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A generic map of a smooth surface M to an oriented smooth surface N is an immersion except 
on a compact family of curves where it may have fold or cusp singularities. If the domain is 
oriented, the map is homotopic to one having no cusps while, if nonorientable, it is homotopic 
to a map having at most one or no cusps depending upon whether the genus of M is odd or 
even. Conditions under which a generic map is the composition of an immersion of M into N x R 
followed by projection to N are given. Finally, an immersion of P* into R-‘, whose projection to 
R2 has a fold locus consisting of a single curve containing a single cusp, is described. The purpose 
of this paper is to describe a slight improvement upon a theorem of Levine concerning the 
elimination of cusps of a generic map from one compact oriented surface to another and to 
elaborate upon results of HaeAiger concerning the factorization of maps of surfaces into the plane 
as the composition of an immersion followed by a projection. 
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1. Introduction and statement of results 

Whitney [8], in his study of smooth mappings of the plane into the plane, has 
shown that for any such mapping there is an arbitrarily small smooth homotopy to 
a smooth map having a particularly simple behaviour. Such a map is called a generic 
map because nearby maps have the same structure, i.e., they form an open dense 
subset of the space of maps. For such maps either the rank of the Jacobian is two 
at a point (where the map is a local d$eomorphism), or has rank one (the set of 
such points consists of smooth disjoint curves called folds), or has rank zero on the 
fold curves (the set of such points is a discrete set called the cusp poinrs). Since the 
Whitney result is entirely a local result it is possible to show that for any map from 
one compact surface to another there is an arbitrarily small smooth homotopy to a 
smooth generic map. 

Suppose that M is a compact connected surface, that N is an oriented connected 
surface and that f is a generic map of M into N. Levine [4] has proved that, if M 
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is oriented, f is homotopic to a generic g such that on each fold curve of g there 

are at most two cusps. We shall prove the following improvement and extension in 

this paper. 

Theorem 1. (1) If M is oriented then f is homotopic IO a generic g having no cusps. 

(2) If M is non-orientable then f is homotopic to a generic g having ar most one 
cusp or no cusps depending upon whether the genus of M is odd or even. 

The method of proof is a modest extension of that employed by Levine. The 

development of these ideas will allow us to illuminate and extend results of Haefliger 

[2] concerning the factorization of maps into immersions followed by projections. 

Specifically, given a generic map f: M --* N when does there exist an immersion 

f:M --+NxR 

\I 
I 7T 

N 

so that f = T of, where r denotes the projection onto the first factor? Haefliger 

proves that a generic map f of a compact surface into the plane RZ can be factored 

by an immersion, 1 into Rx if and only if on each fold curve off the number of 

cusps is even or odd depending upon whether the fold curve has a cylinder or 

Mobius neighborhood. An extension of Haefliger’s ideas will allow us to prove the 

following theorem. 

Theorem 2. A generic map f of a compact surface M into a compact surface N can be 
factor through an immersion p in N x R if and only if on each fold curve off the 
number of cusps is even or odd depending upon whether the fold curve has a cylinder 
or Mobius neighborhood. 

Thus we see that the answer does not depend upon the orientability of N. In a 

concluding section is a discussion of Haefliger’s example of a map of a sphere into 

RZ which cannot be factored through an immersion. In the context of the previously 

developed method used to prove Theorem 1 this allows us to show that the geometric 

obstructions to factoring a fixed map through an immersion arise or, if one wishes, 

can be removed in a very simple way. 

There is also a description of a particularly attractive immersion of the projective 

plane into R3 whose projection to R2 has a single fold curve and a single cusp 

point. As shown by Whitney [8, Theorem 30A], this is the simplest configuration 

possible. The most common projections of specific immersions of RP* seem to have 

disconnected fold curves or three cusps as, for example, with Boy’s surface as 

pictured by Hilbert and Cohn-Vossen. Other loci actually arise from map images 
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rather than immersions as they must include pinch points. N. Kuiper showed me 
a series of such pictures dating from a 1960 response to Haefliger’s paper [2] which 
included a description of the locus and two pinch points which, by Haefliger’s 
theorem, could have been removed to achieve an immersion. Conversations with a 
variety of colleagues who enjoy such problems leads me to conjecture that this must 
be the simplest and most beautiful fold locus of a generic projection of a projective 
plane immersed in R’. An enjoyable way of encountering the immersion is to begin 
with a three cusp projection of Boy’s surface and cancel two of the cusps against 
each other. One should also note the remarkable connection between this locus and 
the immersed circle bounding two distinct immersed disks attributed to Milnor, 
Poenaru [5]. 

2. Methods of modification and computation 

The methods of Thorn [I, 6,7] allow us to relate the geometric structure of the 
folds and cusps to the algebraic topology of the surface. Thus we shall need to 
develop some concepts, vocabulary, and graphical notation to enable us to describe 
the relations and the geometric methods of modifying a generic map. Suppose that 
f is a generic map from M, a compact connected surface, to N, a compact connected 
oriented surface. Let C, denote the family of fold curves off and let 0, denote the 
discrete subset of cusps. If M is oriented C, separates M into two regions with C’ 
as common boundary determined by whetherf preserves or reverses the orientation. 
We shall call these the positive and negative regions, respectively. 

Although it is not possible to globally realize maps by projections of immersions 
it is possible to do so locally and this fact will allow us to describe the basic structure 
in a geometric fashion. For example, when M is oriented we may distinguish between 
two types of cusps according to whether the cusp ‘points from’ the positive region 
or the negative region. We shall call them positive or negative respectively. To do 
this consider a realization of the map at the cusp point as the graph of a function 
followed by a projection as shown in Fig. 1. The key observation is that the image 
of the negative region of the cusp points into the region where the orientation agrees. 

There are three useful procedures for describing homotopies between generic 
maps which change the structure of the folds and cusps. First if one has two cusps 
pointing into the same component of the complement of Cl one may ‘run them 
together’ along a connecting path and thereby cancel them. This process is illustrated 
in Fig. 2. 

The second modification is the introduction of two cusps by means of a twist. 

This process introduces a pair of cusps, one positive and the other negative. 
The third modification is an exchange of cusps. This can occur when one has a 

positive and a negative cusp which appear on the boundary curves of a connected 
region. 
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Fig. I. A negative cusp, f(x, Y) = (5 y. Xy +x3), p(X, y, 2) = (y, 2). f(X, Y) =: (y, XY +X3). 

3. Proof of Theorem 1 

We shall first consider the case of M and N oriented. In this case the fold curves, 

C’ determine a homology class [C,]E H,( M, H) which is trivial since it is the 

boundary of the region where f preserves the orientation. By introducing cusps via 

the twist modification and running them together we define a homotopy to a generic 

mapf, such that CA is a simple closed curve in M. Since C, is the boundary of the 

positive region there is a cobordism between C, and the boundary of a disk which 

is interior to the positive region. This cobordism has a handle structure which enables 

one to define a homotopy to a generic map fi such that Cf2 is the boundary of the 
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Fig. 2. Running cusps together. 

positive region which is now a disk. This is accomplished by using twists to introduce 
cusps which may be run together following the prescription provided by the level 
curves of the cobordism and the one handles as they are added. In other words, 
the positive region associated to fi may be cut into a disk via cuts along a finite 
collection of disjoint nonseparating arcs. Cusps may be introduced on the ends of 
the arcs and then run together along the arcs. This is schematically illustrated in 
Fig. 5. 

The resulting generic map, fi, may have a very complicated structure since we 
have created a large number of cusps. Nevertheless we may choose a small disk D 
in the positive component of the complement of C, such thatf,l, is a diffeomorphism 
and such that fi( D) n fi( Ch) = 0. Then f;‘( f2( D)) is a finite collection of smooth 
disks and, if we define M2 = M\(interiorfi’(l;( D))) and N2 = N\(interior fi( D)), 

fzM2: M,-* N2 is a proper generic map between manifolds with boundary. Let i 

denote the extension of the standard orientation preserving immersion of Nz into 
R2 to a generic map of N having 2g negative cusps where g(N) is the genus of N. 
Such an immersion is pictured in Fig. 6. 
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Fig. 3. Twist. 

Let fz = i 0 f2 and let d, and d_ denote the number of disks of A’( fi(D)> in M- 
and M-, the positive and negative components of the complement of Ch. For each 

of the d, disks f* introduces a new circle component to C,,, 2g( IV) negative cusps, 

and a new disk to the negative region. Similarly, for each of the d- disksI introduces 

a new circle component to C,, 2g( N) positive cusps and a new disk to the positive 

region. 

Let n, (n^+) and n_ (fi_) denote the number of positive and negative cusps of fi 
(!J. From the above we have the following relations: 

n^+= n++(2g(N))d_ 

ii- = n- +(2g( N))d+ 

X(ti+)=X(M+)+d_-d, 

X(k)=X(M-)+d+-d-. 
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Fig. 4. Cusp exchange. 

We shall apply the following observation of Haefliger [2], page 54 to i ofi =_?* : M --* 

R2. 

Observation (Haefliger). X(2+) -X( k-) = fi+ - n^_. Thus X( MC) - X( M-) = 

n+-n_-2(g(N)-l)(d+-d-). 

By our construction X( M’) = 1 and X( M-) = l -2g( M) so that n,- n_ = 

2g( M) +2(g( N) - l)(d+ - d_) which is even. Thus either both n, or n- are even or 

both are odd. In the latter case we introduce a twist which adds a positive and a 

negative cusp to ensure that both are even for the resulting generic map which we 

shall denote by f3 : M + N. As a result of the proof to this stage we have the following 

generalization of Haefliger’s observation. 

Observation. If f: M + N is a generic map of degree d(f) then n, - n_ = 

2(X(M+)-(g(M)-I)+(g(N)--l)d(f)). 
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Fig. 5. Adding a handle and cancelling cusps. 

fold curve 

Fig. 6. 

To complete the proof for the case where M is oriented we first run adjacent 

cusps together if they are both positive or negative, for example a locus of the form 

Fig. 7(i) can be replaced by the locus Fig. 7(ii) so that f3 is homotopic to a generic 

f4 such that C, is the union of curves without cusps and a curve with an even 

number of positive and negative cusps which alternate. 

t 
(i) 

(ii) 
+ 

v 
m. 

Fig. 7. 



KC. Millett / Generic smooth maps 205 

By a sequence of pairs of applications of cusp exchanges and running cusps 
together we find a homotopic generic g without cusps as shown in Fig. 8(i) by first 
an exchange of cusps, Fig. 8(ii), and then run the cusps together, Fig. 8(iii), to 
remove the adjacent cusps of opposite signs. Let g denote the resulting generic map. 
Thus we have proved case (1) of Theorem 1. 

The method of proof for the second part of Theorem I is quite similar. First we 
shall employ a result of Thorn [l]. 

+ 

(i) 

(iii) 

Fig. 8. 

Theorem (Thorn). Iffis a generic map of a closed surface M into an oriented surface 
N, the mod 2 cohomology classes dual to Cj and {cusps off) are the first and second 
Stiefel- Whitney classes, respectively. 

Since we are assuming that M is non-orientable the first Stiefel-Whitney class is 
non-zero so that, following a homotopy from f to f,, as in the previous case, C’ is 
a simple closed curve and does not separate. M is the connected sum of g(M) real 
projective planes and has Euler characteristic X(M) = 2 -g(M). Furthermore the 
evaluation of the second Stiefel-Whitney class on the fundamental class of M, the 
second Stiefel-Whitney number, is equal to the Euler class modulo 2. Thus the 
number of cusps is equal to the genus of M, g(M), modulo 2. 

As in the orientable case we may assume that adjacent cusps are not on the same 
side as we would run these together. If they are opposite we use the exchange and 
run the resulting cusps together. Thus as in the orientable case we can eliminate all 
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cusps if g(M) is even and must terminate with one cusp if g(M) is odd thereby 
proving the second case of Theorem 1. 0 

4. Factoring a generic map by an immersion 

Suppose that f: M + N is a generic map and p : N x R--f N is the projection of 
N x R onto its first factor. Theorem (2) asserts that there is an immersion f: M + 

N x R such that f= p 0 f if and only if on each fold curve off the number of cusps 
is even or odd depending upon whether the fold curve has a cylinder or Mobius 
neighborhood in M, respectively. The proof is a direct extension of the two lemmas 
employed by Haefliger for the case N = R2. 

Lemma 1. The number of cusps on a component C of C, is even if a sufficiently small 
neighborhood of C and the bundle ker dflc are both orientable or non orientable and 

odd, if one is orientable and the other is not orientable. 

Lemma 2. A generic map f of M to N can be expressed as p of if and only if the 
bundle ker dflc is orientable. 

The proof of Lemma 1 is exactly as given in Haefliger while that of Lemma 2 
requires only the following observation to extend the proof to all surfaces. 

Consider the image of a component C of C, Independently of the number of 
cusps which appear on C its image has only one side, globally, i.e., the side to 
which it ‘folds’ is unchanged by the appearance of a cusp as illustrated in Fig. 9. 
As a consequence the image of C has a cylinder neighborhood which we may take 
to be of R2 so as to take advantage of Haefliger’s proof in the R* case to construct 
a height function for an immersion in a neighborhood of C which projects to the 

Fig. 9. Image of a fold curve. 
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restriction off: The extension to the neighborhood of C, may be completed to M 
by smoothly extending the height function to all of M. 

Theorem 2 follows from Lemma 2 and the observation that ker u”,= is orientable 
if and only if C’s with cylinder neighborhoods have an even number of cusps and 
C’s with Mobius neighborhoods have an odd number of cusps. 

By way of conclusion of this section and before going on to some specific examples 
it is illuminating to consider the reason for the assumption by trying to lift a map 
of a cylinder neighborhood having a single cusp. This is illustrated in Fig. 10 where 
one observes, at the left of the picture the necessity of a configuration which is not 
allowed in an immersion, a pinch singularity. 

Fig. 10. Pinch singularity. 

5. Several examples 

Haefliger [2] has constructed several useful examples of generic maps of surfaces 
into R2 which can be understood quite fruitfully by employing the methods of 
Section 2 and Section 3. To these we add an additional one, a generic map of RP2 
into R2 having a single cusp and a connected fold curve. 

First we shall consider Haefliger’s example of a generic map, f; of a sphere into 
the plane which can not be the projection of an immersion into R’. C, consists of 
two parallel fold curves, C, and C2, each containing a single cusp. This is illustrated 
in Fig. 11 where the solid curves bound disks and the pair of dotted curves bound 
an annulus. If we begin to run these two cusps together we have the configuration 
in Fig. 12. After running the cusps together we do have a locus that can be achieved 
by the projection of an immersion as illustrated in Fig. 13. 

The fold curve is precisely the Milnor curve, Poenaru [8] page 342-09, and the 
solid line is the boundary of one of the inequivalent immersed disks as pictured in 
Fig. 14 while the dotted line is the boundary of the other immersed disk as pictured 
in Fig. 15. Their union gives an immersed sphere in R3 whose fold curve projects 
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Fig. I I. 

to that shown in Fig. 13. The change between that immersed surface and the map 
having the fold curves pictured in Fig. 12 occurs in the critical region of Fig. 13 
and is pictured here in Figs. 16 and 17. The fundamental local reason for the failure 
to achieve an immersion is the necessity of a pinch singularity as illustrated in Fig. 
18. Such crossings must always occur in pairs if the domain is orientable and can, 
therefore, be removed by reversing the process illustrated in Figs. 16 and 17. 
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Fig. IS. 

Finally we describe an immersion of RP2 into R’ whose projection to R2 has a 

connected fold curve which contains a single cusp. As with the S2 case we will first 

describe the fold curve, in Fig. 19, and then describe the immersion of the disk 

which is attached to the boundary of the Miibius band neighborhood of the fold 

curve. The boundary of the immersed disk is shown in Fig. 20 and various stages 

of the immersion are illustrated in Figs. 21 through 24. Note the remarkable similarity 

of the construction of the immersions of the sphere and RP2 and the Milnor curve. 

Fig. 16. Immersion of S’. 
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Fig. 17. No immersion exists due to the pinch points A and B. 

Fig. 18. Pinch singularity. 
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Fig. 19. RP’ Fold curve. 

Fig. 20. Boundary of immersed disk. 
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Fig. 2 I. Immersion of disk ( I). 

Fig. 22. Immersion of disk (2). 
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Fig. 23. Immersion of disk (3). 

Fig. 24. Immersion of disk (4). 
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