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Some evaluations of link polynomials 

W. B. R. LIC~ORISn and K. C. MILLETr ~ 

1. Introduction 

For every oriented link L in the 3-sphere there is a 2-variable Laurent 
polynomial PL(f,  m ) ~  7/[/? ±1, m±l]. It is defined uniquely by the formulae 

(i) Pv = 1 for the unknot U; 
(ii) ~?PL+ + e-XPL_ + mPL0 =0 ,  where L+, L_,  and L0 are any three links 

identical except within a ball where they are as shown in Figure I. Details are 
given in [ F - Y - H - L - M - O ]  and [L-M 1]. 

This two-variable polynomial is related to At., the Alexander polynomial, and 
Vz., the Jones polynomial, by 

PL(i, i(t m -- t-'/Z)) = AL(t), 

PL(it -1, --i(t  xn -- t -  t/Z)) = VL(t). 

The purpose of this paper is to evaluate PL for various specific values of (f, m), 
giving where possible the interpretation for VL. The values chosen are such that 
PL has an elementary form in terms of other known invariants of the link. 
Throughout, c (L )  denotes the number of components of L. 

A few relevant elementary results that can be found in [J] or [L-M 11 are: 

PL(e, m )  = PL(--e, - -m) ,  

PL(i, --2) = Vt.(- 1) = AL(--1) = Det (L), 

PL(e, - ( e  + e - l ) )  = 1 = VL(e-2~'3), 

VL(1) = ( - 2 )  ¢CL)-'. 

Let DL and TL denote the double and the treble cyclic covers of S 3, the 
3-sphere, branched over L. Note that two of the expressions appearing above can 
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be expressed in terms of these covers namely 

[Det (L)[ = The order of HI(DL; 7/) 

if Det (L) ~ 0 (in which case H~(DL; Z) is infinite), and 

c(L) - 1 = Dimension Hl(DL; 7/2). 

The results that will be proved here are the following three theorems. 

THEOREM 1 (H. Murakami [M]) 

~ (--~¢12)c(L)--l(--1)Arf(L) if Arf (L) exists, 
PL(1, X/2) = VL(i) = LO, otherwise. 

THEOREM 2 

PL(1, 1) = (--2) '/z O,m,,~,o, n,<rL;z2) 

THEOREM 3 

PL(e i/'#6, 1 )  = VL(e i~3) = ±ic¢L)-'(i~/3)Oi'ne~i°n H,(D,.; Z3) 

The first theorem is included partly for completeness, but also because the 
short proof given here avoids knowledge of the connection between the Arf (or 
Robertello) invariant and the coefficients of the Conway potential function. It 
also produces, as a Corollary to Theorem 1, a very simple axiomatisation of the 
Arf invariant. Premonitions of Theorems 1 and 3 are to found in some of the 
results of V. F. R. Jones in [J] who, indeed, proved a version of Theorem 3 
conjectured by J. S. Birman that did not identify the exponent of ~/3 appearing in 
the formula. Likewise A. Ocneanu conjectured that PL(1, 1) be a power of -2 .  
During the preparation of this paper H. Murakami announced that he had proved 
Theorem 2. 
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It has long been known (see [W]) that there are inequalities relating the 
unknotting number of a knot and the dimensions of the homology groups of its 
cyclic branched covers. In the light of Theorems 2 and 3 it seems unlikely that 
new information about unkotting numbers (much sought from PL) can be 
obtained from PL(1, 1) o r  PL(e iw6, 1), though calculation of these may give a 
quick way of computing two of the above mentioned dimensions. Similar remarks 
apply to considerations of bridge number and of braid index. It is amusing, for 
example, to note that for a rational, or two-bridge, link L, PL(1, 1) is always 
either 1 or -2 .  

2. PL(1, X/2) 

The Arf, or Robertello [R], invariant is defined on only the set 5e of oriented 
links for which each component has even linking number with the union of the 
other components. 

Note. (a) If L e ~,  and L is constructed by banding together two distinct 
components of L, then L e De. 

(b) If L ~ 5e, and L'  is formed by banding a component of L to itself and L" is 
formed in exactly the same way only with one more complete twist in the band 
then precisely one of L '  and L" is in De. 

If tr is a closed curve on a Seifert surface F of an oriented link L, let q[0:] be 
the linking number modulo two of tr and o~-pushed-off-F. If L e 5e (and not 
otherwise) this gives a well defined function 

q : Hi(F;  772)/i,Ht(aF; ~-2) --* 7/2; 

this q is a non-singular quadratic form. 

DEFINITION. The Arf  invariant of L, M(L), for L e 6e, is defined to be the 
value, 0 or 1, that q takes the more often. 

PROPERTIES OF M. 

(i) M is a well defined function M :be---> 7/2. 
(ii) M(L1 # L2) = M(L0  + M(L2). 

(iii) M(Trefoil knot) = 1. 
(iv) I f  L e 5e, and L is constructed as in Note (a), then M(L)  = M(L).  



352 W. B. R- LICKORISH AND K. C. MILLETT 

THEOREM 1 (H. Murakami). Let L be an oriented link with c(L) 
components. 

if  L 90 
PL(1, ~/2) = VL(i) = (0 if t ¢ 90. 

Proof. Let A(L)  denote ( -1 )  ~L) if L e 90 and let A(L)  be zero otherwise. 
Suppose that L+, L_, and Lo are oriented links identical except within a ball B 
where they are as in Figure 1. 

CASE (i). Suppose that c(L+) < c(Lo). In this case both of L÷ and L_ belong 
to 90 or neither of them belongs to 9 °. If Lo e 90, Note (a) and Property (iv) imply 
that L÷ and L_ belong to 90 and all three have the same Arf invariant. Thus 

A(L+) + A(L_)  - 2A(Lo) = 0 (*). 

This is trivially true when none of the three links is in 90. Thus there remains the 
possibility that L+ e 9 °, L_ ~ 90, but L0 $ 90. However, the component of L÷ seen 
in Figure 1 can be banded to itself to produce X as in Figure 20). By Note (b) 
X ~ 90, for adding a twist to that band would produce Lo. By Property (iv) 
M(X) = M(L+). As in Figure 2(ii), ( X #  (trefoil)) can have two of its components 
banded together to give L_. Thus by Properties (ii), (iii) and (iv), M(L+) + 1 = 
M(L_) modulo 2. Hence again (*) is satisfied. 

CASE (ii). Suppose that c(L+) > c(Lo). If L0 E 90 then by Note (b) precisely 
one of L+ and L_ is in 90 and that link has, by Property (iv), the same Arf 
invariant as Lo. If Lo$ 90 then by Note (a) neither L÷ nor L_ can be in 90. In 
either of these circumstances, 

A(L+) +A(L_)  - A(Lo) = 0 **). 

(1) {II) 

Fig. 2. 
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Now let .zi(L) = (-X/2)c~L~-IA(L). The formulae (*) and (**) both become 

A(L+) + ~i(L_) + X/2A(L,,) = 0. 

Of course .Zi(unknot)= 1, so that A(L) and PL(1, X/2) satisfy the same defining 
relationships. Induction on the number of crossings of a link presentation shows 
at once that A(L) = PL(1, X/2), and this completes the proof. 

COROLLARY.  Properties (i), (ii), (iii) and (iv) of M given above can be 
taken as a complete set of axioms for the Arf, or Robertello, mvariant of oriented 
links. 

Proof. Were there another invariant satisfying these properties it would, by 
the proof of Theorem 1, be related to PL(1, ~/2) in exactly the same way as is the 
Arf invariant. 

The result of Theorem 1 can be thought of as a resolution of the long standing 
mystery of why the Arf  invariant is only defined on ~e. Its generalisation to all 
oriented links can be thought of as the invariant PL(1, ~/2). 

3. PL(1, 1). 

For oriented links L, PL(1, 1) is the integer defined in the usual way by 

PL+(1, 1) + PL_(1, 1) + PLo(1, 1) = 0 

and Pv(1, 1) = 1 where U denotes the unknot. It was conjectured by A. Ocneanu 
that PL(1, 1) be an integral power of -2 .  That is confirmed in what follows. For 
notation let dL be the dimension as a vector space over 2~z of H~(TL; 7/2), where 
TL is the three-fold cover of S 3 branched over L. The orientation of L means that 
TL is well defined as the completion of the cover of S 3 - L corresponding to the 
kernel of the map/-/1(S 3 - L) ~ Z3 that sends oriented meridians to 1. Then 

T H E O R E M  2. For any oriented link L in S 3, 

PL(1, 1) = ( - 2 )  *ne~. 

In the proof of this theorem use will be made of the following two well known 
facts concerning arbitrary bounded 3-manifolds. Let M be a compact 3-manifold, 
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and let i : S M  ~ M be the inclusion of the boundary into M. Let K denote the 
kernel of i ,  :Hi(aM; 7--2) ~ Hi(M; Z2). 

(a) Dim H~(aM; Z2) = 2 dim g .  
(b) If x e K and y e K then x • y = 0 where x • y is the modulo 2 intersection 

number  of x and y. 

The proof  of (a) is a classical application of Poincar6-Lefschetz duality. For (b), 
regard x and y as 1-manifolds that bound mutually transverse surfaces in M; there 
must be an even number  of end-points of the arcs of intersection of these 
surfaces. 

Proof of Theorem 2. Let L+, L_ ,  and Lo be oriented links in S 3 identical 
outside a ball B in which they are as shown in Figure 3. The three diagrams that 
constitute Figure 3 are but variants of those of Figure 1; they are often more 
convenient when considering covers. Let M be the three-fold cyclic cover of 
S 3 -  B branched over (S 3 -  B ) n  Lj. Then M is a 3-manifold, aM has genus 2 
and, using the above notation, dim K = 2. Further,  Z3 acts with generator p as 
the group of covering translations on M and K is invariant under p , .  Now 
TL, = M O hi, where hj is a handlebody of genus 2 being the three-fold cyclic cover 
of B branched over B N Lj. Consider a disc D properly embedded in B and 
separating the two components  of B f3 Lo. Then D lifts to three discs in h0 and 
the boundaries of these discs represent elements Co, Cl, and c2 of Hi (aM;  Z2), the 
notation being chosen so that p,Ck = Ck+l mod. 3. Note that Co = cl + c2. The 
space of interest, HI(TLo; 772) is the quotient of Hi(M; 2~2) by i .C, where C is the 
space spanned by cl and c2. Similarly HI(TL.; 7/2) and HI(TL_ ;7/2) are quotients of 
Hi(M; 7/2) by i .A  and i .B  respectively, where A and B are the spaces spanned by 
{al, a2} and {bl, b2}. Here  {ao, al, a2} and {bo, bl, bE} are elements of 
Hi(aM; Z2) represented by lifts of the boundaries of discs in B that separate the 
components  of B fq L+ and B fq L_ respectively. The relative positions of curves 
representing these various classes on aM is shown in Figure 4, the notation being 
chosen so that p,a  k = ak+l and p,bk = b k + l  modulo 3. Note that bo = ao + c2. 

Because p . K  = K, either K f3A = {0} or A c K. Similarly, K fq B = {0} or 
B c K, and K f3 C = {0} or C c K. Now, because 

ao" Co = bo" Co = al " bo = l ,  

G Q O 
L+ L_ L o 

Fig. 3. 



Some evaluations of link polynomials 355 

It~P 
I 

Fig. 4. 

no two of the spaces A, B, and C can be contained in K (making use of (b)). 
Suppose that none of these spaces is in K: Then K - {0} is in 

Hi (aM;  7/2) - (.4 tO B tO C)  = {ao + Co, al + cl, a2 + cz} 

tO {ao+c~, a~ +c2,  a : + c o }  

where the two triples on the right hand side of this expression are the two orbits 
under the Z3 action. As K is invariant under the action, K must be the union of 
{0} and one of these triples. However,  by (b), this is not possible because 

(ao + Co)" (a ,  + c , )  = 1 = (ao + c , ) .  (al  + c2). 

Thus of the spaces A, B, and C, precisely one is contained in K and each of the 
other  two meet K in the zero element. 

The numbers dL+, dL ,  and dLo are the dimensions of the quotients of 
H1(M; Y2) by i ,A,  i ,B, and i ,C respectively. Of course, K is the kernel of i , ,  so, 
by the above analysis, one of these numbers is dim H~(M; 7/2) and the other two 
are two less than this. Hence 

( - 2 )  v2a'.* + ( - 2 )  ''2a'-- + (--2)"2d". = O. 

Thus (--2) I/2dL satisfies the defining formula for PL(1, 1) and agrees with PL(1, 1) 
when L is the unknot. The usual induction on the number of crossings in a 

presentation for L finishes the proof. 
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4. PL(e ~6, 1). 

The polynomial VL of V. F. R. Jones is, for each oriented link L, related to PL 
by the equation 

Vt.(t) = PL(it -1, - i ( t  '/2 - t-1/2)) 

so that VL(e i~3) = PL(e i~6, 1) and, in what follows, it will be preferable to work 
with the Jones polynomial. The reason for that is the reversing result for VL: 

The Jones reversing result. If /~ is obtained from L by reversing the 
orientation of one component that has linking number Z with the remaining 
components of L, then VL = t-3xVL • 

A proof of this can be found in [L-M 2] though beware that the conventions 
of that paper replace t by t-~. 

The reversing result leads to the "V~" formula first devised by J. S. Birman 
that will now be discussed. Here c(L) denotes the number of components of a 
link L, and as usual L+, L_, L0 are three oriented links identical except within a 
ball B where they are as in Figure 1. 

PROPOSITION (J. S. Birman [B-K]). (i) Suppose that c(L+)< c(Lo). Let 
L~ be obtained from Lo by reversing one of  the two components that meet B (with 
linking number Z with the rest of  Lo) and banding it to the other as in Figure 5(i). 
Then 

t-UZVL+ -- tlCZVL_ + (t 1/z - t - l / 2 ) t 3 x V L ~  = O. 

(ii) Suppose that c(L+) > c(Lo). Let L~ be obtained from L÷ by reversing one 
of  the components that meet B (which has linking number :t with the rest of  L÷) 
and banding it to the other as in Figure 5(ii). Then 

t -  '/2VL+ - tl/2VL_ + ( t lrz -- t -  u2)t3("- l/2)VL~ = O. 

Proof. Consider, as usual, a triple of links L÷, L_, Lo that are identical 
except within a ball B where they are as in Figure 1. The defining formula for the 

(t) (.) 

Fig. 5. 
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Jones polynomial is 

t - IVL÷ -- tVL_ + ( t  -1/2 --  tl/2)VLo = O, (1). 

Case (i). Suppose that c ( L + ) <  c(Lo). 
Now consider the triple of links obtained by placing each of the tangles shown 

in Figure 6(a) inside B and using the same configuration as before in S 3 -  B. 
Formula (1) applied to this new triple gives 

t - I V x  - tVLo + ( t  - I / 2  - tl/2)VL. = O, (2). 

Reversing the direction of the components that meet B as the right-hand 
segments of the diagrams for L0 and X leads to the situation of Figure 6(b). The 
reversing result implies that the Jones polynomials of/~o and X a r e  t-3ZVLo and 
t-3(x+l)Vx . Thus Formula (1) applied to the triple of Figure 6(b) gives 

t-XVLo - t - 2 V x  "4" ( t  -1/2 - -  tl/2)t3~'VL~ = O, (3). 

X Lo L+ 

/ ",j,.. 

(c) 

Fig. 6, 
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Then, the linear combination t-v2(1) - t-~(2) - (3) of the above formulae is the 
required result. 

Case (ii) Suppose that c(L+)> c(Lo). Consider the links /~_, L+, and L~ 
obtained by substituting the three tangles of Figure 6(c) into the ball B (this 
necessitates reversing one of the arcs in S 3 -  B). The Jones polynomials of L_ 
and /~+ are t-3(~-I)VL and t-3UVL+ respectively. Applying Formula (1) to this 
triple of links gives 

t-3(t~-l)-lVL_ -- t-3~+IVL+ -k (t -vz -- tl/~)Vt.. = O. 

This is the required formula. 

THEOREM 3. Let L be an oriented link in S 3 with c(L) components. Let DL 
be the double cover of  S 3 branched over L and let nL be the dimension (qu~ vector 
space) of  HI(DL; Z3). Then 

PL(e in/6, 1) = VL(e i~/3) = +icfl)-l(i~/3)"~. 

[The general form of this result was conjectured by J. S. Birman and proved by 
V. F. R. Jones without identification of the integer nL.] 

Proof. Let L+, L_,  and Lo be a triple of oriented links as shown in Figure 1, 
and let L~ be that of Figure 50) if c(L+)<c(Lo)  and that of Figure 5(ii) 
otherwise. Let WL = iO-c(r))VL(ei~3). Note that when t = e i~/3, ( t  1/2 - -  t - 1 / 2 )  = i and 
t a= -1 .  The latter implies, by way of the reversing result, t h a t  (VL(ei~3))  2 is 
independant of the orientation of L. Now, with the sign ambiguity depending on 
whether or not c(L+)> c(Lo), the defining formula for VL leads to 

e - ' ~ 3 W L +  - e~'~3WL_ = + W1.o. 

The Proposition gives the following, where here the sign ambiguity depends on 
the parity of the linking numbers A and/~: 

e-i~6WL+ -- eir'/6WL_ ---- + iWL~. 

Subtracting the square of this second equation from the square of the first (and 
using the fact that e iz~/3- e i~3= -1)  gives 

(wL+) ~ + (WL_Y + (w~0) ~ + ( w L f  = 0. 

Now, in [B-L-M] a Laurent polynomial invariant QL ~ Z[x ~] for unoriented 



Some evaluations of link polynomials 359 

links was defined, using the now familiar notation, by 

QL+ + QL_ = x(QL,, + QL~) 

and Q v  = 1 for  the unkno t  U. Thus (WL) 2 and Q L ( - 1 )  have identical defining 

formulae.  The  usual induct ion a rgument  on the crossing number  of  a link 
presenta t ion shows that  (WL)2=QL(- -1 ) .  However  it is proved in [ B - L - M ] ,  

Proper ty  5, that  Q L ( - 1 )  = ( -3)"L  and this completes  the p roof  of  the theorem.  

Remark.  The  p roof  in [ B - L - M ]  uses no special theory  o f  the Qt. polynomial  

to show that  QL(--1)  = (--3)  nL. It is simply shown that  nL is the nullity o f  a certain 
symmetr ic  matrix over  Z3 associated with a (generalised) Seifert form for L. The  

nullities for  L+,  L_ ,  L0, and L~ are easily shown to be of  the form n, n, n, and 
(n + 1) in some order .  So, it is immediate  that ( -3)" , .  satisfies the defining 

formulae  for Q L ( - 1 ) .  
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