MAT 116 In-class Problems (#6) July 12, 2010 and July 13, 2010

The Inclusion-Exclusion Principle. Let S be a finite set. Suppose that A_1, A_2, \ldots, A_m are subsets of S. Then

$$|\bar{A}_1 \cap \bar{A}_2 \cap \dots \cap \bar{A}_m| = |S| - \Sigma |A_i| + \Sigma |A_i \cap A_j| - \Sigma |A_i \cap A_j \cap A_k| + \dots + (-1)^m |A_1 \cap A_2 \cap \dots \cap A_m|$$

where the first sum is over all 1-subsets $\{i\}$ of $\{1, 2, ..., m\}$, the second sum is over all 2-subsets of $\{1, 2, ..., m\}$, the third sum is over all 3-subsets $\{i, j, k\}$ of $\{1, 2, ..., m\}$, and so on until the mth sum over all m-subsets of $\{1, 2, ..., m\}$ of which the only one is itself.

The Inclusion-Exclusion Principle (Alternative Version). Let S be a finite set. Suppose that $\mathscr{C} = \{A_1, A_2, \ldots, A_m\}$ is a collection of subsets of S. Given a number $k \in \{1, 2, \ldots, m\}$, let $\mathscr{C}_k = \{k\text{-combinations of } \mathscr{C}\}$. Then

$$|\bar{A}_1 \cap \bar{A}_2 \cap \dots \cap \bar{A}_m| = |S| + \left(\sum_{k=1}^m (-1)^k \sum_{\mathscr{C}_k} |A_{i_1} \cap \dots \cap A_{i_k}|\right)$$

Problem 1. Count the permutations $i_1i_2...i_{10}$ of $\{1, 2, ..., 10\}$ in which

- (a) $i_1 \neq 1$.
- (b) $i_1 \neq 1$ and $i_2 \neq 2$.
- (c) $i_1 \neq 1, i_2 \neq 2$, and $i_3 \neq 3$.

Problem 2. Find the number of integers in $S = \{1, 2, ..., 1000\}$ that are not divisible by 5 and 6.

Problem 3. Find the number of integers in $S = \{1, 2, ..., 1000\}$ that are not divisible by 5, 6, and 8.

Problem 4. Find the number of integers between 1 and 10,000 that are neither perfect squares nor perfect cubes.

Problem 5. Count the number of 5–combinations of $\{3 \cdot a, 4 \cdot b\}$.

Problem 6. Count the number of 10–combinations of $\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.

Problem 7. What is the number of integral solutions of the equation

$$x_1 + x_2 + x_3 = 12$$

that satisfy

$$-1 \le x_1 \le 2$$
, $3 \le x_2 \le 7$, and $0 \le x_3 \le 5$?