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Homework 1 Solutions

Problems from Review of Set Theory Notes

3 (c)

We prove that A x (B —C) = (A x B) — (A x C). We show that A x (B—C) C
(AxB)—(Ax(C),and (Ax B)—(AxC) C Ax(B—C). For the first containment,
let z € Ax (B—C). Then = = (a,b) where a € A and b € B — C. We certainly
have x € A x B, and since the second coordinate of = is not in C, we conclude
that © ¢ A x C. For the second containment, let x € (A x B) — (A x C). Then
r = (a,b) where a € A and b € B, but x ¢ A x C. Hence b ¢ C. Therefore
reAx (B-C).

We prove that (A—C)x (B—D) C (AxB)—(Cx D). Let x € (A—C)x(B—D).
Then z = (a,b) where a € A— C and b € B — D. We certainly have z € A x B.
Since a ¢ C, we conclude that x = (a,b) ¢ C x D. Therefore, z € (Ax B) —(C x
D). A counter-example for the reverse containment can be obtained by setting
A={1}, B={2}, C={3},and D = B. Then (A x B) — (C x D) ={(1,2)},
while (A —C) x (B — D) = @. Therefore, the reverse containment does not hold.

Let X C A. To show that X C f~'(f(X)), let z € X be given. Then f(z) €
f(X), by definition of f(X). By definition of pre-image of f, we may conclude
that z € f~1(f(X)).

Suppose that f(f~*(U)) = U for every U C B. To show that f is surjective, we
show that f(A) = B. We set U = B and use our hypothesis. Thus f(f~}(B)) =
B. Since A is the domain of f, we have f~!(B) = A. Hence f(A) = B. Therefore,

f is surjective.



Alternatively, we prove that f is surjective by showing that for each b € B, there
exists an a € A such that f(a) = b. Let b € B be given. Set U = {b}; by
hypothesis, f(f~1({b})) = {b}. This implies that f~1({b}) # &; so there is some
element a € f~1({b}). Then f(a) = b. Therefore f is surjective.

Suppose that f~1(f(X)) = X for every X C A. To show that f is injective, we
show that f(a1) # f(as) whenever a; # as. Let ay,ay € A be given with a; # as.
Set X = {a;}. By hypothesis, f~!'(f({a1})) = {a1}. Thus ay & f~*(f({a1})); so
flaz) ¢ f({a1}) by definition of pre-image of f. Hence f(ay) # f(ay). Therefore

f is injective.

Homework 2 Solutions

Problem from Crossley’s Book

3.5 Let T ={@}U{A C X : for every a € A, Bs(a) C A for some 6 > 0}. We show

that 7 is a topology on R2.

By definition of 7, @ € 7. Since each a € R? is contained in B;(a) C R?, we
conclude that R? € 7.

Let {Aq}acs CT. Set A = (UaeJ Aa); we show that A € 7. Let a € A. Then
a € A, for some a. Since A, € T, there is a § > 0 such that Bs(a) C A, C A.
This shows that A € 7. Therefore, arbitrary unions of elements of 7 are in 7.

Let A, Ay € T. We show that A; N Ay € T. Let a € A; N Ay. Then there exists
91,09 > 0, such that By, (a) C A; for i = 1,2. Set § = min{dy, d2}; it is easy to see
that Bs(a) C Bs,(a) for each i = 1,2. So Bs(a) C AjNAy. Therefore AjNA; € 7.

A straightforward induction argument shows that finite intersections of elements

of T are in 7.1

This completes the proof that 7 is a topology on R2.

Problems from Hatcher’s Notes

5.(a)

In order to prove that AU B = AU B, we prove the containments

! As discussed in class, we do not have to give the induction argument. Showing that the intersection
of two open sets is open suffices.
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For the first containment, let z € AU B. Then « € A or x € B. Thus every
neighborhood of x intersects A, or every neighborhood of x intersects B. Since
A C AUB and B C AU B, we conclude that every neighborhood of x intersects
AUB. Thus » € AU B.

For the second containment, it is convenient to proceed by contradiction. Assume
that t € AUB,but z ¢ AUB. Thenx ¢ A and v ¢ B. So x has neighborhoods
O4 and Op so that O4,NA = OgN B = @. Therefore O, NOp is a neighborhood
of x with the property that (O4 N Op) N (AU B) = @. This contradicts the
assumption that z € AU B.

We establish the containment int(A) Uint(B) C int(AU B). Let x € int(A) U
int(B). Then z € int(A) or = € int(B). So there exists a neighborhood O of x
such that x € O C A or x € O C B. In either case, O is a neighborhood of =
such that z € O C AU B. Therefore z € int(AU B).

To show that int(A) U int(B) # int(A U B), we could set A = (—o0,0] and
B = [0,00). Then int(A) = (—00,0) and int(B) = (0,00). So int(A) Uint(B) =
R — {0}, while int(A U B) = int(R) = R.

. Let Tx denote the given topology on X and let 7y denote the (induced) subspace

topology on Y. We show that intx(A) C inty(A). Let b € intx(A). Then there
is a neighborhood Ox € 7Tx of b such that b € Ox C A. Since Ox C A CY, we
see that Ox = Ox NY. So Ox € 7y by definition of subspace topology on Y.
Therefore b € inty (A). This establishes that intx(A) C inty (A).

To show that intx(A) # inty(A), we could set X = R, Y = (—00,0] and A =
(—1,0]. Then inty (A) = A, while intx(A) = (—1,0) # A.

In order to show that f : X — Y is continuous, we prove that the pre-image of
each open set of Y is open in X. Let U be an open set in Y. By assumption, the
restricted function f, : O, — Y is continuous for each a. Since X = JO,, we

observe that if z € X, then z € O, for some a.

An element-chasing argument shows that f~(U) = £, (U):

r€fHU) = f(z) €U < f.(x) €Uforsomea = z € f,*(U) for somea .
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We can now finish the proof. Since each f;'(U) is open in O,, and O, is an open
set in X, we have that f,*(U) is an open set in X by Problem 10 (in Chapter
1 of [Ha]).2 So f~!(U) is a union of open sets in X; thus f~'(U) is open in X.

Since U was arbitrary, we conclude that f is continuous.

Homework 3 Solutions

Problems from Crossley’s Book

4.1

4.8

We proceed by contradiction. Assume that there exists a continuous function
f:]0,1] — S. Since U and V are open in S, the sets f~}(U) and f~1(V) are
open in [0,1]. Also, 0 € f~Y(U) and 1 € f~1(V); so f~1(U) and f~}(V) are
non-empty. Since S =U UV, we have [0,1] = f~1(S) = f~4(U)U f~*(V). Thus
[0, 1] is the union of two disjoint nonempty open subsets, implying that [0, 1] is

disconnected; this is a contradiction.

Note that this result is trivial for the cases n = 1 and n = 2. We proceed by
induction. Let n € N with n > 3 be given.

(x) Assume that for every list of n — 1 distinct points z1,...,2,_1 in T, there
are open sets Uj,...,U,_; each containing one, and only one, of the points
Z1,...,Ty_1. We show that the same phenomenon occurs for any list of n distinct
points.

Let x4, ..., z, be distinct points in T'. Since T is Hausdorff, foreachi =1,... ,n—

1, there are neighborhoods V; and V/” of z; and =z, respectively, such that V/ N
V" = @. Define V; = U; N V/ (U; defined from the induction hypothesis (%)) for

each i =1,...,n — 1; then define

n—1
ngw.

We claim that Vi,...,V,, are open sets in T" such that each V; contains one, and
only one of the points x4, ..., x,. By definition of our sets V4, ..., V,,, the following
is true foreachi=1,...,n — 1:

2Problem 10 (in Chapter 1 of [Ha]) was done in class, so it may be assumed for this problem.



4.10

— Vj is an intersection of open sets U; and V/, so V; is open.

%

V,, is the finite intersection of open sets, so V,, is open.

—z; €V, and z, € V,.

—x;¢V,, and x, ¢ V.

—x; ¢ U; for any j € {1,...,n — 1} —{ i}; hence z; ¢ V; for any such j.

Therefore, for each i € {1,...,n}, we have z; € V;, V; is open, and z; ¢ V;
whenever j # ¢. This shows that each V; contains one, and only one of the points

Ti1y.ooy Ty,

Let L denote the real line with a double point at 0 (see page 52). We consider L
as RU{0'}. Then we may describe the (proposed) topology 77, of L as follows.
Consider the function p : L — R defined by p(0') = 0 and p(t) = ¢ for t # 0'; then
U € Tp, if and only if p(U) € 7. We now verify the four axioms for 77, to be a
topology.

@ € T, because p(@) =T € 7.
L € T;, because p(L) =R € 7.

As for arbitrary unions: Let {O,} C 77 be a collection of elements of 77. Set
O = JO,. We show that O € 7. Well, p(O) = p(lJO.) = Up(O,) from set
theory. Since p(O,) € T and 7 is a topology on R, p(O) = |Jp(O,) € T. Thus
O e T;.

As for finite intersections: The following lemma will be useful.

Lemma. For any two subsets A, B C L, we have
p(ANB) =p(A)Np(B) or p(ANB) = (p(A)Np(B))—{0} .

Proof of Lemma. First we show that (p(A) N p(B)) — {0} C p(ANB). Let t €
(p(A) Np(B)) — {0}. Thust € p(A)Np(B),t € R —{0} and p(t) = t. The
conditions t € p(A) N p(B) and p(t) = t imply that t € A and ¢ € B; hence
t € AN B.3 Since p(t) = t, we conclude that t € p(AN B).

From basic set theory, we always have p(A N B) C p(A) N p(B).

3We are not saying that p(A) = A or p(B) = B. We are concerned only with t.



There are now two cases: either 0 ¢ p(ANB) or 0 € p(ANB). If 0 ¢ p(AN B),
then (p(A) Np(B)) — {0} = p(An B) — {0} =p(AN B). If 0 € p(AN B), then
{0} U ((p(A4) Np(B)) — {0}) C p(AN B); therefore p(A) Np(B) =p(ANB). O

To finish the problem, we let Oy, Oy € 7. By the above lemma, we have p(O; N
Oz) = p(01)Np(O3) or p(O1NO2) = (p(O1) Np(O2)) = {0} = p(O1) Np(O2) N (R —
{0}). Since p(O1),p(02),R — {0} €T , we see that p(O; N O) is an intersection
of elements of 7. Thus p(O; N O,) € 7.

Problems from Hatcher’s Notes

For Problem 15, let 7 denote the usual topology on R, and let 7;, denote the half-open

interval topology on R.

15(a) Let A C R. We will prove that the following are equivalent.

(i) x € A (with respect to 7y,).

(ii) There is a sequence {z,} C A such that z, > z for every n € N, and

lim,, o |2, — x| = 0.

First we show that (i) = (ii). Let z € A (with respect to 7). Then for each
n € N, there exists x,, € [z,2 + 1/n) N A; note that x, > z. Thus 0 < |z, —z| <
1/n for all z,, € A. By the “Squeeze Law”* (from Calculus), we conclude that

lim, . |z, — x| = 0, where z,, > z and z,, € A for every n € N. Therefore (ii)

holds.

We now show that (ii) = (i). Suppose that z € R and (ii) holds. So there is a
sequence {x,} C A such that z,, > x for every n € N, and lim,, ., |z,—z| = 0. Let
U be a neighborhood of x; we will show that UNA # &. Since U is a neighborhood
of z, there exists a basis element [a,b) € 7, with z € [a,b) C U. Since = # b,
there is a k € N such that [x,z 4+ 1/k) C [a,b). Since lim,,_ |z, — x| = 0 where
x, > x for all n € N there is some N € N for which zx € [z,z + 1/k). So
xy € UNA. Since U was an arbitrary neighborhood of z, we conclude that
x € A (with respect to 7). Therefore (i) holds.

15(b) Here, we let R, denote the real line with the half-open interval topology. We will

show that the following are equivalent

4also known as the “Sandwich Law”



(i) f: Ry — R is continuous.

(ii) lime g+ f(x+¢€) = f(z) (i.e. fis continuous on the right) for every z € Ry,.

First, we show that (i) = (ii). Let x € R, be fixed. Let € > 0 be given.
We want to show that there exists a D > 0, so that |f(x +¢€) — f(z)] < € for
every 0 < € < D; this will establish (ii). By (i), the pre-image of the open set
(f(x) — €, f(x)+€) € T is open in 7;. So there is a basis element [a,b) € 7,
such that x € [a,b) C f~'(f(z) — €, f(z)+¢). Set D =b—x. Then [z,z+ D) =
[2,0) C [a,b) C f~1(f(z) — €, f(x) + €). Note that for every 0 < € < D, we have
r+e€€lx,r+ D)= [x,b); it is now clear that |f(x + ¢) — f(z)| < € for every
0 <e< D. So (ii) holds.

We now show that (ii) = (i). Suppose that (ii) holds for each = € R;. Let U € T;
we will show that f~*(U) € 7;,. We may as well assume that f~*(U) # @. For
each x € f~Y(U), consider f(x). Since U € T, there exists ¢ > 0 such that
(f(z)—€, f(z)+€) C U. By (ii), there exists a D > 0, so that | f(z+€)— f(z)| < €
for every 0 < € < D; in other words, [z, z+D) C f~'(f(z)—¢€, f(z)+€) C f71(U).
Set N, = [z,2 + D/2). Then N, C f~Y(U) and N, € 7;,. We define N, for every
x € Ry, in this way. Therefore

o= U N
)

zef~1(U

is a union of elements of 7;,. Thus f~(U) € 7. So (i) holds.

Homework 4 Solutions

Problems from Crossley’s Book

5.1 We construct a homeomorphism f : [1,2) — (—1,0]. Construct the line in R?
passing through the points (1,0) and (2, —1); this will contain the graph of f(x).
We calculate an equation for this line as y = —x+1. So define f(x) = —x+1. This
clearly defines a continuous function; the only thing to check is that f([1,2)) C
(—1,0]. Indeed, basic algebra shows that 1 < x < 2 implies —1 < —z 4+ 1 < 0.
Solving the equation y = —z + 1 for x produces the inverse function g : (—1,0] —

[1,2) defined by g(y) = 1 — y. It is straightforward to see that ¢ is continuous,



2.5

(go f)(x) = x for all x € [1,2), and (f o g)(y) = y for all y € (—1,0]. This
shows that f is a homeomorphism. Therefore, the intervals [1,2) and (—1,0] are

homeomorphic.

For stereographic projection of S': Consider R? as {(z1,22) : 1,22 € R}. Let

(z,y) be a point in S! — {(0,1)}. An equation for the line passing through (0,1)
and (z,y) is

The intersection point of this line with the projection line {(z1, —1) : z; € R} is

1
—1—1:(y )xl
x

for z1; hence (2z/(1 —y), —1) is the intersection point. Therefore, stereographic

obtained by solving

projection f : S' — {(0,1)} — R (as in Example 5.7) is given by the formula
fx,y) =22/(1 —y).

For stereographic projection of S?: Consider R? as {(z1, zo, x3) : 71,9, 73 € R}.
Let (z,y,z) be a point in S* — {(0,0,1)}. The straight line containing (0,0, 1)

and (z,y, z) can be parametrized by

r:R—R, r(t)=(1-1)(0,0,1) +t(z,y,2) .
Associated parametric equations for this line are
ry=tr, zo=ty, x3=(1—1t)+tz.

To find the intersection of this line with the projection plane {(xy,z2,—1) :
r1,x2 € R}, we solve 3 = —1 for ¢, then use this ¢-value to find the inter-
section point. We see that x3 = —1 has solution ¢ = 2/(1 — z). So the in-
tersection point is (2z/(1 — 2),2y/(1 — z),—1). Therefore, stereographic pro-
jection f : §* — {(0,0,1)} — R? (as in Example 5.7) is given by the formula
Py ) = (20/(1— 2),2y/(1 - 2)).



Problems from Hatcher’s Notes

3. Let X be the real-line with the finite complement topology. We show that X is

compact. Let {O,} be an open covering of X; we find a finite subcovering. Let

O,, be a nonempty element of the covering. Then O,, = X —{z1,...,x,}, where
x1,..., 2, € X. Since {0, } is a covering of X, there exists elements O, ..., O,,
of the covering such that z; € O,, for each « = 1,...,n. It is now clear that

{Ou4, Oays - - -, Oa, } 1 a finite subcovering of {O, }. It follows that X is compact.

5. Let 1,29 € X be distinct points; we show that there are disjoint neighborhoods
of x1 and x, respectively, in X. Consider f(z1), f(z2) € Y. Since f is injective,
the values f(x;) and f(z3) are distinct. Since Y is Hausdorff, there are disjoint
neighborhoods V; and V5 of f(x1) and f(x3), respectively, in Y. Since f is con-
tinuous, f~1(V}) and f~1(V5) are neighborhoods of z; and x», respectively, in X.
Furthermore, by definition of pre-image and the fact that V), NV, = @, it is clear
that f~1(Vi) N f~1(V5) = @. This establishes that X is Hausdorff.

6. We consider A, B, AU B and AN B to be subspaces of X. We also use that fact
that the subspace topology that AN B inherits from A U B is the same topology
that A N B inherits from X.

First we show that A U B is compact. Let {O,} be an open covering of AU B.
Then {O, N A} (resp. {Os N B}) is an open covering of A (resp. B). By
compactness of A (resp. B), there exists a subcovering {O,, N A,...,0,, N A}
(resp. {Op, N B,...,0p, N B}) of A (resp. B). It follows that

{Oala"‘7Oam70517"'706n}

forms a subcovering of {O, } for AU B.

Now assume that X is a Hausdorff space, so A and B are Hausdorff subspaces;
we show that A N B is compact. Since A and B are compact subspaces of the
Hausdorff space X, we conclude that A and B are closed in X.> Thus the finite
intersection A N B is closed in X; hence AN B is closed in A.5 Since AN B is
a closed subspace of the compact space A, we conclude that AN B is a compact

subspace of A.7 Since the subspace topology that A N B inherits from A is the

5This follows from the proposition on page 35 of Hatcher’s notes.
6This follows from the lemma on page 11 of Hatcher’s notes.
"This follows from a proposition on page 32 of Hatcher’s notes.



same topology that A N B inherits from X; it follows that A N B is a compact
subspace of X.

Homework 5 Solutions

Problems from Crossley’s Book

5.9 Suppose that S and T are Hausdorff spaces; we show that the product S x T is
a Hausdorff space. Let (s1,t1), (S2,t2) € S x T be distinct points. Then s; # s9
or t; # ty. Let’s assume that s; # s9; the proof under the assumption t; # ¢,
is similar. Since s; # s and S is Hausdorff, there exists disjoint neighborhoods
Uy C S and Uy C S of s; and s, respectively. Set Vi = U; x T and Vo = Uy x T
Then V; and Vj; are disjoint neighborhoods of (s1,¢;) and (s9,t2) respectively.

Let S and T be spaces, and let S x T" be the product space. Suppose that S x T

is connected; we show that S and T are both connected:

Solution 1: Let pg : S x T — S and pr : S x T — T be the associated
projection functions; in class it was established that these functions are
continuous and surjective. Then S is the image of a connected space
under the continuous function; therefore, S is connected. Similarly, we

can prove that T is connected.

Solution 2: We proceed by contradiction. Suppose that S = AU B were
a separation of S. Then A and B are disjoint nonempty open sets in .S.
Consequently, AxT and B xT are disjoint nonempty open sets in .S x 7"
For any a € Aandt € T, we have (a,t) € AxT;so AxT # &. For any
be Bandt €T, wehave (b,t) € BxT;so BxT # @&. The sets AxT
and B x T are basis elements for the product topology on S x T, so they
are open. Lastly, (AxT)N(BxT) = (ANB)xT = & xT = &; hence
AXxT and B x T are disjoint. Since S = AU B, it is straightforward to
see that SXT = (AXT)U(BxT). Therefore SXxT = (AxT)U(BxT)
is a separation of S x T', a contradiction to the assumption that S x T

is connnected. Similarly, we can prove that T' is connected.

Let S and T be spaces, and let S x T' be the product space. Suppose that S x T

is compact; we show that S and T are both compact.
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Solution 1: Let pg : S x T — S and pr : S x T — T be the associated
projection functions; in class it was established that these functions are
continuous and surjective. Then S is the image of a compact space
under the continuous function; therefore, S is compact. Similarly, we

can prove that T is compact.

Solution 2: Let {O,} be an open covering of S; we show that there is
a finite subcovering. Since each O, is open in S, the subset O, x T
is open in S x T. It follows that {O, x T'} is an open covering of
S x T. By compactness of S x T, there is a finite subcovering {O,, X
T,...,0,, xT} of S xT. Consequently, the collection {O,,, ..., O,, }
forms a subcovering of S. Therefore S is compact. Similarly, we can

prove that T is compact.

Problems from Hatcher’s Notes

7. Let A ¢ X and B C Y be subspaces. We show that A x B = A x B and
int(A x B) = int(A) x int(B). The equality A x B = A x B follows from

(z,y) € A x B <= every basis-element neighborhood U x V of (x,%) intersects A x B
<= every neighborhood U of z intersects A, and
every neighborhood V' of y intersects B
— rcAandycB

= (r,y) €AX B .
The equality int(A x B) = int(A) x int(B) follows from

(z,y) € int(A x B) <= there is a basis-element neighborhood U x V' C A x B of (z,y)
<= there is a neighborhood U of = contained in A, and
there is a neighborhood V' of y contained in B
<= z € int(A) and y € int(B)
< (z,y) € int(A) x int(B) .

14. To show that the function d : X x X — R is continuous, we show that d~*(«, 3) is
open for every basis element («, ) C R. So let (o, #) be an open interval in R. We
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may as well assume that d~!(«, ) # &; so 3 > 0. Now let (z,2') € d~'(a, 3); we
show that (z,2’) is an interior point. It will be convenient to set a = d(x, z’). Since

a < a < f3, there exists a number r > 0 for which a < a—2r <a <a+2r < (.

Define V' = B,(x) and V' = B,.(2'); then V' x V' is a neighborhood of (z,z’) in
X x X. We show that V x V' C d"!(«, 3) by an element-chasing argument. Let
(y,9y) € V x V'; we will show that o < d(y,y") < S

To see that d(y,y’) < 3, we use the triangle inequality:

d(y,y') < d(y,x) +d(z,y)
<d(y,z)+d(z,z") +d(',y")
<r4+a—+r

=a+2r
< 0.

We similarly show that a < d(y,v'):

a=d(z,2") < d(z,y) +d(y,z)
<d(z,y) +d(y,y') +d(y',2)
<r+dy,y)+r
=d(y,y’) +2r .

Therefore a < d(y,y')+2r. Subtracting 2r from both sides of this inequality yields
a—2r < d(y,y'); hence @ < d(y,y’). This establishes that V x V' C d~!(«, ).
So (z,2') is an interior point of d~'(a, 3). Since (z,2’) was an arbitrary point of
d~'(a, 8), we conclude that d~!(«, 3) is open in X x X. Therefore, d : X x X — R

is a continuous function.
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