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Abstract. In this paper, we study the average crossing number of equilateral
random walks and polygons. We show that the mean average crossing number
ACN of all equilateral random walks of length n is of the form 3

16
·n·ln n+O(n). A

similar result holds for equilateral random polygons. These results are confirmed
by our numerical studies. Furthermore, our numerical studies indicate that
when random polygons of length n are divided into individual knot types, the
〈ACN(K)〉 for each knot type K can be described by a function of the form
〈ACN(K)〉 = a · (n − n0) · ln(n − n0) + b · (n − n0) + c where a, b and c are
constants depending on K and n0 is the minimal number of segments required to
form K. The 〈ACN(K)〉 profiles diverge from each other, with more complex knots
showing higher 〈ACN(K)〉 than less complex knots. Moreover, the 〈ACN(K)〉
profiles intersect with the 〈ACN〉 profile of all closed walks. These points of
intersection define the equilibrium length of K, i.e., the chain length ne(K) at
which a statistical ensemble of configurations with given knot type K — upon
cutting, equilibration and reclosure to a new knot type K′ — does not show a
tendency to increase or decrease 〈ACN(K′)〉. This concept of equilibrium length
seems to be universal, and applies also to other length-dependent observables for
random knots, such as the mean radius of gyration 〈Rg〉.
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1. Introduction

Random polygons are frequently used to model the behaviour of polymers at
thermodynamic equilibrium. Probably the simplest but also the most fundamental
type of random polygon is that composed of freely jointed segments of equal length
(equilateral) where the individual segments have no thickness. Such a random polygon
is known as an ideal random walk and it is used to model the behaviour of polymers
under so-called theta conditions where polymer segments that are not in a direct
contact neither attract nor repel each other. The behaviour of ideal random walks
is thoroughly researched by now and it is well established, for example, that the
overall dimensions of ideal random walks (such as the average end to end distance
or the average radius of gyration) scale with the number of segments n as nν where
ν = 0.5 [12], [15], [11]. Although the overall dimensions of random walks provide
important information about the modelled polymers, it is frequently the case that
additional characteristics of polymers need to be investigated. One such characteristic
is a measure of polymer entanglement.

There are numerous studies that investigated what types of knots are formed on
polymer chains [21], [6], [17]. The determination of the knot type of a circular polymer
can tell us, for example, what is the topological (minimum) crossing number of the
given circular polymer, i.e., the minimum number of crossings one will see no matter
how this polymer is artificially stretched, twisted, or bent. In contrast to the minimum
crossing number, the average crossing number (ACN) is a more natural geometric
measure of polymer entanglement as it refers to the actual number of crossings that
can be perceived while observing a non-perturbed trajectory of a given polymer [18].
If a given trajectory of a polymer or of a random walk is orthogonally projected onto
a plane along a given direction, one can count the number of crossings that are visible
in this particular projection of the trajectory. To be independent of the choice of a
particular projection, we use the average crossing number (ACN), which is defined as
the average of crossing numbers over all orthogonal projections.

We are particularly interested in 〈ACN〉, the average of ACN over the whole
statistical ensemble of ideal random walks (or polygons) with a given number of
segments. 〈ACN〉 was shown to be an interesting measure of physical behaviour of
knotted polymers and, in contrast to the minimum crossing number, it also correlates
well with the experimentally observed speed of electrophoretic migration of knotted
DNA molecules of the same size but of various knot types [22]. Furthermore, 〈ACN〉
correlates well with the expected sedimentation coefficient of different types of DNA
knots formed on the same size DNA molecules [23], and with relaxation dynamics of
modelled knotted polymers [16]. In the case of protein chains, the ACN provides
an interesting measure of their compactness [1] and how ACN in proteins scales
with the length of polypeptide chain was investigated [2]. Another scaling aspect of
ACN was discussed in the case of the so called ideal geometric ropelength minimizing
representations of knots [3],[5],[18], and this has generated a great deal of mathematical
work recently (see [5] and the references therein).

In this paper we investigate how 〈ACN〉 scales with the length of various types
of random walks and polygons. We apply two independent approaches: analytical
derivations and numerical simulations. The agreement between the two approaches is
remarkably close!
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2. Equilateral Random Walks and Polygons

Let U = (u, v, w) be a three-dimensional random vector that is uniformly distributed
on the unit sphere S2, i.e., the density function of U is

ϕ(U) =
{

1
4π if |U | = √

u2 + v2 + w2 = 1,
0 otherwise.

(1)

Let ~v1 and ~v2 be any two vectors based at the origin that are perpendicular to each
other. Let Σ be a plane normal to ~v1 containing ~v2. Let θ be the angle between ~v1

and U (as a unit vector based at the origin), and let φ be the angle between ~v2 and
the projection of U onto Σ. The values of θ and φ are both between 0 and π. One can
show that θ and φ are independent random variables. Furthermore, φ is uniformly
distributed on [0, π] and the probability density function of θ is 1

2 sin θ. It follows that
the mean of sin φ is 2

π and the mean of sin θ is π
4 . We will need this result later.

Suppose U1, U2, ... , Un are n independent random vectors uniformly distributed
on S2. An equilateral random walk of n steps, denoted by EWn, is defined as the
sequence of points in the three dimensional space R3: X0 = O, Xk = U1+U2+· · ·+Uk,
k = 1, 2, ..., n. Each Xk is called a vertex of the EWn and the line segment joining
Xk and Xk+1 is called an edge of EWn (which is of unit length). If the last
vertex Xn of EWn is fixed, then we have a conditioned random walk EWn|Xn. In
particular, EWn becomes a polygon if Xn = O. In this case, it is called an equilateral
random polygon and is denoted by EPn. Note that the joint probability density
function f(X1, X2, ..., Xn) of the vertices of an EWn is simply f(X1, X2, ..., Xn) =
ϕ(U1)ϕ(U2) · · ·ϕ(Un) = ϕ(X1)ϕ(X2 −X1) · · ·ϕ(Xn −Xn−1).

Let Xk be the k-th vertex of an EWn (n ≥ k > 1), its density function is defined
by

fk(Xk) =
∫ ∫

· · ·
∫

ϕ(X1)ϕ(X2 −X1) · · ·
ϕ(Xk −Xk−1)dX1dX2 · · · dXk−1 (2)

and it has the closed form fk(Xk) = 1
2π2r

∫∞
0

x sin rx
(

sin x
x

)k
dx [20]. It is easy to see

from here that fk(Xk) is approximately normal for large values of k. The following
lemma gives a fairly accurate estimate of fk(Xk). Its proof and a few other related
topics can be found in [7], [8] and [9].

Lemma 1 For k ≥ 10, we have∣∣∣∣∣∣
fk(Xk)−

(√
3

2πk

)3

exp

(
−3 |Xk|2

2k

)∣∣∣∣∣∣
<

0.5
k

5
2

. (3)

In the case of equilateral random polygons, the density function of a vertex is still
approximately Gaussian, but its estimation is slightly harder. We have the following
lemma.

Lemma 2 Let Xk be the k-th vertex of an EPn and let hk be its density function,
then

hk(Xk) =

(√
3

2πσ2
nk

)3

exp
(
−3|Xk|2

2σ2
nk

)
+O

(
1

k5/2
+

1
(n− k)5/2

)
,(4)

where σ2
nk = k(n−k)

n .
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Proof. First, the joint density function of the vertices of EPn is of the form

g(X1, X2, ..., Xn−1) =
1

fn(Xn)
ϕ(X1)ϕ(X2 −X1) · · ·ϕ(Xn −Xn−1)

with Xn = X0 = O. Integrate the above over X1, X2, ..., Xn−1 except for Xk, we get

h(Xk) =
1

fn(O)
· fk(Xk) · fn−k(Xk).

The result follows by applying the formula in Lemma 1.

Remark. Notice that by symmetry, the probability density function fk(Xk) and
hk(Xk) of Xk (for the equilateral random walks and the equilateral random polygons
respectively) depend only on |Xk| so they can be written as fk(|Xk|) and hk(|Xk|).
Furthermore, if we let ρ = |Xk| (which is also a random variable), then the probability
density function of ρ is 4πρ2fk(ρ) for the equilateral random walks and 4πρ2hk(ρ) for
the equilateral random polygons. It follows that the mean diameter of an EWn or an
EPn is of order

√
n.

Let Xk+1 and Xk+2 be two consecutive vertices of an equilateral random polygon
EPn, then the joint probability density function h(X1, Xk+1, Xk+2) of X1, Xk+1 and
Xk+2 is defined by∫

· · ·
∫

ϕ(X1)ϕ(X2 −X1) · · ·ϕ(Xn −Xn−1)
fn(O)

d̂X1d̂Xk+1d̂Xk+2, (5)

where the integral is taken over all variables except X1, Xk+1 and Xk+2. The following
lemma can be proved in a similar fashion to that of Lemma 2 and the details are left
to the reader.

Lemma 3 Let X1, Xk+1 and Xk+2 be the first, (k + 1)-st and (k + 2)-nd vertices
of an EPn; then their joint probability density function hk(X1, Xk+1, Xk+2) can be
approximated by

ϕ(X1)ϕ(Xk+2 −Xk+1)
(

3
2πσ2

nk

) 3
2

exp
(
−3|Xk+1|2

2σ2
nk

)
, (6)

where σ2
nk = k(n−k)

n and the error term is at most of order O
(

1
k5/2 + 1

(n−k)5/2

)
.

3. Bounds on the Mean Average Crossing Number

We begin this section by considering a special case concerning the calculation of ACN,
the average crossing number, when there are only two random steps involved. Assume
that P and Q are two fixed points in R3 such that r = |P −Q| ≥ 4. Let P1 and Q1

be two random points in R3 such that U1 = P1 − P and U2 = Q1 −Q are uniformly
distributed on the unit sphere S2. (See Figure 1 below.)

Lemma 4 Let P , Q, P1 and Q1 be as defined above and let a(`1, `2) be the average
crossing number between the two line segments `1 = PP1 and `2 = QQ1, then we have

E(a(`1, `2)) =
1

16r2
+ O(

1
r3

), (7)

where r = |P −Q| and E(a(`1, `2)) is the mean of a(`1, `2).
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θ1

φ
P

Q

P 1

Q1

θ

Figure 1. The case of two random edges

Proof. Without loss of generality, let us assume that P = O and Q is on the positive
z-axis. Let θ1 be the angle between U1 = −−→

PP1 and the z-axis and θ2 be the angle
between U2 = −−→

QQ1 and the z-axis. Furthermore, let φ be the angle between the
projections of U1 and U2 on the xy-plane. In [13], it is shown that for fixed P1 and
Q1, the average crossing number a(`1, `2) between the edges `1 and `2 is given by

1
2π

∫

`1

∫

`2

|(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))|
|γ1(t)− γ2(s)|3 dtds, (8)

where γ1 and γ2 are the arclength parameterizations of `1 and `2 respectively, and
(γ̇1(t), γ̇2(s), γ1(t)−γ2(s)) is the triple scalar product of γ̇1(t), γ̇2(s), and γ1(t)−γ2(s).
We can write

γ1(t) = t · U1, 0 ≤ t ≤ 1,

γ2(s) = −−→
OQ + s · U2, 0 ≤ s ≤ 1.

By an elementary calculation, we have∫

`1

∫

`2

|(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))|dtds

=
∫ 1

0

∫ 1

0

|(U1, U2,
−−→
OQ)|dtds

= |(U1, U2,
−−→
OQ)| = r sin φ sin θ1 sin θ2.

Using the first paragraph in Section 2, the reader can verify that φ is uniformly
distributed over [0, π] and that φ, θ1, and θ2 are independent; furthermore, the
probability density functions for θ1 and θ2 are 1

2 sin θ1 and 1
2 sin θ2. Since ||γ1(t) −

γ2(s)| − r| ≤ 2 and r ≥ 4, we have

1
|γ1(t)− γ2(s)|3 =

1
r3

+ O(
1
r4

).
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It follows that

a(`1, `2) =
1

2πr2
sin φ sin θ1 sin θ2 + O(

1
r3

)

and

E(a(`1, `2)) =
∫ ∫

a(`1, `2)ϕ(U1)ϕ(U2)dU1dU2

=
1

8π2r2

∫ π

0

∫ π

0

∫ π

0

sin φ sin2 θ1 sin2 θ2dφdθ1dθ2 + O(
1
r3

)

=
1

16r2
+ O(

1
r3

).

We are now ready to state and prove our first main theorem.

Theorem 1 Let χn be the ACN of an equilateral random walk of n steps; then

E(χn) =
3
16

n ln n + O(n).

Proof. Let `k be the k-th segment of an EWn, that is, `k = Xk−1Xk (1 ≤ k ≤ n).
Let a(`i, `j) be the average crossing number between `i and `j ; then we have

χn =
1
2

∑

1≤i,j≤n

a(`i, `j),

and

E(χn) =
1
2

∑

1≤i,j≤n

E(a(`i, `j)) =
∑

1≤i<j≤n

E(a(`i, `j)).

By symmetry, E(a(`i1 , `j1)) = E(a(`i2 , `j2)) whenever |j1 − i1| = |j2 − i2|. It follows
that

E(χn) =
∑

3≤j≤n

(n− j + 1)E(a(`1, `j)), (9)

where j starts at 3 since a(`1, `2) = 0. Letting rj = |Xj−1 −X1|, P = X1, P1 = O,
Q = Xj−1 and Q1 = Xj , we obtain

E(a(`1, `j)|rj) =
1

16r2
j

+ O(
1
r3
j

)

for any fixed rj ≥ 4 by Lemma 4. Since rj is a random variable depending only on
Xj−1 −X1, and since Xj−1 −X1 has the same density distribution function as Xj−2,
it follows that

E(a(`1, `j)) =
∫

E(a(`1, `j)|rj)fj−2(|Xj−1 −X1|)d(Xj−1 −X1)

=
∫

E(a(`1, `j)|rj)4πr2
j fj−2(rj)drj

=
∫

rj<4

E(a(`1, `j)|rj)4πr2
j fj−2(rj)drj

+
∫

rj≥4

E(a(`1, `j)|rj)4πr2
j fj−2(rj)drj .
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Since a(`1, `j) is the average crossing number between two straight edges, it is at most
1. So if j ≥ 12, then by Lemma 1 we have∫

rj<4

E(a(`1, `j)|rj)4πr2
j fj−2(rj)drj

≤
∫

rj<4

4πr2
j fj−2(rj)drj

≤ 4π

∫ 4

0

((
3

2π(j − 2)

) 3
2

r2
j exp

(
− 3r2

j

2(j − 2)

)
+

r2
j

2(j − 2)
5
2

)
drj

= O

(
1
j

3
2

)
.

On the other hand, ∫

rj≥4

E(a(`1, `j)|rj)4πr2
j fj−2(rj)drj

=
π

4

∫ j−2

4

(
1 + O(

1
rj

)
)(

3
2π(j − 2)

) 3
2

exp

(
− 3r2

j

2(j − 2)

)
drj

+
π

4

∫ j−2

4

(
1 + O(

1
rj

)
)(

1
2(j − 2)

5
2

)
drj

=
3

16j
+ O(

ln j

j
3
2

).

(The details of the calculations leading to the above equation are left to the reader.)
Combining the above results, we obtain

E(a(`1, `j)) =
3

16j
+ O(

ln j

j
3
2

).

So
E(χn) =

3
16

n
∑

3≤j≤n

1
j
− 3

16
(n− 3) + nO(

∑

3≤j≤n

ln j

j
3
2

)

by (9). The result follows since
∑

3≤j≤n
1
j − ln n and

∑
3≤j≤n

ln j

j
3
2

both converge.

Our next theorem is an analogue of Theorem 1 with equilateral random walks
replaced by equilateral random polygons. Given that the average diameter of
equilateral random polygons is smaller than the average diameter of equilateral
random walks, one probably would expect to see a larger mean ACN. So the result of
Theorem 2 is a bit surprising.

Theorem 2 Let χ′n be the ACN of an equilateral random polygon of n steps; then

E(χ′n) =
3
16

n ln n + O(n).

Proof. Although the result of Theorem 2 is similar to that of Theorem 1, its proof
requires more technical treatment since the equilateral random polygons no longer
have the property of an unconditioned Markov chain. Let χ′n be the ACN of an
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equilateral random polygon of n ≥ 4 steps. As we did in the proof of Theorem 1, let
`k be the k-th segment of an EPn, that is, `k = Xk−1Xk (1 ≤ k ≤ n). Let a(`i, `j) be
the average crossing number between `i and `j ; then we have

χ′n =
1
2

∑

1≤i,j≤n

a(`i, `j),

and

E(χ′n) =
1
2

∑

1≤i,j≤n

E(a(`i, `j)).

In the case of an EWn, we have E(a(`i1 , `j1)) = E(a(`i2 , `j2)) whenever |j1 − i1| =
|j2−i2|, where `i1 , `j1 may belong to some EWn and `i2 , `j2 may belong to some EWm

such that n 6= m. This is no longer the case for an EPn. However, if `i1 , `j1 , `i2 , and
`j2 are indeed segments of some EPn, then we still have E(a(`i1 , `j1)) = E(a(`i2 , `j2))
whenever |j1 − i1| = |j2 − i2| or |j1 − i1| = n− |j2 − i2| by symmetry. It follows that

E(χ′n) = n
∑

3≤j≤(n+1)/2

E(a(`1, `j)).

Again, j starts at 3 in the above formula since a(`1, `2) is always 0. Let rj =
|Xj−1 −X1|. Since a(`1, `j) depends only on X1, Xj−1 and Xj , by Lemmas 3 and 4,
we have

E(a(`1, `j))

=
∫ ∫ ∫

a(`1, `j)hj−2(X1, Xj−1, Xj)dX1dXj−1dXj

=
∫ ∫

a(`1, `j)ϕ(X1)ϕ(Xj −Xj−1)dX1dXj ·
∫ 


(√

3
2πσ2

n(j−2)

)3

exp

(
−3|Xj−1|2

2σ2
n(j−2)

)
+ O

(
1

j5/2

)
 dXj−1

=
∫ ∫

a(`1, `j)ϕ(U1)ϕ(U2)dU1dU2 ·
∫

rj<4




(
3

2πσ2
n(j−2)

) 3
2

exp

(
−3|Xj−1|2

2σ2
n(j−2)

)
+ O

(
1

j5/2

)
dXj−1

+
∫ ∫

a(`1, `j)ϕ(U1)ϕ(U2)dU1dU2 ·
∫

rj≥4




(
3

2πσ2
n(j−2)

) 3
2

exp

(
−3|Xj−1|2

2σ2
n(j−2)

)
+ O

(
1

j5/2

)
dXj−1

= O(
1
j

3
2
) +

π

4

∫ j−2

4

(
1 + O(

1
rj

)
)
·

(
3

2πσ2
n(j−2)

) 3
2

exp

(
− 3r2

j

2σ2
n(j−2)

)
drj

=
3

16σ2
n(j−2)

+ O(
ln j

j
3
2

)
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=
3
16

(
1

j − 2
+

1
n− j + 2

)
+ O(

ln j

j
3
2

)

=
3

16j
+ O(

1
n

) + O(
ln j

j
3
2

),

where U1 = X1 and U2 = Xj − Xj−1. Since
∑

3≤j≤n/2
1
j − ln n and

∑
3≤j≤n/2

ln j

j
3
2

both converge, the result follows.

Remark. Notice that E(χn) can be approximated by 3
16

∑
3≤j≤n

n−j
j and E(χ′n) can

be approximated by 3
16n

∑
3≤j≤n

1
j . The error terms involved in both cases are at

most linear in n. Notice that

3
16

n
∑

3≤j≤n

1
j
− 3

16

∑

3≤j≤n

n− j

j
=

3
16

(n− 3).

Interestingly, our simulation result also reveals that E(χ′n)−E(χn) ≈ 3
16 (n−3). This

strongly suggests that when E(χn) and E(χ′n) are approximated by 3
16

∑
3≤j≤n

n−j
j

and 3
16n

∑
3≤j≤n

1
j respectively, the errors involved are of (approximately) the same

magnitude.

The next two theorems concern the extreme values of the ACN.

Theorem 3 Let K be any given knot type and let χ′n(K) be the ACN of an equilateral
random polygon of n steps that is of knot type K. Then E(χ′n(K)) ≤ n2.

Proof. This is obvious since a(`1, `j) ≤ 1 for each j.

Theorem 4 For n large enough, there always exists a knot type K such that
E(χ′n(K)) ≥ c′n2 for some constant c′ > 0.

Proof. If n is large enough, one can always construct a (p, q) torus knot with pq as
its crossing number such that p and q are both around n/4. Since pq ≥ c′n2 for some
constant c′ in this case and the ACN of any EPn with this knot type is at least pq,
the result follows. The details of the construction is left to the reader.

4. Simulation Methods

Although the average crossing number of a random walk or polygon W can be
calculated by the modified Gauss formula

ACN(W ) =
1
4π

∫

W

∫

W

|(γ̇(t), γ̇(s), γ(t)− γ(s))|
|γ(t)− γ(s)|3 dtds, (10)

where γ is the arclength parameterization of W , the application of this formula leads
to problems when some non-consecutive segments get very close to each other. For
this reason our numerical determination for the ACN of random chains was based on
counting the crossings in numerous projections of analyzed trajectories. We calculated
the number of crossings in individual projections and then averaged over 50 randomly
chosen directions of projections to obtain a good approximation of the actual ACN
value for a given trajectory. To generate random equilateral walks (open walks) we
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first created a set of unit vectors with the same origin that randomly equisampled the
surface of the unit sphere. The vectors were then joined sequentially while maintaining
their original directions.

To generate random equilateral polygons (closed walks) we followed the approach
of Dykhne [19]. For example, to construct a 100 segment-long closed trajectory we
first created a set of 50 unit vectors randomly equisampling the surface of a unit
sphere. Subsequently we added to this set another 50 unit vectors that are opposite
to the original set. This procedure assures that the sum of the 100 vectors is zero
and that the trajectory obtained by any random sequential joining of all 100 vectors
results in a closed trajectory. To eliminate correlated parallel vectors in random
trajectories, the set of 100 vectors was de-correlated by multiple rotations of random
pairs of vectors around their respective sum vectors. Finally all 100 randomized
vectors were sequentially joined to create an equilateral random polygon. Knot types
of the resulting random polygons were recognized by calculation of their HOMFLY
polynomials [14].

5. Numerical Results

Figure 2A shows the 〈ACN〉 values obtained in numerical simulations of ideal random
walks in a non-constrained linear form (EW or open) or with a constraint of closure
(EP or closed). We have analyzed walks with up to 1000 segments and each of the
〈ACN〉 data points was obtained by averaging the ACN values from 105 independent
random configurations of open or closed random walks of the corresponding size.

To check our analytical predictions we have fitted the computed data points with
the function a · n · ln(n) + b · n, leaving the two parameters a and b free. In both
cases (closed and open walks) we have obtained an excellent fit (with the correlation
coefficient R = 1) where the prefactor a was practically equal to 3

16 ( 3
16 +0.00065 and

3
16 − 0.00105, respectively). Therefore, we have proceeded with another fit where we
have fixed the prefactor a to 3

16 and have left only one free parameter b. These fits
are presented here and it is visible that the quality of these fits remains excellent as
the fitted functions pass almost perfectly through all the data points. These results
therefore confirm our theoretical prediction that the ACN of open and closed random
walks show the above dependence on the number of segments n.

We decided therefore to check whether the difference of the ACN between closed
and open random walks of the same chain length n can be described by the linear
relation 〈ACN〉closed−〈ACN〉open ≈ 3

16 ·n. As can be seen in Figure 2B, this prediction
is also entirely confirmed by our numerical results.

Figure 3 illustrates how the 〈ACN〉 values scale with the chain length of random
closed walks representing various types of knots. It is clearly visible that random
configurations of more complex knots have higher 〈ACN〉 values than the random
configurations of simpler knots. For short chain lengths, the difference between
the 〈ACN〉 of random configurations of a given knot and the 〈ACN〉 of random
configurations of unknots with the same chain length is well approximated by the
actual ACN value of ideal (ropelength minimizing) geometric representation of a given
knot type [18]. For example, for 6 and 14 segment-long random walks, the difference
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Figure 2. Comparison of the mean average crossing number values 〈ACN〉 for
corresponding chain lengths of closed and open ideal random walks (equilateral
random polygons and equilateral random walks). The standard deviation is about
the size of the data points. The values of the correlation coefficient (R) and
chi-squared test (χ2) are given in the inset. A. The 〈ACN〉 values obtained
in numerical simulations of closed and open random walks are marked as data
points and the fitting functions are listed. The analyzed sample sizes of simulated
configurations were bigger than 105 for each chain length. B. The difference of
〈ACN〉 between closed and open ideal random walks of the same length.

between the 〈ACN〉 of random trefoils and that of random unknots amounts to 4.14
and 5.21, while the ACN of an ideal trefoil amounts to 4.26. This relation between
the ACN of ideal knots and the 〈ACN〉 of random walks with relatively small chain
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length was noticed earlier [18]. However, as the length of the analyzed random walks
increases the 〈ACN〉 values of random knots of different type diverge from each other
as noticed earlier in [16].

To analyze how the 〈ACN〉 values of random knots of various knot types scale
with their chain lengths, we have fitted the computed data points with the function
a · (n−n0) · ln(n−n0) + b · (n−n0) + c, where a, b and c are free parameters, n is the
number of segments in a walk and n0 is the minimal number of segments required to
form a given knot type [4]. In all cases analyzed by us, the fitted curves nearly pass
through all the data points. The actual fitted parameters for different knot types are
listed in Figure 3 together with the quality of the fit.

Let us denote by 〈ACN(K)〉 the mean average crossing number for all closed walks
with knot type K. Comparing the fitted parameters for different knot types with those
for all closed walks analyzed in Figure 2, it is clear that the n · ln(n) part has a much
weaker contribution in the case of individual knot types while the linear contribution
is much stronger. Consequently, the 〈ACN(K)〉 profiles of random polygons of each
knot type K shows a lower growth rate than the 〈ACN〉 profiles of all closed walks that
are grouped together independently of their knot type. It is interesting to consider
the values of the free parameter c obtained for different knots. These values are close
to the ACN values of ideal configurations of the knot type K, but may in fact better
correspond to the 〈ACN〉 of all configurations that can be realized using the minimal
number (n0) of segments for K.

Comparing the 〈ACN(K)〉 profiles for random polygons of knot type K with that
of all closed walks, it is visible that (with the exception of the unknots) the 〈ACN(K)〉
profiles intersect with the profile for all closed walks (see Figure 3). This is due to
the fact that individual knot types show a smaller growth rate than all closed walks
grouped together (see discussion above), while each individual knot type (with an
exception of the unknots) initially have higher 〈ACN(K)〉 values than the 〈ACN〉
values for the ensemble of all closed walks. The more complex the knot, the later its
〈ACN(K)〉 profile intersects with the 〈ACN〉 profile of all closed walks.

The intersection of the 〈ACN(K)〉 and 〈ACN〉 profiles determines an 〈ACN〉-based
equilibrium length ne(K), an interesting characteristic of a given knot type K. Below
the equilibrium length ne(K), a given knot shows an excess of 〈ACN(K)〉 as compared
with the 〈ACN〉 of all possible walks realized with the same chain length. Therefore if
one would cut a knot realized with a chain shorter than its equilibrium length ne(K),
let it equilibrate and then promote reclosure of the ends, one would observe a tendency
to form simpler knots than the original knot. Above the equilibrium length ne(K),
the situation reverses. If one would cut a knot realized with the chain length longer
than its equilibrium length, one would observe after chain reclosure a tendency to
form more complex knots. At the equilibrium length, however, a knot would show
no tendency to decrease or increase its 〈ACN〉 by forming less or more complex knots
after cutting and reclosure.

Interestingly, these equilibrium lengths determined by intersections of the
〈ACN(K)〉 profiles of individual knot types with the 〈ACN〉 profile of all closed
walks practically coincide with the equilibrium lengths determined by intersections
of the corresponding profiles of the mean radius of gyration 〈Rg〉 (see Figure 3). The
equilibrium length for trefoils and figure-eight knots based on measurements of 〈ACN〉
amounted to 176±10 and 258±10 segments respectively, while the equilibrium length
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Figure 3. Effect of the topology on the average crossing number values 〈ACN〉
for different types of closed random walk. The standard deviation is about the
size of the data points. A. The 〈ACN〉 values obtained in numerical simulations
of closed random walks representing different knot types (trivial, 31, 41, 51 and
52) and all closed walks. The data points are marked and the fitting functions
are listed. The statistical sets for different knots and different chain size were not
the same. Highest quality data are for unknots with 2, 319, 455 configurations
analyzed in total and the poorest data set was this of 51 knots with 11, 406
configurations analyzed in total. Notice that 〈ACN(K)〉 profiles for individual
knot types intersect with the 〈ACN〉 profile for all closed random chains of the
same length. B. The profiles for radius of gyration 〈R2

g〉 of individual random

knots intersect with the 〈R2
g〉 profile of all closed random walks. The points of

intersections define an Rg-based equilibrium length (the data here are taken from
[10]).

of these knots based on measurements of 〈Rg〉 [10] amounted to 174±14 and 270±17
segments respectively (less robust statistical sampling in the case of Rg measurements
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caused the bigger error range). It was observed in [10] that the 〈Rg〉-based equilibrium
lengths of different knots show a power law relation with the ropelength (length to
diameter ratio l

d ) of ideal (ropelength minimizing) geometric representations of the
corresponding knots.

Since statistical sampling in the present study permitted us to define more
accurately the equilibrium lengths of various knots, we decided to check how well the
relation between the 〈ACN〉-based equilibrium length and the ropelength ( l

d ratio) of
the corresponding knots can be described by a simple power law function. Figure 4
shows that the fit is very good and that the length of ideal (ropelength minimizing)
knots scales with the equilibrium length of random knots of the corresponding type.

Based on the observation that the 〈ACN〉-based equilibrium lengths coincide with
〈Rg〉-based equilibrium lengths, we propose that the concept of the equilibrium length
may be universal, and thus may constitute an important characteristic of different
knot types. We plan to investigate what other types of length dependent observables
of random walks may be used to determine the equilibrium length of a given knot
type, and whether the resulting equilibrium lengths will coincide with those obtained
by studying the 〈ACN〉- or 〈Rg〉-scaling properties of knots.

6. Conclusions

We have provided an analytical proof that for long equilateral open and closed
random walks their average crossing number calculated over all statistical ensembles
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of walks with the same number of segments (n) can be expressed by the formula
〈ACN〉 = 3

16n ln n + O(n). Subsequently, we have used numerical simulations to
demonstrate that the analytically predicted scaling of 〈ACN〉 with equal number of
segments in a closed or open equilateral random walk holds not only for long chains,
but also for short ones. It is expected that the closed walks would have a higher
mean ACN value than that for the open walks. We have observed that the difference
between 〈ACN〉 for closed and open equilateral random walks with the same number of
segments n follows the linear pattern 〈ACN〉closed − 〈ACN〉open = 3

16n. This relation,
interestingly, can be explained by looking at the main terms used to derive the general
〈ACN〉 formula. We have also analyzed the scaling of 〈ACN〉 with the number of chain
segments n for individual knot types K and observed that in each case the observed
relation can be described by a formula 〈ACN(K)〉 = a(n−n0) ln(n−n0)+b(n−n0)+c,
where n0 is the minimal number of equilateral segments needed to form the given
knot type K. Interestingly, the 〈ACN(K)〉 profiles show slower growth rates than
the corresponding 〈ACN〉closed profile of all closed walks. Our simulation result
indicates that, as the complexity of the knot type K increases, the coefficient a in
our fitting formula decreases and the coefficient b increases. Finally, the intersections
of 〈ACN(K)〉 profiles with the 〈ACN〉closed profile define the so called equilibrium
length ne(K) of a given knot type K, i.e., the length at which an ensemble of knots
of a given type upon cutting and reclosure would show no tendency to decrease or
increase its 〈ACN〉 by forming less or more complex knots.
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