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We utilize a recently discovered, powerful method to classify the topological state of knots
and catenanes. In this method, each such form is associated with a unique polynomial
These polynomiais allow a rigorous determination of whether knotted or catenated DNA
molecules that appear distinet actually are, and indicate the structure of refated molecules.
A tabulation is given of the polynomials for all possible stereoisomers of many of the
knotted and catenated forms that are found in DNA The polynomials for a substrate DNA
molecule and the products obtained from it by either recombination or strand passage by a
topoisomerase are related by a simple theorem This theorem affords natural applications of
the polynomial method to these processes Examples are presented involving site-specific
recombination by the transposon Tn3d-encoded resolvase and the phage 14 integrase, in

which producet structure is predicted as a function of crossover mechanism

1. Introduction

Al natural populations of DNA rings are to some
extent interlocked as catenanes and knots {for
reviews, see Kasamatsu & Vinograd, 1974; and
Wasserman & Cozzarelli, 1986). The ubiquity of
these forms is due to the many processes capable of
generating them. The formation of a catenated
intermediate bypasses a topological problem at the
termination of DNA replication (Sundin &
Varshavsicy, 1080, 1881}, and both knots and
catenanes are generated by recombination and
topeisomerase action (for reviews, see Nash, 1081;
Wang, 1985; Wasserman & Cozzarelli, 1988) The
importance of understanding the structure of these
iinked forms goes beyond circular DNA, because
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linear chromosomes in vivo can be interlocked as a
result of topologically confined subdomains
(Stonington & Pettijohn, 1971; Benyajati & Worcel,
1976; DiNardo et al, 1984; Uemura & Yanagida,
1884}

The complete stereostructure of knots and
catenanes can now be determined by election
microscopy of protein-coated DNA molecules
(Krasnow et ol, 1983; Grifith & Nash, 1985;
Wasserman & Cozzarelli, 1984) and this information
has provided critical insight into the mechanism of
processes that generate and unravel these linked
forms The power of topological metheds lies in the
ability o distinguish among alternative models by
predicting which of an often astronomic number of
knots and catenanes should arise as products For
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example, a proposed scheme for bacteriophage 1
integrative recombination correctly predicted the
structure of a product knot out of 10® possible
alternative forms (Spengler e ol , 1985)

In the face of such great complexity, it is
imperative to have a rigorous classification scheme
that determines if two molecules that appear
different are actually topologically distinct; i e one
cannot be deformed into the other without breaking
backbone bonds Manipulation of physical models
for DNA, such as ribbons, ecan decide this
unambiguously only in the simplest of cases
Classification requires associating with knots and
catenanes numbers or polynomials These are
invariants because they cannot be changed by any
deformation of the structure short of backbone
breakage, and therefore describe a topoisomer in
any of its entangled forms

We have shown how the Schubert (1956)
classification scheme can be applied to certain knots
and catenanes produced by DNA replication and
recombination (White & Cozzarelli, 1984) From the
value of two integers called o and f, a simple
theorem allows one to determine whether two forms
are identical and to compute the number and
associated invariants of related forms. Although the
Schubert scheme classified most of the DNA knots
and catenanes whose structure had been determined
at that time, it has three limitations First, the
method applies only to two-bridge forms, those that
can be represented in plane projection with only
two DNA segments bridging any number of
underpassing DNA segments. Recent work has
shown the importance of forms that are not two-
bridge Tor example, all two-bridge forms are
prime, ie cannot be factored (decomposed) into
simpler forms, but topoisomerases can produce
compound, i e non-prime, knots (Dean ef al , 1985),
and recombination can produce knotted catenanes
(Wasserman & Cozzarelli, 1986} Even among prime
knots and catenanes, the fraction that is two-bridge
is small Second, in order to determine « and f
graphically and without knowledge of other
invariants, one must redraw the knot or catenane in
the Schubert fashion with just two overpasses and,
for all but the simplest forms, this is extremely
difficult  Third, the two-bridge drawings are
mathematical artifices that are very different from
what DNA looks like in solution (Dean ef al , 1985)
and have not been useful in predicting the changes
in topology brought about by enzymes

All three problems are solved simultaneously by a
recent very important advance in knot and
catenane theory involving polynomial invarianis
(Jones, 1985; Freyd et ol , 1085; Lickorish & Millett,
1987, Hoste, 1986) The polynomial methods
classify not just the two-bridge knots and catenanes
but all knots and catenanes. The polynomials can
be calculated by a simple iterative procedure
starting with standard drawings of knots and
catenanes such as found in the Rolfsen (1976}
Tables. Tt is of particular importance to the
biologist that a central theorem refates the changes

in the polymial made by strand passage and strand
exchange. These two operations are the hallmarks
of topoisomerases and recombination, the two
principal means known for changing DNA structure
in biological systems (Wasserman & Cozzarelli,
1986) Therefore, the polynomials allow one to
formulate and test the mechanism of the processes
with mathematical precision

The frst of the new generation of classification
methods using polynomial invariants was dis-
covered by Jones (1985). The second was discovered
independently and simultaneously by Lickorish &
Millett, Freyd & Yetter, Ocneanu, and Hoste
{Freyd ef al , 1985), all of whom were altempting to
clarify and extend the pioneering results of Jones
Unlike the Jones polynomial, which has ane
variable, the Jlater methods use a two-variable
polynomial These invariants were foreshadowed by
the classical Alexander polynomial (Alexander,
1928} and its subsequent elaboration by Conway
(1869). The Alexander polynomial, however, does
not distinguish mirror images, and enzymes
generaily have chiral products

The polynomial methods are so new and rapidly
evoiving that even in the mathematical literature
they are published only in outline form. Thus, the
treatment of the methods in this paper are self-
contained and require no knowledge of the topo-
logical literature The second of the seven sections
of this paper presents the two-variable polynomial
theory of Lickorish & Millett {1987) and the main
theorems useful in classification We introduce the
method using the two-variable polynomial rather
than the simpler Jones polynomial for two reasans
First, vie a simple substitution, the Jones poly-
nomial can be calculated from the two-variable
polynomial but not wice versa Second, the two-
variable polynomial is more powerful, in that there
are fewer examples of distinet siructures with the
same polynomial Nonetheless, the Jones poly-
nomial classifies uniquely nearly all cases of current
interest to hiologists and has valuabie properties
lacking in the two-variable polynomials In section
3, therefore, we discuss the features of the Jones
polynomial. In section 4, we give a number of
examples of how one computes both polynomials
and discuss the ways in which these polynomials
reflect fundamental topological properties of the
forms with which they are associated. In section 5,
we apply the new polynomials to site-specific
recombination by the transposon Tnd resolvase and
phage 4 integration systems and show how the
products of these reactions can be rigorously
predicted Finally, in section 6 we provide for easy
reference a Table of polynomials for many common
knots and catenanes

2. The Lickorish—Millett Three-state Polynomial
and the Main Theorem

In this section we outline the main theorem on
polynomial invariants associated with knots and
catenanes that is given in the work of Lickorish &
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Figure 1. Sign convention for nodes The crossed
arrows represent segments of oriented curves (or unit
tangent vectors of the curves). and the bioken ariows
show the direction the segment on top must be rotated
(< 180%) te be congruent with the undetlying segment
Clockwise and countetclockwise maotion define () and
(+} nodes, respectively

Millett (1987) A knot is defined, in mathematics, as
a closed curve in three-dimensional space; therefore,
a circle iz a knot. To reduce confusion from this
paradoxical usage we will call the circle the trivial
knot or the unknot (unknotted knot) A second
concept we need to introduce is that of the oriented
cutrve This is simply a curve along which a specific
direction in which to travel has been chosen
A third needed concept is that of the node, or the
crossing of segments of oriented curves in plane
projection. Two oriented segments can cross in only
two ways; the resulting nodes are given a sign
according to the convention shown in Figure 1

Lickorish & Millett have shown that with every
oriented knot or catenane one can associate 2
polynomial in two variables, | and m, with integes
coefficients For example, the polynomials of three
common stiuctures shown in  Figwre 2 are
— 22—+ ?m? for the three-noded knot (trefoil),
e e w2 em® for the four-neded knot, and
Im™'+Pm~'—lm for the singly interlocked
catenane. We will call the trefoil in Figure 2(a) the
{—} trefoil because it has three {—) nodes and its
mirror image with three (4 ) nodes, the {+) tretoil
Similarly, the catenane in Figure 2(c) with {-}
nodes will be cailed the {—) singly linked catenane
and its mirror image the (+4) singly linked
catenane

The main theorem involving the association of
such polynomials with knots and catenanes falls
into two parts. The first part asserts that,
associated with each oriented form there is a unigue
polynomial such that if two objects have poly-
nomials that are different, in so much as a single
coefficient, the two objects are topologically
distinet. In the examples given, the occurrence of
m ™! distinguishes the catenane from the knots and
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Figure 2. Three simple knots and catenznes. A plane
projection is shown of {aYa (—) trefoil knot, (b) the
4-noded knot, and {¢) the (~) singly interlocked
catenane The arrows indicate the orientation of the
curves
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Figure 3. Segment passage Segment passage is
ilustrated wish a (—) trefoil. At the node at the top
where the orientation arrows eross, the overlying segment
is passed through the underlying one This passage

inverts the sign of the node and thereby unties the knot
becruse &l 3 nodes of a trefoil must have the same sign

the powers of the variable [ in the two knots are
different Hence, all three examples are topologi-
cally distinct The converse of the main theorem,
that no two distinet forms have the same
polynomial, is true for all prime knots containing
up to nine nodes, and there are only a few
exceptions for prime knots with 10 to 12 nodes
Little information is available for more complex
knots

The second part of the main theorem asserts that
there is a straightforward algorithm for computing
the polynomials thai depends on two simple rules,
and that any way of applying these rules to
topologically equivalent forms will give precisely
the same polynomial The computational algorithm
(Alexander, 1928) employs the method of changing
a planar projection of an oriented knot or catenane
into that of another knot or catenane whose
polynomial is aheady known by a method that
relates the polynomials. This is done by either
segment passage or segment exchange In passage,
o segment is passed through a crossing segment,
thereby changing the sign of the node An example
of a passage is shown in Figure 3, in which a trefoil
is converted into a cirele

In segment exchange, a (+) or (=) node is
converted to a (0) node, or vice versa The (0) node is
actually the deletion of a node The generation of
the (0) node is illustrated by Figure £ A (+) node
is approached along each of the crossing segments
in the direction given by their orientation When
the node is reached, it is not crossed but one
switches segments and proceeds in the direction
specified by their orientation If a (+) or (—) node
interlocking the rings of a catenane is changed to a
{0) node, the resulting object is o knot This is due

B % 2] D
AN
C A [ A
{+) (D)

Figure 4. The zeto node. The (0) node i5 a
mathematical limiting case in which segments do not
cross The (0} node can be obtained from the (+) node
shown by the following procedure Start at € on one of
the incoming branches and proceed to B on the other
vusgoing branch but avoid the crossing Similarly, stat
at A on the othe: incoming branch and proeeed to D
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Figure 5. Comparison of {+), (=}, and (0) nodes The
arrows indicate the orientation of curves as for Fig 3

to the fact that the two separate rings have been
joined to become one ring. I, on the other hand,
the (+) or (~) node of a knot is changed to a (0)
node, the resulting object is a catenane The reverse
is true also; namely, changing a (0) node formed by
the two rings of a catenane into a (+) or (~) node
changes the object to a knot; and changing a (0)
node of a knot to a (+) or {(—) node changes the
object into a catenane.

Finally, we let K., K_ and K, be planas
representations of knots or ecatenanes that are
exactly the same except in the vicinity of a (+),
{—) or (0) node, respectively, where they have the
configurations shown in Figure 5 We shall call this
collection a state set, and it is illustrated below by
the first three forms in Figure 7. We let PK L m),
PE _(I, m) and PK{l, m) be the polynomials in !
and m_associated with the corresponding three
states. The second part of the main theorem asserts
that:

PE (L m)+I7 PE (L, m)+mPEy(l, m) =0 (1)

To calculate a polynomial, one needs to choose a
normalization for the polynomial associated with
the unknot, which we will designate U, TFollowing
the tradition of the Alexander polynomial, the
polynomial associated to the unknot is defined to be
equal to 1, the simplest non-zero polynomial
Sample calculations of polynomials using equation
{1) are given in section 4, below

3. The Jones Polynomial and the Fourth
State, K

The Jones polynomial in one variable f, denoted
VK({), may also be used to classify knots and
catenanes. This polynomial has properties similar to
that of PK(I, m). Indeed, VK() can be obtained
from  PK({,m) by setting 1=4"' and
mo=—t{{t—1"Y  where i=_/=T Thus, for
example, PK{l, m) for the () trefoil is:

- 14+ P,
and, hence, V{1 for this knot is;
= 2T — (T TR (= — )2
= !

VE({!) also satisfies the two properties of the main
theorem of section 1 Thus, if any two objects have
their polynomials ¥ A(t) different in any coefficient,
they are topologically distinct Furthermore, they
satisty a formula similar to equation (1) Making

the substitution for ! and m indicated ahove, we
obtain;

TIVR (=t VE (1 — (1" H T Ky = 0 (2)

XX

Figure 6. Comparison of the 4 types of nodes as they
exist in a knot The arrows represent the crossing
segments of a knet and illustrate the (+), {~), (0) and
{o0) nodes

Using this 1elationship and the fact that
VU{ty =1, ie the Jones polynomial for the trivial
knot equals 1, one may derive the polynomial VE(1)
for any knot or catenane

Because V() has only a single variable, it is
casier to wuse for classification purposes than
PL(I, m) Another use of FK(t) is to understand the
structure of a fourth state, denoted K, which we
show below is important in describing 1ecombina-
tion enzymes K, is defined by the presence of the
(o) node which, like the (0) node, is actually a
particular deletion of a node. Two separate cases of
K, need to be distinguished In case 1, K is
generated from a (+) node in K., a knot, and in
case 2, K is generated from a (+) node in a
catenane

In case 1, in which K, (and hence A _) is a knot,
the (o0) node is defined as shown in Figure 6 The
top segment of the (oo) node is oriented from right
to left and the bottom segment is oriented from left
to right. One may choose the opposite orientation
for each segment, because K is also a knot and the
gtructure of knots, in general, does not depend on
orientation. The orientation in Figure 6 is the one
conventionally used An example of the four states
of a curve is shown in Figure 7; K, is the (+)
trefoil, A'_ is & trivial knot, K, is the (+) singly
linked catenane, and K, is a trivial knot Note that
K, can be obtained by exchange from any of the
other three states only if their orientaiion is
violated; this is why K is not part of the state set
described in section 2 {or oriented curves.

H K, isaknot, K, is a catenane and hence has a
linking number, LE(K,), equal to the algebraic sum
of the nodes interlocking the ringst L&(K,) and the

QUG

Figure 7. Hiustration of a state set for the 4 node
types K, is a {+) trefoil and A _ is obtained by sepment
passage at the node where the orientation ariows cross
Ko and K, are obtained by segment exchange at the
same node to give the forms shown in Fig 6

T The values for linking numbers in this paper are for
single curves They can be considered formally as the
linking numbers of the axes of the DNA double helices
Thus, LE{Ky) is one-half the value of Ca as defined by
Cozzarelli ef al (1984)
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Figure 8. Formation of an (c0) node within 1 ring of a
catenane The state set shown is generated by conversion

of the {4 ) node made by the crossing arvows to the (),
(0) and (=) nodes as shown in Fig 6

polynomials VK . (), VE_{f], and VE_{} are
related by the following equation {Lickorish, 1986}:

VE () —tVE_()— (1~ RA K (1) = 0. (3)

Thus, if Li(H,) and the polynomials for K, and
K_ are known, VK_(t} can be computed Con-
versely, H K and LE(K,) are known, then knowing
the polynomials of K, will yield that of X', and
vice versa.

Case 2, in which K, and K_ are dimeric
catenanes, itself falls into two subeases, depending
on the site of exchange If this site is formed by a
erossing of one of the catenane rings with itself, the
(o) erossing is defined just as in case 1 The K,
state will have three rings, two of which are formed
from the ring containing the exchange site An
example is shown in Figure 8 These two rings can
be designated the left-hand and right-hand rings,
depending on what side of the (0) node they are. If
we define LE{K,) in this case to be the linking
number of the right-hand ring with the other two
components, then the polynomial for K, satisfles a
similar equation to eguation (3):

VE (8) =t VE (8o (L RO R (1) = 0 (4)

Thus, for example, in Figure §, £, is the {+) singly
linked catenane, K _ is topologically the same as
K, Ky is a (+) singly linked catenane plus a
trivial knot, and K is the same as &, and K _
The right-hand component of K, is a trivial knot
that does not link the other two components, so
LK) = 0. Hence, the above equation becomes:

VE () ~tVE ()= (1= VE (1) = 0,

which is indeed correct, since the terms on the left-
hand side cancel.

The second subease of case 2 occurs when the
exchange site is at the crossing of one ring of the
catenane with the other The (co) crossing is now
defined with both segments oriented in the same
direction, lefi to right in our convention (Fig 9),
and not the antiparallel orientation as in the other
cases In this subease, the polynomial for K is
easier to compute, for it depends only on K, and
K_ Il LE(K ;) equals the linking number of K,
then:

VE (iy-tVE _(})
—{l—-fMRE Ny =0 (5)
This remarkable formula shows that K, is
determined by K, and K_ only Several examples

of this subcase are given in the following section
‘The proper drawing of the (<) node in each

RXXOUR

Figure 9. Comparison af the 4 types of nodes generated
from a {+) node interlocking the 2 rings of a catenane
The arrows of the (+) node represent otiented crossing
segments fiom each 1ing of a dimeric catenane, and the
{—1}, (0) and (co} nodes are generated by segment passage
and segment exchange Note that the (+), (—) and (0}
nodes are exactly the same as in knots (Fig 6). but that
the upper limb of the () node points in the opposite
direction

instance can be obtained by the following proce-
dure Start with a {+) node as shown in Figure 4
Draw the lower limb of the (c0) node starting from
C and proceeding up toward the erossing bui then
coming back down to A. The orientation of K, is
not set Next draw the upper limb similarly but
proceed from B or D depending on orientation

4. PK(l, m) and VK(r) Polynomials of
Special Examples

In this section we shall show how to use the
theorems of the previous sections to find poly-
nomials of some well-known catenanes and knots,
thereby iliustrating how these polynomials can be
computed easily and what types of information are
contained in their nature

As our first example, we find the polynomials of
two copies of the trivial knot If we set this equal to
Ky, the four states shown in Figure 10 are obtained
Because K ., K _ and K are all trivial knots, their
polynomials are all equal to 1 We can then
caleulate the two-variable polynomial for Ky using
equabion (1)

U+ N1y mPE G, m) = 0,
PEo{l, m) =—m~ Y™+
Equation (2) gives us the corresponding Jones
polynomial:
U )+ (=t YR () = 0,
VEt) = — (5467

If we set pequal to —m ™ {7 4+ 1) or — (1} 474,
it is easy to see by iteration of the above method
that polynomials of ¢ copies of the unknot are equal
to p°"' An important advantage of polynomial
invariants is that they can be caleulated readily for
catenanes containing more than two rings, and such

complex forms are found in nature; for example, in
kinetoplasts {Englend ef ol , 1982)

COCOCDCO

Figure 10. State set for 2 copies of the unknot K, is 2
copies of the unknot



590 J H White et al

We next verify equation (3) for the computation
ol VK _(t) Because the two curves are unlinked,
LIE(H ) = 0 Thus, equation {3) becomes:

1—1—(1—~0OFVE (1) = 0,

which shows, as expected, that VK (1) =1

The most commonly found catenanes are regu-
larly interlocked Known technically as members of
the torus family (Rolfsen, 1978), these can he
described analogously to the classes of DNA double
helices, heeause the two rings helically intertwine
The helix can be right-handed or left-handed, and
the orientation of the two rings can be parallel or
antiparallel. The resulting four classes are right-
handed parallel, left-handed parallel, right-handed
antiparallel, and left-handed antiparallel. Examples
of the left-handed forms are shown in Tigure 15.
For the special case of singly interlocked catenanes,
the first and the fourth classes are equivalent, as are
the second and third; these have been designated as
{+) (Fig 11) and (~) (Fig 12), respectively,
according to the sign of the nodes Our next
examples arise from these classes of calenanes
They will show how chirality and orientation affect
the polynomials.

(a) The singly interlocked right-handed parallel

catenane, R,

To compute the polynomials for this catenane, we
use the state set shown in Figure 11 K_ is two
copies of the trivial knot and its polynomial is
therefore u Since Ky is the trivial knot, its
polynomial is 1. Therefore, applying equations (1)
and (2), we obtain the polynomials of R,

PR my=PK (I, m)=~1""0" T u4m)
= ({7 I ym T =1 I,
VRt = VR (t) = tlip+ (15 =17y
R
We next verify equation (5) for VK_(1), an

unknot In this case, the linking number of K,
equals +1 Hence, equation (5) yields:

=t — (1]
__{] M_r)i:“l—‘é'}]."](w(f) e O,
—B4 (- VK _ (1) =0,

which shows, as expected, that VA (1) = 1

BOEO®

Figure 11. State set for the right-handed purallel singly
tinked catenane This catenane, R, is the K, state and is
interlocked by 2 (+) nodes. Handedness is defined by the
sense of the helical wrapping of one curve around the
other, and parallel by the relative orientation of adjacent
segments from the 2 rings The rest of the state set is
generated as for Fig 9

OGO

Figure 12. State set for the left-handed paraliel singly
linked catenane. This catenane, L, is the K _ state and is
interlocked by 2 (—) nodes The rest of the state set ig
generated as for Fig 9.

(b} The singly interlocked left-handed parallel
catenane, L.,

To compute the polynomials for this catenane, we
use the state set shown in Figure 12, where
K_ =L, Clearly, K. is two copies of the trivial
knot, and K, and K, are just the trivial knot
Hence, employing equations {1) and (2):

PLA, m)=PK_(l, m) = ~I{lu+m)
={+Pm ' ~Inm, and
VL) = VE_(ty =7t ' u—t =174

=t 4

Note that only positive powers of the variable |
oceur in the two-variable polynomial for the lefi-
handed catenane, whereas there are only negative
powers of [ in the polynomials for the right-handed
catenane. In the one-varisble polynomial for the
left-handed catenane, only negative powers of
oceur, whereas there are only positive values of ¢ in
the right-handed catenane. This brings us to the
following {undamental corollary of the main
theorem (Lickorish & Millett, 1987} If K denotes
the mirror image of K, then the polynomials of K
and K are related by the equation:
PE(l, m) = PE("', m) and VE(t)= VK({™") For
example, L, = R, and, by our calculations above,
PLy(lmy= PR,(I™", m), and VL) = VR,
verifying the assertion of the corollary in this
special case Thus, we conclude that for a knot or
catenane to be topologically equivalent to its mirror
image, a property known as amphichiralty, the
associated polynomial must be symmetric in I and
["*or tand 177, ie the polynomials must be left
unchanged if we reverse the signs of the exponents
of the I or the ¢ terms Tor example, the
polynomials of the amphichiral four-noded knot,
shown in Figure 2(b), are:

—172 1 =P+ m?, and

TR N N

(e} The positive trefoil knot, T,

To compute the polynomials for the positive
trefoil, T',, we use the state set shown in Figure 7
K. and K, are the unknot and K, is B, Using
equations {l} and {2}, and our results for R, we
obtain the polynomials of T',:

PP AL my=—1"2=1"Ymi" 3m™?

+l "t el Ym)
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VI () = it =t (Y
A

(dy The negative trefoil, T

The polynomials for the negative trefoil T'_ are
easy to compute from those for 7', because T'_ is
the mirror image of 7, Thus, we need only
interchange  with /™% and ¢ with ¢t7% Hence:

PP_(l, m) = —* 2124 Pm?,
VI _(t) = —t" 7317t
We note that, since the polynomials of 7', and

T . are distinet, T, and T_ are not equivalent and
hence the trefoil is not amphichiral

(e) The doubly interlocked right-handed parallel
catenarne, RDP

To compute the polynomials for the doubly
interlocked right-handed parallel catenane, we use
the state set shown in Figure 13 We observe that
K_ is the singly linked right-handed parallel
catenane, E,, and that K, is the positive treloil,
T, Thus, the pelynomials of RD, are:

PRD (L, m) = PR (I, m} = (=17 =1"*ym™}
33 m =17 3m?,
VRD,(t) = VK, (t) = =¥+ -

Note that all the powers of | are negative and
those of t are positive.

(£) The doubly interlocked right-handed antiparallel
catenane, RD,,

To compute the polynomial for the doubly
interlocked right-handed antiparallel catenane,
RD,,, we use the state set shown in Figure 14 We
observe that K, is the singly linked left-handed
patallel catenane, L, K, is the trivial knot, and
that K_ is the positive trefoil Using equations (1)
and (2), we obtain:

PRD{I,m)=PK _(l,m)
= (P =Py (=14 Pm,
and
VRD, (1) = VE _(t) = —t 7 =7 iyt

Note that the powers of [ are all positive and
those of ¢ are all negative, even though the catenane

QGO

Figure 13. State set for the right-handed parallel
doubly linked catenane This catenane, RD,, is the K,
state and is interlocked by 4 (4 ) nodes The rest of the
state sed is constructed as shown for Fig 9

% N \
3L

f o RO =K ” Ve

[

Figure 14. State set for the right-handed antiparallel
doubly linked catenane This catenane, D, is the K _
state and is interlocked by 4 {~—) nodes. The remainder of
the state ses is generated as shown for Fig 8

is right-handed This results from the antiparallel
property of the catenane This situation is analo-
gous to that of the sign of the linking aumber
between catenated rings; the change of either
handedness or relative orientation changes sign,
whereas the change of both maintains it

We next verify equation (5) for K () In this
case, LE(K .} = —1 Thus, equation {3) yields:

(et Pt Hy g (07 ity
e (LTI 4t} = 0

and VK _(t} equals —&* ¢ +¢, the pelynomial for
the positive trefoil, 7',

(g) The doubly linked left-handed parallel
calenane, LDP

The polynomials for LD, pictured in
Figure 15{(a), can be obtained from the polynomial
of RD, by using the fact that LD, is the mirror
image of ED, Thus, we need only interchange ™
for [ in the PRD (I, m) and { for t71 in VRD,(t}) We
find, then, that:

PLDy(l,m) = (=18 =Py~ + (14 38)m—Pm?
and
VLDp([) FECg— t"“ltk_i..t_g._{";_t”}

(h) The doubly interlinked left-handed antiparellel
catenane, LD,,

The vpolynomials for LD, pictured in
Figuze 15(b), can be obtained from the polynomials
of BD,, by using the fact that LD,, is the mirror
image of RD,, Thus:

PLD, (L m) = (—17* =" 4 (=17 17 )m,

{a) {b)

Figure 15. The 2 types of left-handed doubly linked
catenanes (a) The doubly interlocked left-handed parallel
eatenane, LD, {b) she left-handed antiparallel catenane,
LD,, LD, like RD,, is intetiocked by 4 (—) nodes and
I.D,,. like RD,, is interlocked by 4 {+) nodes, but all 4
sterecisomers are distinct
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and
VLDt =~ 1~ gt

(i) The four-crossing knot, T

We compute the polynomials of the four-crossing
knot using the state set shown in Figure 16 Clear Iy,
K_ is the trivial knot, and K, is the singly
interlocked left-handed parallel catenane, L, Thus,
using equations (1) and (2) we obtain:

PELmy = PK (I, m)=~1"* 1=y m2,
VFE() = FE () =87 t" Y p T2y

(1) Connected unions of knots and catenanes

The processes of recombination and topoiso-
merase action can generate compound knots and
catenanes (Wasserman & Cozzarelli, 19868) By
iteration of the general formula, one may calculate
the polynomials associated with a union of any
number of knots or catenanes This is true because
the calculation is done for one of the constituents
before applying the algorithm to another The
result is that one may simply factor out the
contribution of the other constituents and continue
the process

We denote the two separate configurations, either
knots or catenanes, K, and K,; as examples, we
show a (+) trefoil and an antiparallel right-handed
doubly linked catenane (Fig 17) Next, one takes a
small segment of either K, or K, and stretches it
until il is contiguous to a segment of the other
curve. These segments are broken and rejoined as
shown in Figure 17 We denote this connected
union by K,# K, Its polynomial is (Lickorish &
Millett, 1987):

PAK # KS) (1L om) = PK (I, m)PE,(1, m)

We compute similarly the polynomials associated
with the “square” (S¢) and “granny” (GR) knots
shown in Figure 18. The former is the union of a
{+} trefotl with a (~) trefoil, and we use the union
of two (+) trefoils as an example of the latter:

PSQU m)y = PT _(I, m}PT (I, m)
= (=2 = PP ) (=1 20T T 7 2
= (21745420 + (— 172 s - PymT + m®,
whereas:
PGR(, my = PT (I, m}yPT (I, m)
= (2P =14+ Pm?)?

= (4 + 418+ By b (—dl - 205 ym2 o Pt

FER, A Aq Aoy
Figure 16. State set for the 4-noded knot This knot is

the K, state, and the remainder of the state set is
generated as shown for Fig ¢

- Q-C0h

Figure 17. Joining 2 prime curves to form a compound
curve A {+) trefoil and an antiparallel right-handed
doubly linked catenane are joined together by pulling out
a segment of one curve until it is adjacent to a segment of
the other and then exchanging the segments in a way
that respects the orientation of each curve

Clearly PSQ(I, m) # PGR(I, m), and therefore the
square and granny knots are not topologically
equivalent. Note that PSQ(, m) is symmetric in [
and 1™ thus the square knot could be amphichiral
Indeed, this can be shown by the identity of the
mirror image of SQ (formed by reversing all the
crossings) and a planar 1807 rotation of 8Q

(k) Swmmary and observations

We close this section by reviewing and making
additional observations We showed that the
positive and negative trefoils 7, and 7. are
topologically distinet but that the four-noded knot
F is amphichiral Analyses of the polynomials of
kD, RD,,, LD, and LD, demonstrated that there
are four topologically distinct doubly interlocked
catenanes, a fact we proved earlier using Schubert's
theory (White & Cozzarelli, 1984)

There are several main cbservations 1o be drawn
from these examples First, the polynomials of a
mirror image of a catenane or knot can be
computed from those of the catenane or knot by
interchanging 7 and I"' or t and 17! Hence, if &
knot or catenane is amphichiral, its polynomial is
symmetric in land [7! or ¢ and ¢}

A second observation aboul the polynomial
VE() we illustrated with doubly interlinked
catenanes The catenane RD,, can be obtained from
the catenane RD, by simply reversing the orienta-
tion of one of its component rings We recall that:

i ¢ 2 2
VRD,(t) = — 4 F—fim 8
and
VRD, (1) = — 17 byt
Therefore,

VRDW{(t) = 1"V RD, (1)

Figure 18. Two common compound knots (a) The
square knot is the union of a (+) and {—) trefoil whereas
{b) the granny knot shown is the union of 2 (4} trefoils
The mirror-image of the latter would be a granny lnot
with only {—) nodes, whereas the square knot is
amphichiral.
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Now, the linking number of RD, is +2, so that one
can write this relationship as (Lickorish, 1986):

VRD, ) = (73R R D ()

This formula is an example ot a much more
general formula. Let K be any catenane and K be
the same calenane, except that one of its rings has
the reverse orientation Then the polynomials VA/(t)
and VAK(t) satisty the equation (Lickorish & Millest,
1986):

VE{) = — 3Ry i,

where LE(K) is the linking number of K _This
important formula states that A and K are
topologically distinet when Li(K)#0 Further-
more, if one combines this result with the earlier
statement about mirror images, one can arrive at
the following conclusion. Let K and A be as above
Let K be the mirror image of K and K be the
mirror image of K, the so-called mirror reversed
catenane Then the polynomials of K, K and K can
all be computed from she polynomial of K:

VR () = t 7RO R,
VE(@) = VE{@™Y), (6)
VEW = VE@E™") = MOy g1y,

Finally, we observe that the LE(K) is easy to
compute by counting nodes However, it is also
possible to find LE{K) from the polynomial of K, as
detailed elsewhere (Lickorish & Miliett, 1987)
Hence, all information necessary to compute VA(t),
VEK(t) and VE(t) is contained in FK{¢) There is no
similar set of relationships for the two-variable
polynomials

In this section we have shown how the
polynomials of a complex knot or catenane can be
computed from less complicated ones by means of
equations (1) and (2) We used the polynomial of
the unknot to compute the polynomials associated
to multiple copies of the unknot We used these
results to compute the polynomials associated with
trefoils and singly linked catenanes In turn, we
used these polynomials to compute those of the
doubly interlocked catenanes and the four-crossing
knot In practice, this recursive procedure is even
easier to use because the polynemials of many
prime Lknots or catenanes can be found in
mathematical tables. The most extensive are by
Thistlethwaite (1985, 1987) These papers assume a
knowledge of topology, and for the convenience of
the reader we have in section 6 prepared o Table of
invariants for the simplest prime knots and
catenanes, and a standard drawing of these curves

5. Applications to DNA

The polynomial method provides a rigorous and
logical way for classifying DNA knots and
catenanes, which iz essential for the orderly
description of these forms and analysis of their
cellular role. For exampie, several cellular processes
produce DNA catenanes or knots that belong to the

toraus family The polynomials allow one to prove
that for this family there are four, and only four,
stereoisomers for catenanes containing more than
four or more nodes, but only two isomers of knots
and singly linked catenanes These distinetions are
important because different cellnlar processes
generate different types of torus forms (Wasserman
& Cozzarelli, 1986) The catenanes produced by
DNA replication are expected to be right-handed
and parallel, but those produced by recombination
by enzymes such as Int are also right-handed but
antiparallel The knots made by Int are right-
handed, whereas those tied by topoisomerase I of
Bscherichia coli are equally likely to be right-
handed as left-handed

The attractiveness of the polynomials in
describing the structure of DNA is perhaps even
more appatent in its description of the actions of
topoisomerases and, particularty, recombination
enzymes The type 2 topoisomerases are enzymes
that promote a double-stranded DNA passage, ie
the passage of the axis of a double helix through
itself (Wang, 1983) Similarly, these enzymes can
pass the axis of one DNA through the axis of
another. The first operation can tie or untie knots
and the second can catenate or decatenate rings
The fundamental question is, given a particular
knot or catenane, what is the structure of the
product DNA after o double-stranded passage? This
question is answered, ab least in part, by the main
theorems that relate the substrate DNA to the
product DNA in terms of another DNA, in which a
(+) or {—) node is replaced by a {(0) or (co) node

This can be illustrated using the torus DNA
catenanes. A right-handed parallel torus catenane
that intertwines » times has 2n () nodes A strand
passage at one of these nodes changes it to a {—)
node, and the resulting product is topologically the
same as a right-handed parallel catenane that
intertwines (n—1) times In this case, K, is the
catenane intertwined = times and K _ is the
catenane intertwined (n—1) times The state set in
which » = 2 is shown in Figure 7 The same Figure
shows that KA, is the frivial knot In fact, no
matter what value n assumes, K is always the
unknot. Thus, if the Jones polynomial of the (n—1)
helically intertwined catenane is known, one can
use equation {5) to compute the polynomial of the
n-catenane, since VA (f) =1 By recursion, one
can find the polynomial of the n-catenane, knowing
only the polynomial of the singly interlinked
catenane (or of the 2 copies of the unknot) Then
equations {6} can be used to generate the
polynomial for the three sterecisomers of the right-
handed parallel n-catenane In summary, the Jones
polynomial can be used to classify all torus DNA
catenanes knowing only the poiynomial of the
singly interfinked catenane

The second basic operation that can change the
structure of DNA is exchange in which two pieces
of DNA are broken and the ends switched This is
the process of interconverting a (0) or {c0) node and
a {(+) or (=} node Once again, the fundamental
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question is: given a patticular DNA knot o
catenane, what is the end product after exchange?
In order to show the utility of the new polynomial
theories in answering this question, we develop two
specific applications.

The first will show how one can predict all of the
products of successive reactions of Tnd resolvase
with only a knowledge of the first product.
A complete exposition of the scheme for resolvase-
mediated recombination has been given {Cozzarelli
el al , 1984; Wasserman ef af , 1985) The conclusion
was that after formation of the synaptic inter-
mediate in which the sites to be recombined are
aligned on the enzyme, the process of exchange
usually occurs once but is oceasionally repeated
Determination of the structure of the knotted and
catenated products of these extra rounds of
recombination was critical in elucidating the
mechanism of the reaction. The resolvase synaptic
intermediate has three essential {—) nodes and each
round of recombination introduces a (+) nodet In
Figure 19, the scheme is shown for three rounds of
recombination.

Let S be the substrate, and K|, K, and K, be the
first, second and third recombination products,
respectively. The resolvase mechanism generates a
series of (+) nodes along a contiguous segment of
the DNA, one for each round of recombination
(Fig 19) If K, is the product after » rounds, we
will show that K, is determined completely by &
and K,

We consider the state set for the second round of
recombination in which the {0y state is K, and
therefore the (+) state is K, (Fig 20) We note
that K. is topologically equivalent to the original
substrate, §. The polynomials of these molecules are
related by the equation:

IPE (1, my+17 PE (I, m)+mPEo(l, m) =0,
or:
LPIL (L my+17 PSS m)+mP K, m) = 0,

since PR _(I, m) = PS{l, m). Therefore, one can

Q First Second Third 2
round tound round

¥ ¥ {
> > >0 >0

Figure 19. Thiee successive rounds of recombination
by resolvase The curve on the left represents the
resolvase substrate with the 2 recombination sites
(arrows) synapsed in parallel and 3 {~) supercoils
trapped in the synaptic complex In each of the 3
successive recombination rounds shown. exchange at the
arrows pgenerates a (+) node The prodocts are,
successively, the (~) singly linked catenane, the 4-noded
knot, and the (+) figure-8 catenane

T This treatment neglects the other changes in DNA
by recombination that do not affect product knot or
catenane structure (Cozzarelli f af , 1984: Benjamin &
Cozzarelli. 1986}

{5

SEAL ek,

Figure 20. State set for the 2nd round of jterative
recombination by resoivase In the 2nd round of
recombination by resolvase shown in Fig 10, &, the (—)
singly linked catenane. is converted to &,, the 4-noded
knot In the state set shown, K, is Ko Kyis Ko and K _
is the substiate {for the !st round of recombination, the
unknot with 3 (—} supercoils

wiite the polynomial for K, in terms of the
polynomials of 8 and K, In fact, one obtains:

PEL(Lm) =17 (~mPEK (I, m)—1"PS(. m})

Hence, the topology of K, is known in terms of the
topology of K| and S

Next, we consider the state set for the third
round in which the (0) state is A,, the (+) state is
the third-round product K, and K _ is topologi-
cally equivalent to A, the first-round product
(Fig 21) Their polynomials are related by the
equation:

IPK ALm)+17 "PE (L m)+mPKy(l, m) =0,
or:
IPE (L my+ 17 PE L my+ mPE(l, m) =0

Therefore, one can write PK,(l,m) in terms of
PR {l,m) and PK,(l.m) and get:

PE;(L,m) =17 (—=mPK,(L, m)=1"'PEK (I, m))
But PA,{l, m) is known in terms of PK (I, m) and
P&, m) and hence:

PE(lLm) =17 —ml™ " (~mPK (I, m)

=ITYPS(L m)) =17 PR (1, m)]
= (+m* 7= ) PR (I, m)+ml 2 PS(1, m)

Hence, the topology of A5 is known in terms of the
topology of S and K, If this procedure is repeated,
one obtains that K, is known if X, and S are
known.

Matrix notation is very helpful in writing down
the general resultt The two equations:

PK, = 0PS+1PK,
PRy = —~PPE,—1"'mPEK,

t The matrix notation:

means that
oy =0, by 4+a,,b,
Gy =y by +ayabs,

where 1 and j in a;; refer 1o the row and columna,
respectively. of the matiix elements
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21[g]1&
PRYIRYRY
59 6O 6O

Figure 21. State set for the 3rd round of iterative
recombination by resolvase Tn the 3rd round of
recombination by resolvase, shown in Fig 19, K, the
4-noded knot, is converted fo the () figure-8 catenane
In the state set shown, K48 Ky, Ky is Ko, and Ky is Ko

in matrix notation can be written:

[P1{1:|__{ 0 ! ] [PS}
PK, —17F —"m PR, T
where we have abbreviated PK(I, m) as PX
The second set of equations:
PE,=0PK,+1PK,
PKy = «{7?*PK ~1""'mPK,

can be expressed:

PE,; | 0 1 PR,
PE,| | -1 —I"'m PKE, |

Combining equations,T we obtain;

PEST [0 1
PE,| | =17 ~0"'m
0 1 P8
-7 —I"lm PK,
To 1 P[RS
B I AR ) PK,

After n such reiterations, we obtain:

PE,1 [ 0 1 P T PS
PE,..| | =1"* ~1"'m PK,

By making the appropriate substitutions, [ = #™*
and m = —(t¥ —¢7 %), one can also write the general
relationship in terms of the VA(t) polynomial In
fact, ~1"2 =12 and ~I"1m = H{t* "), so that;

VE,l e 1 s
VE, o | |2 ait=t7% VK,

Thus, VK, {{} is known in terms of VE,(!) and
VK ()

T The multiplication of the 2 matiices:

b by
] and [b;: b:j

=2 OB
oo

=~
[
4

where ¢;; = 0,0 b+ e b,;

There is another property of this type of reaction.
Starting with the original substrate S as the trivial
knot, K., K., | K., for any positive integer m
are knots, whereas K,, K;, K5 =, K,,-, are
catenanes. (ne can, vie the polynomial theory,
determine all the produects of the resolvase reaction
if one knows any two sucecessive products, or any
two sucecessive knots or catenanes. This can be seen
from the general equation:

PK, = —~1"*PK,_,—1"'mPK,_,

Tor, given any two of the three poiynomials, one
can solve for the third, and by reiteration find the
polynomials for any K in the sequence. Finally, and
most generally, if one knows any two products of
the resolvase reaction and their piace in the rounds
of recombination, or the substrale and any one
product, then one can determine all products by
solving the simultaneous equation (1} for all rounds
between the two products

The chief importance of this resuit is the
mathematical tigor it brings to the study of
recombination For the first time the products of a
particular mechanism of recombination can be
predicted mathematically The result can be
generalized to any process that generates a series of
(+} or (—) nodes along a continuous segment of
DNA. From our earlier work we could predict,
asing mathematics alone, only the number of nodes
in a product as a function of mechanism {Cozzarelli
et al , 1984) Moreover, previously one could never
be sure that the same series of products could not
be penerated by a different mechanism Now, in the
case of resolvase, given the assumption of iteration
of & single exchange mechanism, it is easy to show
that the scheme in Figure 19 is unique and thus
that topologically the resolvase system must have
the postulated synaptic structure and exchange
mechanism

There are also two practical consequences. first,
some limitations to the use of physical models for
DNA to test recombination mechanisms are
avoided by using predietions based on mathe-
matics It is easy to make errors in manipulating
models. Often, strand rotations are introduced
nceidentally and it is hard to identify the structure
of complex products. Recall that there are about
10® different 19-noded knots Moreover, one is often
not quite sure what assumptions have been made or
are necessary. Thus, it can be difficult to convinee
anyone by an argument based solely on manipula-
tion of a physical model or even to communicate it
Second, it is much harder experimentally to
determine the topology of o catenane than a knot
hecause it is necessury to determine the orientation
of the two rings as well as the path of the DNA
{Wasserman & Cozzarelli, 1984} Using polynemials,
the recombination system can be specified solely
from the structure of the knotted products without
knowing the intermediate catenanes

The second application of the pelynomial
invarianis that we present in detail concerns a
different type of site-specific recombination enzyme
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and the utility of the fourth state, X, We must
first distinguish local and global orientation Global
orientation has been defined as the choice of a
direction in which to travel along a DNA circle.
Onee the global choice is made, it cannot be altered
partway around the circle, and thus all segments of
the ring have the same head-to-tail global orienta-
tion. Local orientation is the choice of a direction in
which to travel along a small segment. of the DNA
cirele, and thus iocal orientation need not he
consistent with global otientation Indeed, all site-
specific recombinases recognize local orientation of
the recombination sites, but only some, such as
resolvase, respond to global orientation Others,
notably the bacteriophage 2 Int system, recombine
sites whose relative local orientation can either be
head-to-tail (direct) (Fig 24) or head-to-head
(inverse) (Fig 22; and see Nash, 1981) One of the
inverse sites must have a local orientation opposite
to the global orientation. The two-variable poly-
nomial uses three states that are global orientation-
specific. However, the Jones polynomial can be
written in terms of the {oo) node, which, by
definition, has no specific global orientation This is
exactly the desired mathematical property for
enzyme systems such as Int that recombine sites
without regard to global orientation.

To itlustrate, the inversely repeated sites for Int
are denoted by open arrows in Figure 22 and the
global orientation is given by the filled arrows
Arbitrarily, four (~) supercoils are shown trapped
between the sites but this number varies (Spengler
el al., 1085} Like resolvase, Int aligns the sites in
parallel locally (Griffith & Nash, 1085), with the
result that an {o0) node iz created. We note that the
substrate DNA just before exchange (the synaptic
intermediate) is a plectonemically interwound
unknot. The parallel alignment of the inverse sites
necessitates that the number of supercoil nodes
trapped between the sites must be even, say 2m,
where m is an integer (Cozzarelli ef al, 1984)
Recombination introduces a new {+) node (Griffith
& Nash, 1985) and changes the sign of the
entrapped nodes, yielding a knot with 2m+1 {+)
nodes {Cozzarelli ef al, 1984)

The new resull is that we can obtain the
structure of the knot by caleulating its Jones
polynomial by a simple recursion method, knowing

@ Recombination
(;@ — @

Figure 22. Recombination by Int between inversely
repested sites The globel orientation of the substiate is
given by the filled arrows and the inversely repeated
recombinntion sites by the open arrows Recombination
introduces & single (4 ) node at the recombination sites
and inverts the sequence between the sites Because of
this inversion, the 4 {—) supercoil nodes in the substrate
are converted to {+) nodes The produet is then a knot
of the torus family with 5 {4+) nodes

only the number of trapped supercoil nodes in the
synaptic intermediate substrate The method is
illustrated by the state sets in Figures 7 and 23 K.
is the substrate, and K, is the product of
recombination To caleulate VA, (1) from equation
(3), we must determine Li(Ag) and VEK_(f). The
former is easy o caleulate If the number of
trapped nodes in the substrate is 2m, then there are
exactly 2m (+) intercomponent nodes in K, and
hence LE(Kg) =m VE_(1) is also straightforward
to determine K _ is the product that would be
obtained if the substrate had two fewer trapped
nodes; ie 2m—2 nodes. This iz illustrated by
Figures 7 and 23 K. in Tigure 7, the positive
trefoil, is the product oblained if two supercoil
nodes are trapped, and is precisely K _ in Figure 23,
in which four supercoil nodes are trapped. Let
Kamer and Ky, denote, respectively, the
products of recombination whose substrates have
2m and 2m -2 trapped supercoil nodes. Then, using
eguation (3) and the analysis above, we obtain:

VI gy (=t VK 3 i)~ (1 =)™ = 0

If m=1 (Fig. 7), K, is the unknot, and hence
VK (t) =1 Thus, we immediately obtain a recur-
sion formula that can be solved to give:

VR s (f) = r”’[} +{1-1) ¥ F“]
k

=1
Thus, for m = 1,
VE ()= —t* 43+,

which is the polynomial for the trefoil 7, {see
Fig. 7); and for m = 2:

VE{t) =~ 15— 5 et 442,

which is the polynomial for the positive torus knot,
denoted 5, in section 6. This calculation can be
extended easily to substrates containing any even
number of supercoils between the sites The product
is always a positive torus knot and the number of
knot nodes increases with the number of trapped
supercoils  This is precisely what is observed
experimentally (Spengler et al, 1985, Grifith &
Nash, 1985) This is the first rigorous mathematical
prediction of the result and again shows the power
of the polynomial invariants

One can also use VK(1) to classify the products of
Int action on directly repeated sites In this case,
the number of essential supercoil nodes trapped is
odd, say 2m~ 1, where m is an integer An example
of this is depieted in Figure 24, in which five (—)

Calete

Ko

Figure 23. State set for the Int recombination reaction
shown in Fig 22 The K, form is the substrate. an
unknot with 4 (—) supercoils. and A, is the preduct. the
{+4) 5-noded torus knot,
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Figure 24. Recombination by Int between directly
repented sites The filled arrows indicate the global
orientation of the substrate and the open arrows indicate
the directly repeated recombination sites Recombination
introduces a {(—) node at these sites and canverts the
substrate into 2 catenated rings with 6 {—) nodes, 5 of
them coming from the {—) supercoils in the substrate

supercoils are trapped between the synapsed sites in
the substrate, an unknot In this case, a (0) node
rather than an (o) node is formed by a paralle]
orientation of the sites and recombination creates a
(=) node (Griffith & Nash, 1985), yielding a
catenane with 2m {—) nodes

As described above for knots, we will show by a
recursion method how to compute the Jones
polynomial of the product, knowing only the
number of trapped supercoil nodes. The method is
ilustrated in Figures 12, 14 and 25 Ky is the
substrate, and K. is the product after recombina-
tion To calculate VA _(t) using equation (2), we
must determine VK, {} K. is the produet that
would be obtained if the substrate had started with
two fewer trapped nodes; ie 2m—3 ( - nodes, Tor
example, K. in Figure 12, the negative singly
interlinked catenane, is the produet if one node is
trapped But this is precisely X, in Figure 14, in
which three nodes are trapped Similarly, K_ in
Figure 14, RD,,, is the product if three nodes are
trapped, and is also K, in Figure 25, in which five
nodes are frapped

Let K,, and K., _, denote, respectively, the
products of recombination whose substrates have
Zm—1 and 2m—3 trapped nodes Then, using
equation (2) and the analysis above, we cbtain:

£ F/yjfzruﬁl’.{t}_iV]{Zm(z)_{t.}_"t_‘é‘) =0

- In the case m =1 (see Fig 13}, K is two unlinked

circles, so that VE, (1) = —(t*+t7%) We obtain a

- Tecursion formula that can be solved to give:

L VI, it) xud'l'"{t‘}.;«g"%)w(z&__t-&}|:§: tleki'

k=1

: 'Ihua, for m =

FE ) = —t7 7%

A

n;’gnu:: %‘5” ‘52“9 set for the Int recombination reaction

_'xsupel‘éc:fiﬂl-“-.L Ko is the substrate, an anknot with 5
Paraile] = and K _ s the produet, a right-handed,
- Rl triply interlocked torus catenane

which is the polynomial for L, (see Fig 12); for
o= 2

VE,(t) st i—g i pml 3

which is the polynomial for RD,, (see Fig 14); and
for m = 3:

— 1

VEG(t) s ~t ™% —pmhg =i =ty -t -4

T

which Table 1 in section 6 shows is the pelynomial
of the triply interlocked right-handed antiparaliel
torus catenane, designated 67 (see Fig 25) This
computation may be generalized to different odd
numbers of supercoils between the sites in the
substrate, and the products always belong to the
same subfamily and differ only in the number of
nodes Experiments show that the products are
indeed right-handed torus catenanes (Spengler et
al, 1085}, and this is the first mathematical
prediction of the result.

6. Tables of Polynomials

Table 1 gives the two-variable (Lickorish &
Millett, 1987) and Jones (1985) polynomials asso-
ciated with the prime (ie irreducible knots
containing up to eight nodes and the prime dimeric
catenanes containing up to seven nodes

For the knots, the first column gives the classical
Alexander & Briggs (1927) notation u,, where n is
the number of nodes in a minimal plane presenta-
tion {(such as shown), and 4 distinguishes curves
with the same number of nodes. The second coiumn
gives the Conway (1969) notation, and the third
column gives the two-variable polynomial above
that of Jones. Drawings of the knots with the same
chirality as described by Rolfsen {1976) are shown
Orientation is not indicated because reversal of
orientation of the one-component knots shown
leaves the knots and their associated polynomials
unchanged The mirror image of the knots are
distinet, except for amphichiral knots, indicated by
an asterisk next to the Alexander-Briggs notation
The polynomials for the mirror image curves are
obtained simply by substituting 1™ for and ¢~ ! for
¢ The resulting knots can be denoted by a tilde over
the Alexander-Briggs notation For example, 3
indicates the (—) trefoil shown and 3, indicates the
{-+) trefoil

For catenanes, the orientation of the two rings
must be specified, and oriented versions of the
Rolfsen pictures are shown The two rings are
distinguished by thick and thin lines The Rolfsen
nj- nomenclature is in the first column, where » is
the minimum number of nodes, i is the number of
component rings (2 in this Table), and j distin-
guishes the catenanes with the same number of
nodes. The Conway notation is in the second
column, and the one and two variabie polynomials
are in the third There are four possible stereoiso-
mers for each catenane depicted The polynomials
for the catenanes obtained by reversing the
orientation of the ring drawn with a thin line are
given below the pair of polynomials for the depicted
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Table 1
Polynomials
A Knots
Alexander~ Liekorish-Milleft polynomial Minimal
Brigps Conway : plane
notation notation Jones polynomial projection
)
0, 0 1
1
3, 3 O P @y
— T Ty
4, 23 Y I S @
T R R -
5, 5 208 | 1 18 et (_))
e TR E N AR SN RS W NS
5, 32 B[ 6 m2 () @
A E RIS LE N TEE ML TS 2
__— 2 )
6, 42 e g A X R P Y P
TSR WL Yot B S IE \7)
8, 312 242 (=1 =3 — ) P Q@ﬁ
R T UERS. T R ey P k./)
6, 212 2434 P bl 7 =3 Py Cr\:?-\
LR P R o BT P (/‘)
7 i — 415 = 318 4 P (100 + ) b m = BI5 — 15) 4 806 (/3"\‘
»«f"°+£'9—t_“+!”7—r’5+r’5+a'"3 %[J
Ts 52 il A A ST (SR A W L {‘C:Q")
R A e N RIS RN o (3_,
s 43 e R ML S RS TL LB LI T WP B L L @
k- AR Lo T | L N L Dy
s 313 A S RN TE | D TR T (/\\/3
T S TV Yo YN \V§7~
&
s 322 A 18 o ® (e B 4 G184 1By et — 1) @
e LR TR Tol . Tl T A R &2
e 2212 TP+ 20 8 m® — 1 — 37— 21 4 PP ((ﬂ
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7, 21112 R T Cr: R Ty L g (_‘_/\W
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)
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. Table 1—continued
——— A, Knots L.

' Alexander~ Lickorish-Millett polynomial Minimal
Briggs Conway pluz}e .
notation notation Jones polynomial projection

31
8, 44 [ L P (07 23 @)
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Table 1—coniinued

AL N uets
Alexnndet -
Briggs
notation

Conwany
et ation

Fackorish=Millett poly nomial

fopes pelynomind

Minimal
plane
projet tion
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B Culenanes

Lickorish~Millets polynomial Minimal
Rolfsen Conway plane
notation notalion Jones polynomial projection
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Table 1-—continued

B Catenanes

Lickorish-Millett polynomial Minimal
Rolfsen Conway plune
Notation notation Jones polynomiai projection
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catenanes, except for the rare catenanes whose
structure is orientation-independent The poly-
nemials for the mirror images of these forms can be
obtained by substituting [~! for / and ;- for ¢
A compact nomenclature is nt for the catenane
shown, #; for the reverse catenane whose poly-
nomial is also given, i for the mirror of the maodel
catenane, and %} for the mirror reversed form Thus,
the four doubly interlocked torus catenanes are
coded 43, 4, 37, and 42 for the left- handed parallel,
left-handed an ti-parailel, right-handed parallel, and
right-handed anti-parallel forms, respectively
Several additional generalizations can be made
First, reversing the orientation of the rings in a
tatenane changes the value of VE{t) in a simple
way, as described above Second, the powers of the
variables | and m are even if the number of
components is odd, and odd if the number of
components is even. Thus, in Table 1, the powers of
L and m are even for knots because they have only a
single component, and odd for catenones because
they have two components. The lowest power of m
is 1 minus the number of catenated components,
ardl is thus —1 for dimeric catenanes Third, for

amphichiral curves, the polynomials are unchanged
by reversal of the signs of the exponents of ! and ¢
Fourth, the knots and catenanes that are bwo-
bridge {(Schubert, 1956) have a single Conway
number without commas or decimal points For
these curves, the ratio of the Schubert invariants,
Bia, can be caloulated from the continued fraction
of the Conway number, as explained elsewhere
(White & Cozzarell, 1984).

7. Conclusions

In the study of the topology of DNA, mathe-
matical indices associated with knots and catenanes
are important in two ways. They provide, first of
all, a precise way of describing and classifying these
forms that diseriminate their essential features from
incidental aspects of strueture, thereby allowing the
rigorous determination of whether two forms are
identical or not, and how many (and which) related
forms exist Second, by delineating eritical aspects
of structure, they facilitate the determination of the
mechanism of enzymes that form and unlink knots
and catenanes. They allow caleulation of key
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reaction parnmeters that cannot be measured
divectly and provide, through their predicative and
explicative power, rigorous f{ests of possible
mechanisms

We have described in the last three years, three
indices of knots and catenanes: node number
(Cozzarelli ef ol , 1984), Schubert invariants (White
& Cozzarelli, 1984), and, in this paper, polynomials
Although they are listed in ascending order of
descriptive power, all have uses in the twin goals of
classification and determination of enzyme
mechanism

The problem of classification is essentially solved
for the known DNA knois and catenanes. Node
number provides s ready firsi-level codification and
is also critical for the structure of DNA in solution
The electrophoretic mobility of DNA knots and
catenanes is generally proporticnal to node number,
and is not strongly dependent on geometry, such
that in the familiar electrophoretic ladders of DNA
knots and calenanes each run can contain many
distinet forms with the same node number (Dean et
al, 1985) Node counts also have the distinet
advantage over the other two indices of deseribing
other important structural features of DNA such as
double-helical  fwist, supercoiling and linking
number The simple, integral Schubert invariants, fi
and 2, have the advantage of classification
uniqueness. Many different knots and catenanes
have the same number of nodes and, extremely
rarely, have the same polynomials Nonetheless, it
is the development of the polynomial invarianis
which basically solves the classification problem for
biology at this time These invariants can be
attached 1o all knots and eatenanes, and there are
only a small number of duplications in the
thousands of prime knots and catenanes containing
up to 13 nodes (Thistlethwaite, 1987) We have
endeavored to show that they can be calculated
easily using recursive processes that can be
facilitated using tables of polynomials The applica-
tion of the polynomials to the study of DNA brings
these studies up to date with work al the forefront
of topology

In developing indices for determining the
mechanism of enzymes of DNA metabolism, the
altimate goals are the description of all the
rearrangements of DNA and the prediction of the
exact structure of all possible produets Substantial
gains have been made, such that these goals can be
met completely in special cases and partially in all
cases. Node counting has the important advantage
of deseribing all the key topological and geometric
properties of DNA that are altered by enzymes
Also, critical aspects of the mechanism of enzymes
such as topoisomerases and recombinases can be
encoded in two or three node-count indices
(Cozzarelli e al, 1984; Benjamin & Cozzarelli,
1986) These have been determined for several
enzymes and allow the algebraic sum of nodes in
products to be readily calculated Often, the
mechanism of a reaction specifies the topological
family {e g torus) of the products and that makes

node number a much mote precise predicioy
product structure. The limitation, of course, ig that
node number by itsel is not & strong index {ang not,
even a true invariant (Thistlethwaite, 1987)), angd
thus its predictions and tests of mechanism ;;L1fi‘é
accordingly The Schubert invariants by themsei\re;
are not useful in describing enzyme mechanism by
when combined with the topology of tangled Curves
show great promise (Conway, 1969, D). Sumnerg
N. Cozzarelli and 8. Spengler, personal communioa:
tion). Of necessity. though, they apply only to t\\:o.
bridge forms The key biological iimitation of
invariants is that they are usually insensitive {g
writhe and double-helical twist because these ape
geometric and not topological properties The
polynomial of a DNA unknot is thus always equal
to 1 irrespective of its supercoiling or helical Torm
We presented here, though, examples of s te-specific
recombination mechanisms for resolvase and Int, in
which the supercoiling of the substrate thay
contributes to product knot and catenane structure
was incorporated into a polynomial treatment. This
was done by the comparison of the substiate and
preduct in the state set. Thus, the strusture of the
products of different recombinational schemes could
he predicted uniquely.

There are only two chief ways in biology for
changing the higher-order structuie of DNA, strand
passage and strand exchange, the hallmarks of
topoisomerases and recombinases, respectively The
main theorem of the pelynomial methods dépencis
precisely on just these two operations, thereby
unifying the appiopriate mathematics and bi(}logym

of
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