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We simulate freely jointed chains to investigate how knotting affects the overall shapes of freely
fluctuating circular polymeric chains. To characterize the shapes of knotted polygons, we construct
enveloping ellipsoids that minimize volume while containing the entire polygon. The lengths of the
three principal axes of the enveloping ellipsoids are used to define universal size and shape
descriptors analogous to the squared radius of gyration and the inertial asphericity and prolateness.
We observe that polymeric chains forming more complex knots are more spherical and also more
prolate than chains forming less complex knots with the same number of edges. We compare the
shape measures, determined by the enveloping ellipsoids, with those based on constructing inertial
ellipsoids and explain the differences between these two measures of polymer shape.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3117923�

I. INTRODUCTION

Polymer chains in � conditions have long been modeled
as freely jointed random isosegmental polygons that can
freely change their spatial position. Such representations of
polymeric molecules are a consequence of their statistical
properties under � conditions where independent segments
of the polymer chains neither attract nor repel each other.
Many aspects of the physical properties and the associated
biological activity of linear, branched, and ring polymers un-
der � conditions are relatively well understood and have
been extensively explored, both theoretically and through
numerical simulations. For ring polymers, however, the be-
havior of these properties becomes more complex when the
topology of the ring is taken into account. The presence of
knots in polymers has been considered from several
perspectives1–7 leading to an appreciation for the importance
of their influence on the properties of polymers. In particular,
a substantial number of studies have considered how differ-
ent properties of circular molecules depend on the specific
knot type of the macromolecule and how they relate to those
of the phantom polymers, i.e., the average over all
polymers.8–16 In this research, we focus attention on mea-
sures of the size and shape of the enveloping ellipsoids of
ring polymers and the influence of knotting on measures of
these shapes.

Kuhn17 proposed that for entropic reasons, the overall

shape of momentary random coils formed by polymer chains
at thermodynamic equilibrium should resemble prolate ellip-
soids rather than spheres. His observation was confirmed in
both numerical studies and experiments.18–27 Proteins have
also been modeled by anisotropic ellipsoidal shapes known
as inertial, momental, or Cauchy ellipsoids28,29 having the
same inertial properties as the corresponding proteins. A nu-
merical measure of this anisotropy, the asphericity, is derived
from the eigenvalues of the inertial tensor associated to a
frozen momentary configuration adopted by the polymer
chain.30 The mean asphericity has been applied widely to
measure the extent to which random chains and ring poly-
gons deviate from a spherical shape.31–33 By replacing the
eigenvalues in the definition of asphericity with the square
root of three times the eigenvalues, we showed that one can
define an unbiased system of measures of scale and shape.16

We used this system to measure the impact of knotting on the
average inertial shape of frozen momentary configurations of
circular polymer chains with increasing length. The inertial
measures bring together the distance from the center of mass
and the density of the polymer in their measure of shape.
Thus, although external portions of the polymer contribute to
this characterization, one might ask if there would be a dif-
ferent sense of shape if one were to consider a “hard barrier”
surrounding the polymer.

To respond to this question, we identify the smallest el-
lipsoid, in terms of volume, containing the entire polymer
using an algorithm developed by Schonherr.34 In their study
of diffusion of proteins in solution, Ryabov et al.27 employed
a more complex method to define an enveloping ellipsoid of
a protein in which they first use software that identifies the
protein surface exposed to solvent molecules of a given ra-
dius �see also Ref. 35�. They then use a principal component
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analysis to identify the axes and dimensions of an ellipsoid.
They note that diffusion characteristics are important factors
in limiting reactions and in the interpretation of data from
experiments involving proteins in solutions. The anisotropy
of such enveloping ellipsoids has proven to be important at
all physical scales, from the astronomical36 to that of den-
drimer macromolecules37 and metal organic molecules in va-
por absorption on polymer host lattices.38 These enveloping
ellipsoids capture critical properties of the objects. Ellipsoi-
dal shapes now find applications in the synthesis and chemi-
cal analysis of nanomaterials such as endohedral metallof-
ullerene cages.39

In this study of the influence of knotting on shape, we
use the semiaxis lengths of the enveloping ellipsoids in the
formulae for the asphericity �formula 2� and prolateness �for-
mula 3� employed earlier in the inertial setting.16 We call the
resulting numerical measures the enveloping asphericity and
enveloping prolateness to distinguish them from the analo-
gous measures derived from the moment of inertia tensor. To
complete the comparison of scale and shape for the envelop-
ing ellipsoids, we define a quantity analogous to the squared
radius of gyration. This new quantity is defined to be one-
third the sum of the squared semiaxis lengths �formula 1�.

Analysis of collections of freely jointed random isoseg-
mental polygons across the range of 6–500 edges shows that
more complex knots are, from the perspective of enveloping
measures, more spherical and more prolate than chains form-
ing less complex knots for the same number of segments. We
compare and explain the differences between the shape char-
acterizations arising from the inertial ellipsoid and those de-
fined by the enveloping ellipsoid measures of polymer shape
across the range of lengths in our study.

II. MEASURES OF SIZE AND SHAPE

In Ref. 16, we employed three measures of size and
shape derived from the moment of inertia tensor. The first
was the squared radius of gyration R2 given in formula 1 in
terms of the semiaxis lengths, a, b, and c, of the associated
characteristic inertial ellipsoid defined in Ref. 16. The second
was a measure of asphericity A given in formula 2.30,40 The
third was the prolateness �also known as the nature of asphe-
ricity� P given in formula 3 as defined by Aronovitz and
co-workers.40,41

To determine the enveloping asphericity, one first finds
the ellipsoid of smallest volume containing the modeled
polymer. The semiaxis lengths a, b, and c of that ellipsoid
are then substituted in formulas 1–3. In short, we replace the
characteristic inertial ellipsoid by the enveloping ellipsoid in
the definitions of the R2, A, and P. Using these measures, we
determine their average values for the entire �phantom� po-
lygonal knot population as a function of the number of
edges. To assess the effect of knotting, we also determine the
average values for polygons forming a given knot type as a
function of the number of edges,

R2�a,b,c� =
a2 + b2 + c2

3
, �1�

A�a,b,c� =
�a − b�2 + �a − c�2 + �b − c�2

2�a + b + c�2 , �2�

P�a,b,c� =
�2a − b − c��2b − a − c��2c − a − b�

2�a2 + b2 + c2 − ab − ac − bc�3/2 . �3�

To appreciate the information carried by the asphericity,
whose values range from 0 �meaning spherical� to 1 �mean-
ing rodlike�, and prolateness, whose values range from �1
�for perfectly oblate shapes, i.e., a=b�c� to +1 �for per-
fectly prolate shapes, i.e., a�b=c�, it may be helpful to
consider the examples shown in Fig. 1.

To test the effect of knotting on the shape of a frozen
polymeric conformation, we must sort the freely jointed iso-
segmental polygonal models according to their topological
knot type. When a random isosegmental polygon has three,
four, or five edges, it is topologically equivalent to the stan-
dard regular polygon, i.e., it is an unknot, which is the des-
ignation of a polygon that is topologically equivalent to a
standard circle. With six edges, one can form the first non-
trivial knot, the trefoil knot, identified in standard knot tables
as 31. For increasing numbers of edges, more and more dif-
ferent �and more complex� types of knots become possible
�see Refs. 42–44 for a discussion of the equilateral polygons
with the fewest number of edges for each knot type�. The
probability of obtaining a knotted polymer tends to one45–47

as the number of edges approaches infinity. Furthermore, the
availability of increasingly complex knotting with increasing
numbers of edges has a significant impact on the average
characteristics of random collections of freely jointed isoseg-
mental polygons as a function of the number of
edges.12,13,15,16,48

In Fig. 2 we show examples of enveloping and charac-
teristic inertial ellipsoids for 50 edge trefoil knots with high,
medium, and low asphericity values. An inspection of these
examples shows that as expected, the enveloping ellipsoids
are larger than the characteristic inertial ellipsoids and that

FIG. 1. �Color� Examples of a prolate �left� ellipsoid and an oblate �right�
ellipsoid. One may think of the prolate ellipsoid as resembling a rugby
football while the oblate ellipsoid is similar to M&M candy. The semiaxis
lengths of these ellipsoids are �1,0.5,0.5� and �1,1,0.4�, respectively. The
asphericity of both ellipsoids is 0.0625 while the prolateness values are +1
and �1, respectively.
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the centers of the enveloping and inertial ellipsoids are sepa-
rated by distances that depend upon the specific instance.
The examples also suggest that although the sizes and shapes
of the inertial and enveloping ellipsoids, for a given polymer
configuration, differ from each other to some extent, one
should anticipate a correlation between the two measures of
asphericity and prolateness, i.e., a chain whose shape is de-
scribed by a prolate characteristic inertial ellipsoid is likely
to fit into a prolate enveloping ellipsoid.

III. COMPUTATIONS

We have generated and analyzed freely jointed equilat-
eral random polygons with 6–48 edges, with step size 2, and
from 50 to 500 edges, with step size of 10 edges. For each
number of edges, 400 000 random polygons were created
using the hedgehog method.49 This set of random knots was
also used in Refs. 15, 16, and 50. To identify the knot type of
each of the polygons, we use the HOMFLY polynomial51 pro-
gram of Ewing and Millett.52 For each of the polygons, we
determine the enveloping ellipsoid of smallest volume using
the algorithm of Schonherr.34 Using the resulting semiaxis
lengths, we calculate the associated “radius of gyration” as
well as the enveloping asphericity and prolateness for each
of the random polygons using formulas 1–3. We then deter-
mine the average values for the knots 01, 31, 41, 51, 52, 61,
62, and 63 and for the entire knot population �i.e., phantom
polygons� for each number of edges.

IV. RESULTS

The measures of inertial and enveloping scale and shape
developed in this study and our earlier one16 now provide the
means to assess the differences between the inertial and en-
veloping measures, their dependence upon knotting, why
these differences arise, and what they tell us about the physi-
cal properties of polymers. We first look at the question of
scale.

A. The effect of topology on the scaling of polymers

Formula 1 allows us to determine the mean squared ra-
dius of gyration and the analogous quantity for enveloping
ellipsoids to characterize the inertial and enveloping scale as
a function of the number of edges. Classically, the mean
squared radius of gyration is defined in inertial terms for
objects composed of points with equal mass. It is equal to the
mean square distance of these points from the center of mass
of the object and can be expressed as the sum of the eigen-
values of the moment of inertial tensor. The classical inertial
radius of gyration �denoted RI� and squared radius of gyra-
tion �denoted RI

2� are accepted measures of the overall size of

polymers. They are used in studies of polymer scaling such
as the effect of the chain length on the overall dimension of
polymer chains.11,24,53–55 Numerous theoretical and experi-
mental studies have established that depending on the sol-
vent quality, RI scales with three different values determined
by the critical exponent: �=1 /3 for polymers suspended in a
poor solvent where the polymer segments attract each other;
�=0.5 for polymers in � conditions where the independent
segments neither attract nor repel each other; and � is ap-
proximately 0.588 for polymers in good solvents where the
segments repel each other.56 Interestingly, this simple rule
changes when the topology is taken into account. When cy-
clic polymers, suspended in solvent under � conditions, are
permitted to freely change their topology �such as in the case
of DNA rings in the presence of certain types of topoi-
somerases�, the scaling of the average size as a function of
the chain length �without taking into account their actual
topology� is characterized by the expected exponent, �=0.5.
However, when cyclic polymers suspended in � conditions
are divided into different knot types and one now calculates
how the overall dimensions change for polymers of a given
knot type, the scaling exponent changes to that of self-
avoiding walks, � becomes approximately 0.588.8–16 It is im-
portant to stress here that the scaling exponent ��0.588 is
not the effective exponent in the tested region but the real
scaling exponent for very long polygons. It is not the conse-
quence of knotting that increases the scaling exponent from
0.5 to 0.588 but the fact that the topology cannot change as
the polygon increases in length. This is best exemplified by
the simulations and theoretical treatment for scaling expo-
nents of unknotted polygons with an effective diameter of
zero.8–16 This effect is clearly visible in Fig. 3 where we plot
the effect of the chain length on RI

2. The values of RI
2 for

phantom polymers �consisting of all accessible topological
states� shows a linear scaling, i.e., twice � or equal to 1.0.
Profiles for the individual knot types exhibit a scaling of
twice �, approximately equal to 1.176. We also see that for
the same chain size, the more complex knots show a smaller
average RI

2 in comparison to less complex knots.
Applying formula 1 to the enveloping measures of poly-

mers defines a new measure of scale characterizing the size
of the object in a manner analogous to the squared radius of
gyration. This new enveloping scale measure �denoted RE

2� is
not a standard measure of polymer size although the envel-
oping ellipsoids have been used in many contexts to charac-
terize shapes across many scales.18–22,27,36–38 It is interesting
to investigate whether RE

2 scales in the same way as RI
2, i.e.,

if they measure the scaling of polymers in the same manner.
Figure 3 shows that this is indeed the case. The profiles of
the phantom polygons for RE

2 indicate a scaling exponent of

FIG. 2. �Color� Examples of 50 edge
polygonal trefoil knots with high, me-
dium, and low asphericity shown with
their associated characteristic inertial
ellipsoids and enveloping ellipsoids.
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twice �=0.5, while the profiles of polygons with fixed knot
type are very well fitted with a scaling exponent of twice �
=0.588. Similar to RI

2, the RE
2 measures have the property

that for the same number of segments, more complex knots
are smaller than less complex knots. Of course, the RE

2 values
are bigger than the RI

2 values for the same category of
polygons. We observe an approximately twofold difference,
for a fixed number of edges �Fig. 3�. For measures such as
certain hydrodynamic or diffusion properties of compact
macromolecules, proteins for example, the RE

2 values have
been shown to be more informative in comparison to the RI

2

values.18–21,27,37

B. The effect of topology on the shape of polymers

Having analyzed the effects of topology on the overall
size of knotted polygons, we next look at how the average
shape of knotted polymers is affected by the type of knot
they form. Formulas 2 and 3 are used to measure the spatial
asymmetry of the analyzed configurations. The semiaxis
lengths of inertial or enveloping ellipsoids determined by
each of the polygonal configurations provide the respective
arguments, a, b, and c. Formula 2 gives the primary measure
of spatial asymmetry with values that range from 0 �for a
sphere� to 1 �for a straight segment�. When a, b, and c are the
semiaxis lengths of the characteristic inertial ellipsoids, the
asphericity they define will be called the inertial asphericity
AI. The corresponding evaluation using the semiaxis lengths
of the enveloping ellipsoids defines the enveloping aspheric-
ity AE. In Fig. 4, we compare the AI and AE values of the
analyzed polygons with various chain size and topology. It is
striking that the AI values for chains longer than 50 segments
are significantly larger than the AE values. In addition, the AI

values increase with the chain size and approach their
asymptotic value from below while the opposite is observed
for AE values. In both cases we observe that for the same
chain size, the more complex knots are more spherical than
less complex polygons. For shorter chain length, in both
cases the asphericity of phantom polymers is close to the
values of the simplest knots. However, when complex knots
begin to occur in greater numbers �with increasing chain
size�, the asphericity of the phantom polygons is closer to the
asphericity values of the complex knots. This behavior for
phantom polymers is explained by the fact that for short

chain sizes, the most frequent knots are the simple knots and
these are the dominant population within the set of the phan-
tom chains. For long chain size, the situation changes as
more complex knots start to dominate due to the exponen-
tially increasing number of distinct topological types, even
though the individual knot types are relatively rare.

We next describe why, for a given set of random poly-
gons, the inertial asphericity values are significantly larger
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FIG. 3. �Color online� Mean values of inertial �left� and enveloping �right� squared radius of gyration calculated for random polygons with increasing numbers
of segments and forming distinct knot types.
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asphericity calculated for random polygons with increasing numbers of seg-
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permitting better differentiation between polygons forming the different
knot types.
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than the enveloping asphericity values, i.e., why, for a given
knot type and number of edges, the enveloping ellipsoids are
more spherical than the inertial ellipsoids. The reason is due
to the anisotropic mass distribution within each random
chain. Several studies have established that for long chains
the mass distribution along the principal axis of gyration �the
axis corresponding to the largest eigenvalue� of a momentary
configuration of a random chain is either very flat or even
bimodal �with a local minimum in the center� while the mass
distribution along the remaining two principal axes of gyra-
tion has a Gaussian character.18,20,57,58 This mass distribution
causes the inertial ellipsoids of the momentary configurations
of random chains and random polygons to be more aspheri-
cal than their corresponding enveloping ellipsoids. In this
same way, a solid dumbbell is inertially more aspherical than
its associated enveloping ellipsoid.

There is another striking difference between inertial and
enveloping asphericity that is worthy of analysis. The envel-
oping asphericity values, on average, diminish with increas-
ing number of edges in the random polygons and approach
the asymptotic value of the asphericity, for a given knot type,
from above. The opposite behavior is observed for the iner-
tial asphericity. Why does this occur? In considering this
effect, it is helpful to recall that the enveloping asphericity is
determined by the position of only a relatively small number
of external vertices of a given polygonal configuration while
all the vertices, and the distribution of their locations, deter-
mine the inertial asphericity. Studies of the mass distribution
within random chains and polygons reveal that, for relatively
short chains, the mass distribution along the three principal
axes of rotation is Gaussian. When the chains become longer,
as noted above, a non-Gaussian distribution of mass is ob-
served along the principal axis of rotation. This flat, non-
Gaussian, character becomes more pronounced before stabi-
lizing for long chains or polygons.18,20,57,58 This behavior
explains, therefore, why the inertial asphericity grows with
the chain size of the analyzed random chains.

Why then does the enveloping asphericity decrease with
the number of edges even though both the enveloping and
the inertial asphericity values show that for a given number
of edges, more complex knots are more spherical than less
complex ones? We propose that this is because the envelop-
ing ellipsoids are determined by a relatively small number of
external points of the stochastic polygons. They act in a man-
ner analogous to noise added to the real signal. To illustrate
what we intend by this effect, consider a sphere with several
randomly placed spikes, of limited height, on its surface.
While the height of these spikes is random, suppose that it
does not exceed a given bounding value. For a small sphere,
such spikes would introduce significant enveloping aspheric-
ity in comparison to the scale of the sphere. However, as the
sphere gets bigger, the spikes would have smaller and
smaller effect, proportionally due to their limited height, i.e.,
the enveloping shape would become proportionally more
spherical. We suggest that a similar effect causes the envel-
oping asphericity to be relatively large for small polygons
and then decreases asymptotically to a characteristic value
for polygons with a large number of edges. This effect would

be insensitive to the fact that the mass distribution within
random walks and polygons becomes more asymmetrical as
the chain size increases.

The asphericity value tells us how much the object de-
viates from the sphere but it does not inform us whether the
sphere is stretched, forming a prolate ellipsoid, resembling a
rugby football, or whether the sphere is squeezed, forming an
oblate ellipsoid, resembling an M&M candy or a pumpkin.
To distinguish between these two cases another measure of
spatial asymmetry was introduced40,41 as expressed by for-
mula 3. Since this measure has positive values for prolate
ellipsoids and negative for oblate ones, we call this measure
the prolateness of the conformation. The possible values of
prolateness range from +1 for perfectly prolate ellipsoids
�a�b=c� to �1 for perfectly oblate ellipsoids �a=b�c�. In
analogy to asphericity, we distinguish between inertial pro-
lateness PI and enveloping prolateness PE. Figure 5 shows
the dependence of the PI and PE values of the polygons as a
function of the chain size and topology. We observe that PI

has significantly higher values than PE. As above, we pro-
pose that this reflects the anisotropy of mass distribution
along the longest axis of the inertial ellipsoid. Thus, if the
object is prolate, one would expect that its PI value would be
bigger than the corresponding PE value. Both PI and PE

show that more complex knots are more prolate than less
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complex knots for the same number of segments. This obser-
vation may seem to contradict the data presented in Fig. 4.
There we see that for the same number of segments, more
complex knots have more spherical shapes than less complex
knots. However, there is no real contradiction as the flatten-
ing of prolate shapes from the sides decreases their prolate-
ness but can increase the asphericity. This is illustrated in
Fig. 1, where we hold the asphericity constant while chang-
ing the prolateness, showing that the asphericity and prolate-
ness are not correlated with each other. Thus, the overall
shapes of more complex knots are closer to the shape of a
well inflated rugby football while the shape of less complex
knots resembles more closely that of an underinflated rugby
football.

C. The influence of knotting on the joint evolution
of asphericity and prolateness of polymers

Figure 6 presents a new perspective on the evolution of
shapes of random polygons that form the various knot types.
By plotting prolateness versus asphericity and by indicating
the direction corresponding to the increase in the number of
edges of the random polygons, we can better appreciate the
differences and similarities between inertial and enveloping
measures of polymer shape. As we have already discussed
the differences, we now focus on the similarities. In both

cases, phantom chains tend to different limiting values than
individual knot types. While limiting values for inertial and
enveloping measures are different from each other, the indi-
vidual knot types seem to converge to the same universal
value for a given measure. Table I shows that the statistically
estimated limiting asphericity values determined using the
Monte Carlo Markov chain analysis described in Ref. 16.
From Fig. 6 one gains a greater sense of the dynamics of this
evolution and one can observe the convergence process in a
compelling manner. The explanation of this convergent be-
havior lies, we propose, in the phenomenon of knot
localization.53,59,60 Although the presence of local and global
knots occur with probability approaching one as the number
of edges goes to infinity,45,46,61,62 several papers have estab-
lished that for long chains, on average, knots tend to be
localized.63–66 This implies that the average length of the
knotted portion becomes shorter and shorter in relation to the
entire polygon as the number of edges increases. As a con-
sequence, for very long chains, the shape differences be-
tween polygons that are unknotted or those that form simple
prime knots should become less and less significant. Figure 6
clearly shows just such an evolution of the shape parameters.
Why then do the phantom polygon shape parameters tend to
distinctly different values? The answer lies in the fact that
phantom chains increase their average knottedness, i.e., ac-
quire more and more complex knots at an exponential rate,
with increasing number of edges. These more complex knots
require much longer chain size for their formation. Thus, the
phantom polygons acquire so many more complex knots that
their average asphericity and prolateness parameters never
converge to those of the unknot. Note, however, that the
average shape of phantom polygons shows a convergence to
limiting values for asphericity and prolateness.

D. The effect of topology on scale and shape
of knotted polymers

In Fig. 7 we compare the inertial and enveloping ellip-
soidal shapes reflecting the average size and shape of several
simple polygonal knot types with 500 segments. Here we can
observe that the enveloping ellipsoids are bigger �as natu-
rally expected� and that they are more spherical. Focusing on
similarities between the inertial and enveloping measures,
one notices that the order in which each of the ellipsoids are
nested is the same in both cases, i.e., 01, 31, 41, and phantom
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FIG. 6. �Color� Changes in asphericity and prolateness based on inertial
�top� and enveloping �bottom� measures for random polygons with increas-
ing numbers of segments and forming distinct knot types. The arrows indi-
cate the progression direction resulting from increasing the number of seg-
ments in polygons within a given knot type.

TABLE I. Estimation of the asymptotic enveloping asphericity and inertial
asphericity values.

Knot Enveloping asphericity Inertial asphericity

Phantom 0.040 92�0.000 28 0.074 36�0.000 42
01 0.043 53�0.000 48 0.078 75�0.000 75
31 0.044 24�0.000 63 0.079 31�0.000 10
41 0.044 49�0.001 42 0.079 72�0.002 08
51 0.046 12�0.002 41 0.081 37�0.003 70
52 0.045 50�0.001 84 0.081 90�0.002 86
61 0.046 67�0.003 52 0.085 34�0.005 46
62 0.044 56�0.003 25 0.080 65�0.005 14
63 0.043 03�0.004 21 0.078 25�0.006 33
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chains, in order of decreasing size. It would be interesting to
know whether this order of nesting is universal and whether
every pair of knots would follow the same nesting order
according to inertial and enveloping measures of polymer
shape for all polymer lengths.

V. CONCLUSIONS

Whereas it is well known that the overall inertial and
enveloping shape of momentary configurations of linear and
cyclic polymers at thermal equilibrium can be approximated
by prolate ellipsoids, the extent to which the asymmetry of
those ellipsoids depends on knotting has not been investi-
gated. Nor has the distinct differences between inertial and
enveloping measures of shape been described. We have com-
pared these inertial and enveloping measures of anisotropy
and observed that the inertial measures of random polygons
give higher asphericity in comparison to the enveloping mea-
sures. We propose that the enveloping measures of spatial
asymmetry are distinctly different reporters of polymer shape
compared to the inertial measures. We observe, however, that
the two measures are correlated and both reveal, for ex-
ample, that polygons forming more complex knots are more
spherical and more prolate than polygons forming less com-
plex knots with the same number of segments.
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