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ABSTRACT: We present here a nonbiased probabilistic method that allows us to consistently analyze
knottedness of linear random walks with up to several hundred noncorrelated steps. The method consists
of analyzing the spectrum of knots formed by multiple closures of the same open walk through random
points on a sphere enclosing the walk. Knottedness of individual “frozen” configurations of linear chains
is therefore defined by a characteristic spectrum of realizable knots. We show that in the great majority
of cases this method clearly defines the dominant knot type of a walk, i.e., the strongest component of
the spectrum. In such cases, direct end-to-end closure creates a knot that usually coincides with the knot
type that dominates the random closure spectrum. Interestingly, in a very small proportion of linear
random walks, the knot type is not clearly defined. Such walks can be considered as residing in a border
zone of the configuration space of two or more knot types. We also characterize the scaling behavior of
linear random knots.

Knots form on linear polymers and affect their physi-
cal behavior.1 However, the determination of the knot
type tied on an open polymer is not straightforward
since in a strict sense the topology of open strings is
not defined as every open string can be always untied
by a simple continuous transformation.2 For this reason
various methods of determining and characterizing
knots on open strings were proposed.3-7 An interesting
approach was applied to determine knots formed on
polypeptide chains in properly folded protein structures8

that therefore have the topological state of the chain
“fixed”.9 The latter method, based on a variant of
progressive smoothing of analyzed polygonal trajecto-
ries,10 is very attractive, but even this approach can
classify the same starting trajectory as knotted or
unknotted depending simply on the order of smoothing
operations (see Figure 1).

Therefore, one needs to accept the concept of uncer-
tainty of knotted state of open strings and operate with
probabilistic definition of knottedness.7 Accepting this
concept, we systematically investigate the knottedness
of ideal random walks of increasing size. Figure 2 shows
the principle of our method of analyzing the knottedness
of random walks. The center of gravity of analyzed open
walk is placed in the center of a large sphere that
encloses the walk. Subsequently, a random point chosen
on the sphere is connected with straight segments to
both ends of the analyzed random walk. (For practical
reasons we have set the radius of the sphere to be twice
larger than the total length of the analyzed walk.) This
operation closes the knot and makes it amenable to
standard topological analysis of the formed knot such
as identification of the knot type based on calculation
of HOMFLY polynomial.11 For each analyzed configu-
ration we have tried 10 000 random closure points on
the surface of the sphere. Such an analysis satisfies the
Copernican principle, as we do not favor any direction

of closure. Walks studied by us are so-called ideal
random walks where all segments are of the same
length and have no thickness. To generate a random
walk, we first created a set of unit vectors randomly
sampling the surface of a unit sphere. Subsequently, we
use this set to construct a chain by sequential joining
of randomly chosen vectors.12 We repeated the proce-
dure for each of the analyzed chains. This elementary
method of chain generation samples the configuration
space without any bias, and the analyzed configurations
are not related to each other. Results of the closure
analysis for an individual random walk of 300 segments
are presented in Figure 3. 10 000 directions of closures
produced a spectrum of knots which is presented in a
form of a histogram. The analyzed walk can be therefore
described as being a superposition state composed in
91.7% unknot, 4.1% trefoil, and 4.2% other knots where
a given direction of closure “collapses” the superposition
state and determines the resulting knot type.
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Figure 1. Chain-smoothing algorithm proposed by Taylor8

can result in classifying the same initial polygonal trajectory
as knotted or unknotted depending on the order of smoothing
operations. When smoothing proceeds from vertex 1 to 8, the
vertex 5 finds itself “above” the edge 7-8, producing unknot.
When smoothing proceeds from vertex 8 to 1, the vertex 5 finds
itself “below” the edge 7-8, resulting in a trefoil knot. The
coordinates of the shown configuration are available on
request.
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Figure 4a presents the analysis of closure for a
statistical sample composed of 100 different random
walks with 48 segments each. The individual histo-
grams of knotting spectra are presented in the orienta-
tion shown in Figure 3, placed side-by-side and ordered
according to increasing level of knottedness revealed by
a given random walk. For 100 random walks with 48
edges (see Figure 4a) only three walks showed always
the same knot type irrespectively of the closing point
(all were unknots). Other analyzed configurations can
change their knot type depending on the direction of
closure; however, 96 configurations (out of 100) showed
a high certainty of knot type as over 90% of closing
directions resulted in the same knot type. It is visible
that the great majority of configurations show high
certainty of the revealed knot type (more than 90% of
closing directions reveal the same knot type), and this
applies not only to configurations classified as trivial
knots but also to trefoils and more complex knots. Only
one configuration showed a lower certainty than 50%.
Interestingly, the uncertainty of the knot type resulted
mainly in appearance of one secondary knot type with
significant occurrence, but in a few cases two or more
secondary knot types were observed. Figure 4b,c shows
the analysis of knotting certainty for 150 and 300
segments long random walks. It is visible that even in
the case of these long chains the great majority of walks
(90 and 82, respectively) show a high certainty of the
knot type as determined by the fact that over 90% of

closing directions resulted in formation of the same knot
type. As the chain size of analyzed walks increases, the
proportion of unknots decreases as expected from well-
known Delbrück’s conjecture13 and analytical proofs.3,14,15

However, this observation hardly affects the fact that
great majority of random linear walks with this chain
size still have a well-defined knot type. Nevertheless,
it is to be expected that for much longer random walks
the dominant knot type will show a lower dominance
over the secondary and tertiary knot types produced
through different directions of closure. We expect how-
ever that even for very long chains a spectrum of knots
resulting from random closure of a given trajectory will
provide a good signature characterizing the knottedness
of a given configuration. Analysis of the relation be-
tween dominant and secondary knot types revealed that
they are neighbors in configuration spaces of knots, i.e.,
represent knots that can be converted into each other
by one strand passage reaction.16 Thus, for example,
secondary knots associated with unknots consisted
mainly of 31, 41, and 52 knots, and these can be obtained
by one strand passage from unknots (see Figure 6 for
schematic drawings of these knots). 51 knots were very
rarely observed as secondary knots when unknots were
dominant since there are two passages required to form
a 51 knot from an unknot.16 Similarly secondary knots
to dominant trefoils very rarely included 41 knots as
there are two strand passages required to convert these
knots into each other. In general, we can say that

Figure 2. A nonbiased method of closure of random linear walks. A randomly chosen point on a sphere that encloses a given
walk is connected with straight segments to both ends of the analyzed linear walk (the connecting segments are much longer
that the segments constituting the analyzed random walk). The chain closure forms a knot which type is determined by calculation
of HOMFLY polynomial. The whole procedure is repeated for many other randomly chosen points on a sphere (10 000 of random
closures for each analyzed trajectory were applied in this work). In this schematic drawing, the diameter of the enclosing sphere
was greatly reduced for pratical reasons and therefore does not reflect the real dimensions of the analyzed simulated chain as
compared to the enclosing sphere.
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configurations that show significant level of secondary
knot types seem to occupy a border zone between
configuration spaces of two or more knot types.

The data presented in Figure 4 when averaged over
100 individual configurations analyzed for each chain
size can be conveniently used to measure the average
knottedness of random walks of a given chain size. This
measure expresses the time averaged knottedness of
freely fluctuating linear polymers composed of corre-
sponding number of statistical segments and analyzed
under so-called θ conditions in which independent
segments neither attract nor repulse each other.17

Figure 5 presents the averaged probabilities with which
linear random walks of 48, 150, and 300 segments form
various knot types upon a random closure. Notice that
the measured probabilities show similar distributions
to these determined earlier in the case of random
knotting of circular random chains.18,19 So for example
in the case of 300 segment long circular random walks
the trefoils and 41 knots formed with the probabilities
of ca. 23% and 5%, respectively.18 In the case of linear
random walks of 300 segments their random closure
resulted in generation of trefoils with ca. 24% while 41
knots formed with a probability of ca. 5% (see Figure
5). The agreement between the classical knotting prob-
ability of circular random walks with the knotting
probability for linear random walks demonstrates that
linear random walks are just as likely to be knotted as
the circular random walks provided that the knotted-
ness of linear random walks is adequately assessed.

Since the analysis of 10 000 random closures for each
trajectory is computationally demanding, we decided to
test whether the straight segment closure connecting
both ends of linear random walks captures the dominant
knot type detected by our method of multiple random
closures. Direct end-to-end closures were applied to the

300 configurations analyzed in Figure 4, and we ob-
served that, with exception of 2 cases of 48-segment
walks, 3 cases of 150-segment walks, and 10 cases of
300-segment walks, the knot type detected by direct
end-to-end closure coincided with the dominant knot
type detected by the random closure method. As ex-
pected, the exceptions occurred more frequently among
these configurations that by the random closure method
showed a low certainty level of their knot type. There-
fore, we conclude that, for most practical purposes in
chains with up to several hundred segments, the direct
closure method is very likely to capture the dominant
knot type in a given open random walk. We decided,
therefore, to apply the direct closure method to distin-
guish individual knot types from a large statistical
ensemble (100 000 random configurations for each of the
42 chain sizes analyzed in Figure 6) of linear random
walks with up to 1008 segments. We investigated how
overall dimensions of random walks, such as mean-
square radius of gyration, are affected by the knot type
detected in individual configurations of open random
walks.

Figure 6 shows how the mean-square radius of
gyration of open walks that revealed itself as different

Figure 3. Statistics of closure for a 300 segments random
walk. The knotting spectrum of the walk reveals the dominant
knot type (unknot) and the secondary knot types. The nomen-
clature of knots follows this in standard tables of knots where
the main number indicates the minimal number of crossings
of a given knot and the subscript number indicates the knot
tabular position among the knots with the same number of
crossings.2 Under notation 7+ we have grouped prime knots
with seven or more crossings. All detected composite knots are
grouped as “composite”. Notice that each panel in Figure 4
consists of 100 individual 3-D knotting histograms presented
in the orientation corresponding to this shown here.

Figure 4. Random closure analysis of random linear walks
of increasing size. Each panel presents statistics of closure for
a sample of 100 random walks of 48 (a), 150 (b), and 300 (c)
segments, where statistics of each analyzed configuration is
presented as individual histogram placed along the x-coordi-
nate. The random configurations are ordered according to the
dominant knot type revealed in them and then within each
dominant knot type according to the observed certainty level
(vertical axis).
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knot types scales with the number of segments in
analyzed random walks. Notice that the process of
closure does not affect the radius of gyration as the
calculation is performed for configurations without the
joining segment. Walks identified as trivial knots (un-
knots) showed highest overall dimensions while open
walks forming different knot types decreased their
overall dimensions with the complexity of the knot. This
result is analogous to the effect of different knots on
circular random walks where it was observed that when
tied on chains with the same lengths more complex
knots are more compact than simpler knots.12,20,21

Previous analytical and numerical studies of knotted
random walks revealed that when non-self-avoiding
random walks are divided into individual knot types,
each individual knot type should show the scaling
behavior expected for self-avoiding walks.22-26 There-
fore, while overall dimensions averaged over all of non-
self-avoiding random walks (as these generated in this
study) scaled with the number of segments N as Nν with
ν ) 0.5, the overall dimensions of walks representing a
given knot type scaled with n exponent tending to
0.588.22 As shown in Figure 5, the mean-square radius
of gyration of all random open walks shows the expected
linear growth rate (2ν ) 1). The individual knot types
show, however, a higher growth rate. To determine the
ν exponent of scaling behavior of open walks classified
according to their individual knot types, we fitted the

experimental points using a formula

where N is the number of segments, while A, B, C, and
ν are free parameters and where ∆ is set to 0.5.27 For
unknot A ) 0.051 ( 0.0003, B ) 5.9 ( 0.3, C ) -7.2 (
2.9, and for trefoil A ) 0.052 ( 0.0003, B ) 4.4 ( 0.3, C
) -16.3 ( 2.5. We observed that for the data with best
statistics, i.e., unknots and trefoils, the ν exponent
adopted values of 0.599 ( 0.019 and 0.586 ( 0.013,
respectively. Since these values were within the error
range from the scaling exponent of self-avoiding walks,
we repeated the fit but this time setting the ν exponent
to 0.588. As shown in Figure 5, these fits were excellent
in all cases with sufficient statistics. (We combined 51
and 52 knots together to decrease statistical fluctuations
due to relatively small sample sizes of these five crossing
knots.) This excellent fit supports our proposal that open
knots can behave analogously to classical closed knots.
Formula 1 serves to determine the value of scaling
exponent ν for very long chains (not accessible to
numerical simulations) on the basis of the data obtained
for relatively short chains that could be analyzed by
numerical simulations. In fact, the effective scaling
exponent ν analyzed over a small “sliding window of 200
segments” grows progressively from 0.5 to 0.55 as the
analyzed chain size increases from 5 to 800 segments
(analysis not shown) and as the frequency of random
knotting increases. Since the parameter B is the main
correcting term, the B2 value for unknots can be
interpreted as a characteristic chain size where the
frequency of knots becomes significant and where the
scaling profile changes its character from this typical
for ideal random walks to this typical for self-avoiding
walks. Chains with 36 segments are knotted with the
frequency higher than 5%, which is a significant value.

The applicability of the fitting formula 1 was some-
times questioned27 as it was believed that it may bias
the fitting parameters in such a way that the ν exponent
is “predetermined” to be close to 0.588, i.e., character-
istic for self-avoiding walks. Concerned with this res-
ervation, we have used the same fitting formula and
the same value of the confluent exponent ∆ ) 0.5 to find
the ν exponent characterizing the scaling of all walks
analyzed in Figure 5. The fitted value of the ν exponent
for all walks grouped together irrespectively of their
topology was very close to 0.5 (0.505 ( 0.0002), and it
was therefore characteristic for non-self-avoiding walks.
This demonstrated that the fitting formula 1 does not
impose any bias on the outcome of the ν exponent.

Looking at small differences between 〈Rg
2〉 of unknot-

ted chains and these with simple knots, one can
conclude that knots are rather localized than being
spread over the whole chain. Spreading of a knot would
significantly diminish 〈Rg

2〉 since segments that are
separated by a long distance along a chain would need
to approach each other. In localized knots only the
segments that were separated by a short distance along
the chain need to come close together, and this hardly
affects overall dimensions of long chains. Localization
of simple knots has been proposed earlier in the case of
circular chains.4,25,28-30 More recently, however, the
question became more precise: is the mean number of
segments of the knotted domain independent of the total
length of the chain or, rather, do knotted domains grow
with the size of a chain as suggested by numerical

Figure 5. Averaged probabilities with which linear random
walks composed of 48 (a), 150 (b), and 300 (c) segments reveal
itself as various knots upon a random closure.

〈Rg
2(N)〉 ) AN2ν(1 + BN-∆ + CN-1 + o(N - 1)) (1)
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simulations of knotted polymers?31 A closer look at
Figure 6 and calculated prefactors of simple power law
functions for individual knot types (see legend of Figure
6) reveals that the scaling profiles for linear walks with
different simple knots diverge from each other. This
result suggest that in fact mean number of segments of
knotted domains increases with the length of the chain,
and the more complex the knot the stronger is this
tendency. The increase of the mean number of segments
of the knotted domain with the length of the chain can
be explained by the presence of spread knots. Even if
such spread knots are rare, the “spread” of the knotted
domain (in number of segments) can increase with
increasing chain length. Thus, even if the most frequent
number of segments observed for a knotted domain of
a given type is independent of the size of the chain,4
the mean number of segments of knotted domains
should increase with the length of the chain.

Random walks are good models of polymers behavior
in solution such as polyethylene or DNA.32-37 Our
results demonstrate, therefore, that populations of
randomly fluctuating linear polymers can be conceptu-
ally divided into configurations that momentarily reside
in a given knot space. However, knot spaces for linear
chains do not have strict borders as is the case for
classical closed chains.16 Until now a polymer closure
(like circularization of double- and single-stranded DNA)
was required to investigate how frequently momentarily
configurations of polymers with a given size visit
configuration spaces of different knot types.38-41 Our
approach that considers momentary configuration as
“frozen” allows us to perform such an investigation
without polymer closure. We showed here that it makes
sense to characterize knots in momentary configurations
of fluctuating polymer in solution provided that we are
able to “photograph” such momentary configurations
and analyze them as frozen embeddings. Of course, the
“photographed” trajectory itself may rapidly change

knot type upon further fluctuation. Analyzing the knot-
tedness of open trajectories, we need however to accept
a certain degree of uncertainty of knot type. In some
particular cases two or more knot types can be formed
with almost equal probabilities by random closure. Such
configurations are interesting as they live in a border
zone between two or more configuration spaces of
different knot types of linear chains. We demonstrated
here that, for most of practical purposes, a simple
closure with a straight segment connecting both ends
captures the dominant knot type detected by the
“Copernican” method of random closures. We showed
also that open random knots share some similar char-
acteristics with classical closed random knots. This
includes relative ordering of overall sizes of different
knot types and the same scaling exponent when one
analyses how overall dimensions change with the chain
length in open and closed knots of a given knot type.
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