MAT 116 In-class Problems (\#6)

July 12, 2010 and July 13, 2010
The Inclusion-Exclusion Principle. Let S be a finite set. Suppose that $A_{1}, A_{2}, \ldots, A_{m}$ are subsets of S. Then
$\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{m}\right|=|S|-\Sigma\left|A_{i}\right|+\Sigma\left|A_{i} \cap A_{j}\right|-\Sigma\left|A_{i} \cap A_{j} \cap A_{k}\right|+\cdots+(-1)^{m}\left|A_{1} \cap A_{2} \cap \cdots \cap A_{m}\right|$
where the first sum is over all 1-subsets $\{i\}$ of $\{1,2, \ldots, m\}$, the second sum is over all 2 -subsets of $\{1,2, \ldots, m\}$, the third sum is over all 3 -subsets $\{i, j, k\}$ of $\{1,2, \ldots, m\}$, and so on until the m th sum over all m-subsets of $\{1,2, \ldots, m\}$ of which the only one is itself.

The Inclusion-Exclusion Principle (Alternative Version). Let S be a finite set. Suppose that $\mathscr{C}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$ is a collection of subsets of S. Given a number $k \in\{1,2, \ldots, m\}$, let $\mathscr{C}_{k}=$ $\{k$-combinations of $\mathscr{C}\}$. Then

$$
\left|\bar{A}_{1} \cap \bar{A}_{2} \cap \cdots \cap \bar{A}_{m}\right|=|S|+\left(\sum_{k=1}^{m}(-1)^{k} \sum_{\mathscr{C}_{k}}\left|A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right|\right) .
$$

Problem 1. Count the permutations $i_{1} i_{2} \ldots i_{10}$ of $\{1,2, \ldots, 10\}$ in which
(a) $i_{1} \neq 1$.
(b) $i_{1} \neq 1$ and $i_{2} \neq 2$.
(c) $i_{1} \neq 1, i_{2} \neq 2$, and $i_{3} \neq 3$.

Problem 2. Find the number of integers in $S=\{1,2, \ldots, 1000\}$ that are not divisible by 5 and 6 .
Problem 3. Find the number of integers in $S=\{1,2, \ldots, 1000\}$ that are not divisible by 5,6 , and 8.

Problem 4. Find the number of integers between 1 and 10,000 that are neither perfect squares nor perfect cubes.

Problem 5. Count the number of 5 -combinations of $\{3 \cdot a, 4 \cdot b\}$.
Problem 6. Count the number of 10 -combinations of $\{3 \cdot a, 4 \cdot b, 5 \cdot c\}$.
Problem 7. What is the number of integral solutions of the equation

$$
x_{1}+x_{2}+x_{3}=12
$$

that satisfy

$$
-1 \leq x_{1} \leq 2,3 \leq x_{2} \leq 7, \text { and } 0 \leq x_{3} \leq 5 ?
$$

