MAT 116 In-class Problems (\#2)

June 22, 2010 and June 23, 2010

1. How many distinct positive divisors does each of the following numbers have?
(a) $3^{4} \cdot 5^{2} \cdot 7^{6} \cdot 11$
(b) 620
(c) 10^{10}
2. What is the number of ways to order the 26 letters of the alphabet so that no two of the vowels a, e, i, o, u occur consecutively?
3. Ten people, including two who do not want to sit next to one another, are to be seated at a round table. How many circular seating arrangements are there?

4. Prove Pascal's formula:

For all integers n and k with $1 \leq k \leq n-1,\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ in each of the following ways:
(a) By using the formula $\binom{m}{r}=\frac{m!}{r!(m-r)!}$ and doing some algebra.
(b) By using a combinatorial argument. Interpret $\binom{m}{r}$ as the number of r-element subsets of an m-element set. As a warm up, do this for the case $n=4$ and $k=2$.

