MAT 145: Homework Hints

Michael Williams

Last Updated: May 11, 2009

Homework 4 Hints

Problems from Crossley's Book

- 5.1 The simplest function to use would be an affine function (i.e. a function of the form f(x) = mx + b, where m and b are constants). To find a formula for f(x), first construct the appropriate straight line in \mathbb{R}^2 , then derive the equation y = mx + b for this line. After finding f(x), the inverse function should be extremely easy to calculate.
- 5.5 For stereographic projection of \mathbb{S}^1 : Let (x,y) be a point in $\mathbb{S}^1 \{(0,1)\}$. Derive an equation for the line passing through (0,1) and (x,y); you might want to use variables like x_1, x_2 for this equation. Then calculate the appropriate intersection point of this line with the projection line $\{(x_1, -1) : x_1 \in \mathbb{R}\}$. Draw a diagram of \mathbb{S}^1 and the projection line in \mathbb{R}^2 to understand the geometry of this problem.

For stereographic projection of \mathbb{S}^2 : Let (x, y, z) be a point in $\mathbb{S}^2 - \{(0, 0, 1)\}$. Derive parametric equations for the line passing through (0, 0, 1) and (x, y, z); you might want to use variables like x_1, x_2, x_3 for the parametric equations. Then calculate the *appropriate* intersection point of this line with the projection plane $\{(x_1, x_2, -1) : x_1, x_2 \in \mathbb{R}\}$. Draw a diagram of \mathbb{S}^2 and the projection plane in \mathbb{R}^3 to understand the geometry of this problem.

Problems from Hatcher's Notes

3. Given an open covering $\{O_{\alpha}\}$ of X, use the complement of one of the O_{α} 's to construct a finite subcovering.

6. It is straightforward to show that $A \cup B$ is compact.

To show that $A \cap B$ is compact (now assuming that X is Hausdorff), use the fact that $A \cap B$ lies in the compact Hausdorff space A (or B), and use the relationships between *closed sets* and *compact sets* in a compact Hausdorff space. See propositions on pages 33 and 35 of Hatcher's notes; these propositions were also discussed in class. Working with subspaces might be tricky, so read the lemma (and its proof) on page 11 of Hatcher's notes.