with P, K , K0 and
meridian disk µ as defined in the proof of Lemma 3·3 above. Suppose further that there is a
meridian disk λ for the other compression body so that λ is disjoint from K− and |µ�λ| = 1.
Then P is stabilized.

Proof. Suppose a bridge surface P for K is obtained by stabilizing the bridge surface P ′

for K , and suppose K0 is a 1-bridge component of K . Let C1, C2 be the compression body
complementary components of P ′. That is, |P � K0| = |P ′ � K0| = 2, and P ′ divides K
into two boundary-parallel arcs τi = Ci � K , i = 1, 2. Let D1, D2 be bridge disks for τ1, τ2

in C1, C2 respectively. By general position, we can assume that the arcs D1 � P, D2 � P
have interiors that are disjoint near their end points (though there may be many intersections
of their interiors away from the end points). Stabilize P ′ to P by attaching a 1-handle to C2

via an arc α in D1 near and parallel to τ1 ⊂ ∂ D1. Then D2 together with the rectangle in D1

lying between α and τ1 describes an isotopy of K0 to P ′. A cocore of the 1-handle that was
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Fig. 2.

attached to C2 is a meridian for one of the stabilized compression bodies. Via Lemma 3·3,
µ exhibits K0 as a removable component of K for the splitting surface P .

Now consider the other direction, with meridian disks µ ⊂ C1, λ ⊂ C2, component
K0 ⊂ P and |K0 � µ| = 1 = |λ � µ| as given in the statement of the lemma. By general
position, we can assume that K0 and λ do not intersect near µ. Move K0 into 1-bridge
position by pushing a small segment of K0 into the interior of C2 near µ and the interior of
the rest of K0 into the interior of C1. Then K0, hence all of K , is disjoint from both meridian
disks λ and µ, which then exhibit that P is stabilized.

Example. Suppose K is a 2-bridge knot in S3 and P is a Heegaard surface for the com-
plementary 3-manifold N = S3 − η(K ). Then either P is stabilized or it is the boundary
of a regular neighbourhood of the union of the knot and a single arc, and the arc is one of
six standard types (see [Ko1, Ko2, GST]). Each of the six types of arcs (called tunnels) has
the property that, once a regular neighbourhood of the arc is added, then, up to isotopy, the
regular neighbourhood no longer depends on which 2-bridge knot we started with – indeed,
we could have started with the unknot. See Figure 2. In particular, there is a meridian of the
complementary handlebody that intersects a meridian disk dual to the knot in a single point.
Following Lemma 3·4 we then have:

COROLLARY 3·5. Suppose P is any bridge surface for a 2-bridge knot K ⊂ S3. If K is
removable with respect to P, then P is stabilized.

In the proof of our main theorem we will use the following known results.

LEMMA 3·6. [STo, lemma 3·1] Let A be a handlebody and let (T, ∂T ) ⊂ (A, ∂ A) be a
collection of bridges in A. Suppose F is a properly embedded surface in A transverse to T
that is not a union of unpunctured disks, once-punctured disks and twice-punctured spheres.
If FT is incompressible in AT then ∂ F �� and FT is ∂-compressible.

LEMMA 3·7. [STo, lemma 3·6] Suppose P and Q are disjoint bridge surfaces for a link
K ⊂ M, decomposing M as A �P B and X �Q Y respectively. Suppose furthermore that
QK ⊂ AK and PK has a c-disk in AK that is disjoint from QK , then either PK is c-strongly
compressible or M = S3 and K is empty or the unknot.

THEOREM 3·8. [STo, corollary 6·7] Suppose P and Q are bridge surfaces for a link K ⊂
M and PK and QK are both c-weakly incompressible in MK . If there is no incompressible



646 MARTIN SCHARLEMANN AND MAGGY TOMOVA

Conway sphere for K in M then PK can be properly isotoped so that PK and QK intersect
in a non-empty collection of curves that are essential on both surfaces.

THEOREM 3·9. [To] Suppose, for a link K ⊂ M, M contains a c-strongly compressible
bridge surface Q that is not stabilized, meridionally stabilized or perturbed. Then either:

(i) M contains a surface F transverse to K so that FK is essential in MK ; or
(ii) K contains a component K0 that is removable.

4. Unique bridge surface

Now we will focus our attention on two-bridge links in the 3-sphere. That is, for the rest
of the paper, assume S3 = A �P B = X �Q Y , K is in bridge position with respect to both
P and Q and PK is a four times punctured sphere. In particular, henceforth A will be a ball
that intersects K in two trivial arcs. The ultimate goal is to show that if K is non-trivial (i.e.
neither the unknot nor the unlink of two components) and QK is not stabilized, meridionally
stabilized or perturbed, then QK is also a 4-times punctured sphere properly isotopic to PK .
We will use the following technical lemma and its corollary.

LEMMA 4·1. Suppose FK is a connected splitting surface that is properly embedded in
A, so AK = UK �FK VK . Further assume ∂ F consists of curves that are essential in PK , FK

is c-incompressible in VK , but there is a ∂-compressing disk for FK that lies in VK . Then FK

is parallel to a subset of PK through VK . In particular FK is either an annulus or a twice
punctured disk.

Proof. Let E ⊂ VK be the ∂-compressing disk for FK . Let σ = E � PK and note that σ

must be an essential arc on PK − FK as otherwise FK would be compressible in VK . There
are two cases to consider.

First suppose that both endpoints of σ lie on the same component of ∂ F ; call this com-
ponent f . As f is an essential curve on the 4-times punctured sphere PK , it bounds two
twice punctured disks on PK , let P ′ be the twice punctured disk containing σ . A regular
neighbourhood of P ′ � E consists of a copy of P ′ and two once punctured disks, D′ and D′′,
whose boundaries lie on FK . As FK is c-incompressible in VK , D′ and D′′ each also bound
once-punctured disks in FK . Moreover, these disks must be parallel to the once-punctured
disks on FK , since twice-punctured spheres in a handlebody can only cut off trivial arcs
from trivial arcs (cf [STo, lemma 3·2]). Combining these parallelisms with the boundary
compression gives a parallelism betweet FK and P ′.

Suppose, on the other hand, that the two endpoints of σ lie on different components of
∂ F , say f and f ′. As f and f ′ are disjoint and essential in the 4-times punctured sphere
PK , f and f ′ must cobound an annulus N on PK and σ ⊂ N . A regular neighbourhood
of N � E then consists of a copy of N and a disk D whose boundary lies on FK . As FK

is incompressible in VK , ∂ D also bounds a disk in FK , a disk that is parallel to D in AK ,
since AK is irreducible. Combining this parallelism with the boundary compression gives
the desired parallelism between FK and N .

COROLLARY 4·2. Suppose FK is a c-incompressible connected splitting surface, not an
unpunctured disk, that is properly embedded in A, and suppose ∂ F consists of curves that
are essential in PK . Then FK is PK -parallel.

Proof. FK can’t be a once-punctured disk, since its boundary also bounds a twice-
punctured disk in PK . Since it’s c-incompressible, it’s incompressible, so by Lemma 3·6,
FK must be boundary-compressible. The result follows by Lemma 4·1
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THEOREM 4·3. Let K ⊂ S3 be a two bridge link (not a trivial knot or link) with respect
to a bridge surface P � S2 ⊂ S3. Any c-weakly incompressible bridge surface for (S3, K )

is properly isotopic to PK .

Proof. Suppose Q is a c-weakly incompressible bridge surface, so S3 = A �P B =
X �Q Y . P is also c-weakly incompressible. Indeed, disjoint essential curves in the 4-
punctured sphere P are necessarily parallel in PK , and so a c-strong compressing pair would
provide a splitting sphere for K , contradicting the assumption that K is not a trivial link.
By Theorem 3·8 we may isotope PK so that PK � QK � � and all curves of PK � QK

are essential on both PK and QK . Furthermore assume that the number of components of
intersection |PK � QK | is minimal under these restrictions. We will denote by Q A

K and Q B
K

the surfaces QK � A and QK � B respectively. Similarly we will denote by P X
K and PY

K the
surfaces PK � X and PK � Y .

Claim 1. At least one of Q A
K or Q B

K has a P-parallel component

QK is not a twice-punctured sphere, since K is not the unknot. Thus there are c-disks for
QK in both X and Y . First we will reduce to the case that there are c-disks for QK in both
X and Y that are both disjoint from PK .

If there aren’t such c-disks, then, with no loss of generality, there is a c-disk D∗
Y ⊂ Y

for QK so that |P � D∗
Y | > 0 is minimal among all c-disks for QK in Y . If the intersection

contains any simple closed curves, let α be an innermost one on D∗
Y bounding a possibly

punctured disk D∗
α ⊂ D∗

Y . If α were inessential in P , then a c-disk with fewer intersection
curves could have been found, so α is essential in PK . Note that as PK is a 4-times punctured
sphere and all curves of PK � QK are essential in PK , all the curves must be parallel on PK

and are all also parallel to α. Let N ⊂ PK be the annulus between α and an adjacent curve
of PK � QK . Then by slightly isotoping the possibly punctured disk N � D∗

α we obtain
c-disk for QK that is disjoint from PK contradicting the choice of D∗

Y . Thus we may assume
that D∗

Y � PK consists only of arcs. An arc of D∗
Y � PK that is outermost on D∗

Y cuts off a
disk in YK that ∂-compresses Q A

K , say, to PK . By Lemma 4·1, Q A
K has a component that is

PK -parallel, establishing the claim in this case.

So now assume that there are c-disks D∗
Y ⊂ Y and D∗

X ⊂ X for QK and both are disjoint
from PK . If one disk lies in A and the other in B, then the disks would have disjoint bound-
aries, contradicting the assumption that QK is c-weakly incompressible. So these c-disks
must lie on the same side of PK . Suppose without loss that they both lie in A. Then, since
QK is c-weakly incompressible, Q B

K must be c-incompressible in B. But by Corollary 4·2,
this implies that Q B

K has a PK -parallel component, again establishing the claim.

Following the claim, suppose with no loss of generality that Q A
K has a PK -parallel com-

ponent. In this case Q A
K must be connected, for otherwise a component of Q A

K could be
isotoped across PK reducing |PK � QK |. As all components of PK − QK are annuli or twice
punctured disks, Q A

K is also either an annulus or a twice punctured disk. Without loss of
generality, assume Q A

K is parallel to P X
K (through the region A � X ). See Figure 3.

Suppose Q B
K were c-compressible into YK with a c-disk D∗. Isotope P X

K across Q A
K so

that PK ⊂ YK − D∗. By Lemma 3·7 this would imply that QK is c-strongly compressible,
a contradiction to our hypothesis. Thus we conclude that Q B

K is either c-incompressible or
c-compresses only into X K . A similar argument with the roles of P and Q switched shows
that PY

K does not c-compress into BK .
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Fig. 3.

Case 1. Q A
K consists of a single P-parallel twice punctured disk

This in particular implies that both P X
K and PY

K consist of single twice-punctured disks.
Suppose first that PY

K is c-compressible in Y with c-disk D∗. As already shown D∗ ⊂
A. Without loss of generality we may assume ∂ D∗ = (PK � QK ) so D∗ is also a c-disk
for Q A

K lying in YK . As QK is c-weakly incompressible, Q B
K is either c-incompressible or

also c-compresses in YK . As we have already eliminated the later option, Q B
K must be c-

incompressible and so, by Corollary 4·2, Q B
K is PK -parallel. Thus Q B

K is a twice punctured
disk so QK is also a 4-times punctured sphere. In summary, if PY

K is c-compressible, then QK

is also a 4-times punctured sphere and Q B
K is c-incompressible. So, by possibly switching

the names of P and Q, we may henceforth assume that PY
K is c-incompressible.

As PY
K is c-incompressible, by Lemma 3·6 it must be ∂-compressible. Let E be the bound-

ary compressing disk and note that E � QK is an arc essential on QK − PK as otherwise PY
K

would be compressible. Thus, by changing our point of view, we can conclude that Q A
K or

Q B
K is ∂-compressible in A or B respectively to PY

K .
Suppose Q B

K is ∂-compressible to PY
K . As Q B

K is c-incompressible in Y , Lemma 4·1 im-
plies that Q B

K is parallel to PY
K . Combining this with parallelism between Q A

K and P X
K gives

the desired isotopy between PK and QK .
Suppose Q A

K is ∂-compressible into PY
K . Since PY

K is a c-incompressible splitting surface
for Y , it follows from Lemma 4·1 that PY

K is parallel to Q A
K , i.e. Q A

K is isotopic to both P X
K

and PY
K . In particular PK can be properly isotoped to lie in either X K or YK . By Lemma 3·7

this implies that Q B
K must be c-incompressible in BK , for if Q B

K has a c-disk lying in X K

(say) we could isotope PK to lie in X K and be disjoint from this c-disk. By Corollary 4·2
this implies that Q B

K is parallel to one of P X
K or PY

K . As Q A
K is parallel to both P X

K and PY
K

we conclude that PK and QK are properly isotopic.

Case 2. Q A
K is a single P X

K -parallel annulus

We will show, by contradicition, that this case does not arise. In this situation P X
K is a

single annulus and PY
K consists of two twice-punctured disks. See Figure 4. Recall that we

have already shown that Q B
K is c-incompressible in YK and PY

K is c-incompressible in BK .
Suppose (towards a contradiction) that PY

K is c-incompressible in Y . By Lemma 3·6 it
must be boundary compressible. As in the previous case the ∂-compressing disk is incident
to QK − PK in an essential arc, i.e. one of Q A

K or Q B
K is ∂-compressible to PY

K . The annulus
Q A

K can’t ∂-compresses to PY
K , since its boundary components are on different components

of PY
K . On the other hand, if a component of Q B

K ∂-compresses to PY
K , by Corollary 4·2 it

follows that Q B
K has a twice punctured disk component parallel to one of the two components
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Fig. 4.

of PY
K . In this case |PK � QK | can be decreased by 1, and this contradicts the minimality

assumption. We conclude that PY
K must be c-compressible in the complement of QK .

Suppose D∗ is a c-disk for PY
K in the complement of QK . Necessarily D∗ ⊂ AK and we

may as well take ∂ D∗ to be one of the circles P � Q. Then D∗ is also a c-disk for Q A
K lying

in A � Y . By c-weak incompressibility of QK any c-disks for Q B
K would have to lie in YK .

But we established in the beginning of this case that this is not possible so Q B
K is in fact

c-incompressible. By Lemma 3·6, Q B
K must be boundary compressible. As we already saw,

if the boundary compression is to PY
K , the intersection PK � QK can be reduced, so Q B

K must
be boundary compressible to the annulus P X

K . It follows then from Lemma 4·1 that Q B
K , like

Q A
K , is an annulus parallel to P X

K . Then QK is a torus that is disjoint from K and so it cannot
be a bridge surface, a contradiction.

COROLLARY 4·4. Suppose K is a knot in S3, 2-bridge with respect to the bridge surface
P � S2, and K is not the unknot. Suppose Q is any other bridge surface for K . Then either:

(i) Q is stabilized;
(ii) Q is meridionally stabilized;

(iii) Q is perturbed; or
(iv) Q is properly isotopic to P.

Proof. If Q is c-weakly incompressible then Theorem 4·3 shows that Q is properly iso-
topic to P . If Q is c-strongly compressible, Theorem 3·9 says that either Q is stabilized,
meridionally stabilized or perturbed, or K is removable with respect to the bridge surface
Q, or there is a surface F transverse to K so that FK is essential in S3

K . The last possibility
does not occur for 2-bridge knots (see [HT]). Corollary 3·5 shows that if K is removable
with respect to Q, then Q is stabilized.
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