MAT 145: Homework Hints

Michael Williams

Last Updated: June 1, 2009

Homework 5 Hints

Problems from Crossley's Book

5.9 To show that $S \times T$ is *connected* only if S and T are both *connected*, use the appropriate projection functions. The same hint applies when we replace "connected" with "compact".

Problems from Hatcher's Notes

7. Use the fact that $(x,y) \in \overline{A \times B}$ if and only if every <u>basis-element</u> neighborhood $U \times V$ of (x,y) (where U is open in X, and V is open in Y) intersects $A \times B$. You may also use the fact that $(U \times V) \cap (A \times B) = (U \cap A) \times (V \cap B)$.

Use the fact that $(x,y) \in \text{int}(A \times B)$ if and only if there exists a <u>basis-element</u> neighborhood $U \times V$ of (x,y) (where U is open in X, and V is open in Y) such that $U \times V \subset A \times B$. You may also use the fact that $(U \times V) \cap (A \times B) = (U \cap A) \times (V \cap B)$.

You will see that using basis elements is very helpful when working with product spaces.

14. In this problem, you want to prove that the distance function $d: X \times X \to \mathbb{R}$ is continuous with respect to the product topology on the domain $X \times X$ and the usual topology on the co-domain \mathbb{R} . It suffices to show that for every open interval (i.e. basis element) $(\alpha, \beta) \subset \mathbb{R}$, the pre-image $d^{-1}(\alpha, \beta)$ is open in the product $X \times X$. Here is the simplest way to show that $d^{-1}(\alpha, \beta)$ is open: show that for every $(x, x') \in d^{-1}(\alpha, \beta)$, there exists a basis element $V \times V'$ (where V

is open in X, and V' is open in X) such that $(x, x') \in V \times V' \subset d^{-1}(\alpha, \beta)$; this immediately implies that $\beta > 0$.

<u>Suggestion</u>: You want to define $V = B_r(x)$ and $V' = B_r(x')$ for a sufficiently small r > 0; the value of r depends on the real numbers α , β , and d(x, x') (plot these numbers in \mathbb{R} to determine r). The triangle inequality will be very useful in this problem.