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Abstract
Random walks and polygons are used to model polymers. In this paper we
consider the extension of the writhe, self-linking number and linking number to
open chains. We then study the average writhe, self-linking and linking number
of random walks and polygons over the space of configurations as a function
of their length. We show that the mean squared linking number, the mean
squared writhe and the mean squared self-linking number of oriented uniform
random walks or polygons of length n, in a convex confined space, are of the
form O(n2). Moreover, for a fixed simple closed curve in a convex confined
space, we prove that the mean absolute value of the linking number between
this curve and a uniform random walk or polygon of n edges is of the form
O(

√
n). Our numerical studies confirm those results. They also indicate that

the mean absolute linking number between any two oriented uniform random
walks or polygons, of n edges each, is of the form O(n). Equilateral random
walks and polygons are used to model polymers in θ -conditions. We use
numerical simulations to investigate how the self-linking and linking number
of equilateral random walks scale with their length.

PACS numbers: 02.10.Kn, 82.35.−x

1. Introduction

A polymer melt may consist of ring polymers (closed chains), linear polymers (open chains)
or a mixed collection of ring and linear polymers. Polymer chains are long flexible molecules
that impose spatial constraints on each other because they cannot intersect (de Gennes 1979,
Rubinstein and Colby 2006). These spatial constraints, called entanglements, affect the
conformation and motion of the chains in a polymer melt and have been studied using different
models of entanglement effects in polymers (Orlandini et al 2000, Orlandini and Whittington
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2004, 2007, Tzoumanekas and Theodorou 2006). However, a clear expression of exactly what
one means by entanglement and how one can quantify the extent of its presence remains an
elusive goal.

In the mathematical study of polymers, we usually consider conformations of chains with
no interaction between monomers that are far apart along the chain, even if they approach
each other in space. Such chains are called ideal chains (Rubinstein and Colby 2006). This
situation has never been completely realized for real chains, but there are several types of
polymeric systems with nearly ideal chains. At a special intermediate temperature, called the
θ -temperature, chains are nearly in ideal conformations, because the attractive and repulsive
parts of monomer–monomer interactions cancel each other. Even more importantly, linear
polymer melts and concentrated solutions have practically ideal chain conformations because
the interactions between monomers are almost completely screened by the surrounding chains.
The conformation of an ideal chain with no interactions between monomers is the essential
starting point for most models in polymer physics. Every possible conformation of an ideal
chain can be mapped onto a random walk. Hence, random walk and ideal walk statistics are
similar.

By Diao et al (1993), Diao (1995), Pippenger (1989), Sumners and Whittington (1988),
we know that the probability that a polygon or open chain with n edges in the cubic lattice
and 3-space is unknotted goes to zero as n goes to infinity. This result confirms the Frisch–
Wasserman–Delbruck conjecture that long ring polymers in dilute solution will be knotted with
high probability. A stronger theorem is that the probability that any specific knot type appears
as a summand of a random walk or polygon goes to 1 as n goes to infinity. However, the
probability of forming a knot with a given type goes to zero as n goes to infinity (Whittington
1992). The knot probability of polymer molecules also depends on the extent to which the
molecule is geometrically confined. This has been studied by Arsuaga et al (2007) and Tesi
et al (1994). For instance, DNA molecules confined to viral capsids have a much higher
probability of being knotted. Moreover, the distribution of knot types is different from the
distribution of DNA in solution (Arsuaga et al 2002, Weber et al 2006).

Polymers in solution are flexible moving molecular conformations, so the open polymer
chains can always be moved apart, at least at long time scales. Therefore, the definition of
knotting or linking must refer to spatially fixed configurations, and, as a consequence, does
not give rise to a topologically invariant concept. In contrast, for closed polymer chains,
the concepts of knotting and linking are unchanged under continuous deformations that do
not allow breakage of the chains or passage of one portion of a chain through another. To
characterize the knotting of an open chain one can use the DMS method (Millett et al 2004,
Millett and Sheldon 2005) to determine the spectrum of knotting arising from the distribution
of knot types, created by closure of the open chain to the ‘sphere at infinity’. In practice,
one first determines the center of mass of the chain, next the radius of the smallest sphere
(centered at the center of mass) containing the chain, and then randomly select closure points
on the concentric sphere of 100 times this radius as a surrogate for the ‘sphere at infinity’. The
previous studies of this method have shown that the data generated are stable with respect to
increasing radii so that, effectively, this provides the required data. One is then able to employ
the methods of traditional knot or link theory (e.g. Kauffman (2001)) to study the topology of
individual constituents or of the entire collection. The knot types of individual closures or of
ring polymer chains can be analyzed using, for example, the Jones (1985) or the HOMFLYPT
(Freyd et al 1985, Przytycki and Traczyk 1987, Ewing and Millett 1997) polynomial, which
can distinguish the different knot and link types with high precision. Yet, even for collections
of closed chains, the application of the Jones or HOMFLYPT invariants has been constrained
by the computational complexity one encounters in the scientifically interesting range of scales
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and by the present scarcity of theoretical results. Moreover, we know that there exist infinite
families of collections of linked closed chains whose Jones polynomials are those of the
unlinked collection.

A classical measure of entanglement is the Gauss linking integral which is a classical
topological integer invariant in the case of pairs of ring polymers. As we mentioned
before, polymers in solution are flexible moving molecules, so we will be interested in
characterizations of their physical properties at fixed moments in time as well as in their time-
averaged properties. For open or mixed pairs, the calculated quantity is a real number that is
characteristic of the conformation, but changes continuously under continuous deformations
of the constituent chains. Thus, the application of the Gauss linking integral to open polymer
chains is very clearly not a topological invariant, but, rather, a quantity that depends on the
specific geometry of the chains. This measure is very sensitive to the specific conformations
that are analyzed (Agarwal et al 2004, Berger and Prior 2006, Laing and Sumners 2006, 2008).
For pairs of ‘frozen’ open polymer chains, or for a mixed frozen pair, we will see that the
Gauss linking integral can be applied to calculate an average linking number. In a similar
manner, the Gauss linking integral can be applied to calculate the writhe or the self-linking
number of a ‘frozen’ configuration of one open chain. It is true that a complicated tangle and
a really untangled curve can have essentially the same writhe, but it takes special effort to
construct untangled complicated looking curves with high absolute writhe. Exactly the same
considerations apply for the linking number and the self-linking number. Indeed, computer
experiments indicate that the linking number and the writhe are effective indirect measures of
whatever one might call ‘entanglement’, especially in systems of ‘random’ filaments.

As far as the time-averaged properties of polymers in solution are concerned, we will
study the averages of such properties over the entire space of possible configurations. The
literature suggests that, from the perspective of experiments, theory and simulation, the average
crossing number (ACN) has been the principal quantity employed by researchers (Arsuaga
et al 2009, Arteca 1997, Arteca and Tapia 2000, Diao et al 2003, 2005, Edvinsson et al 2000,
Freedman et al 1994, Reimann et al 2002, Sheng and Tsao 2002, Simon 2009). This is neither
a topological nor a geometric characteristic, as it depends on the specific conformation and
is changed under continuous deformations (Grassberger 2001). In some sense, the linking
number is a strictly stronger measure of physical entanglement than the ACN. There has been
a substantial body of research to make rigorous the relationship of the linking number with
more scientifically intuitive concepts of entanglement (Arsuaga et al 2002, 2007a, 2007b, Barbi
et al 2005, Bauer et al 1980, Buck et al 2008, Calugreanu 1961, Crick 1976, Edwards 1967,
1968, Fuller 1978, Hirshfeld 1997, Hoidn et al 2002, Holmes and Cozzarelli 2000, Iwata and
Edwards 1989, Katritch et al 1996, Klenin and Langowski 2000, Kung and Kamien 2003,
Lacher and Sumners 1991, Liu and Chan 2008, Mansfield 1994, Martinez-Robles et al 2009,
McMillen and Goriely 2002, Micheletti et al 2006, Orlandini et al 1994, 2000, Orlandini and
Whittington 2004, Ricca 2000, Rogen and Fain 2003, Stasiak et al 1998, Stump et al 1998,
Vologodskii and Cozzarelli 1993, Vologodskii 1999, White and Bauer 1969).

The main subject of our study concerns uniform random chains confined in a symmetric
convex region in R

3. The observation that confined geometries have substantial impact on
the structure of the polymer is an attractive target of the study of the local absolute linking
(Arsuaga et al 2009, Micheletti et al 2006, Orlandini and Whittington 2004, Sheng and
Tsao 2002, Tesi et al 1994). It is an effect that is captured locally by our measures of the
absolute linking number of open chains or of a single chain. Developing analytical results
on the complexity of knots formed by polymer chains in confined volumes is a very difficult
problem. The uniform random polygon (URP) model (Millett 2000) may provide clues about
showing some of these analytical results (Arsuaga et al 2007a, 2007b, 2009). Each edge of
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the random open chain or polygon is defined by a pair of random points in the convex region
with respect to the uniform distribution. Throughout this paper we will refer to open closed
uniform random chains as uniform random walks and uniform random polygons, respectively.
We will consider uniform random walks or polygons confined in the unit cube. Inspired by the
effort of Arsuaga, Blackstone, Diao, Karadayi, and Saito in ‘The linking of uniform random
polygons in confined spaces’ (Arsuaga et al 2007a) to forging a rigorous connection between
physical entanglement and topological invariants, this manuscript reports on two innovations
that directly pertain to applications to polymers (in contrast to the theory of topological knots
or links).

First, we study the mean absolute linking number, the mean absolute writhe and the
mean absolute self-linking number numerically and provide analytical results that will help
us understand more about the scaling of those quantities (theorem 3.9). We point out that the
results in Arsuaga et al (2007a) concern theoretical results and simulations to study the mean
squared linking number. We very often employ the geometric mean of a quantity rather than
the arithmetic mean. For example, in the study of polymers, the most frequent measure is the
mean squared radius of gyration. Additionally, one has the mean squared end-to-end distance
and the mean squared diameter (Rubinstein and Colby 2006). Statistics, however, tells us
that while such mean squared quantities, that are geometric means, are more accessible to
theoretical estimation, the mean absolute linking number corresponding to an arithmetic mean
is a quantity that is not biased by small incidences of large linking numbers and, therefore, is
a truer measure of the complexity intrinsic to the data. Yet it is much harder to estimate the
mean absolute linking number. The second innovation is the extension and application of the
absolute linking number from closed polymer chains to open polymer chains. We also study
both numerically and analytically the mean squared writhe of open chains (theorem 3.1), the
mean squared linking number of open chains (theorem 3.6), the mean squared self-linking
number of open chains (theorem 3.7) and the mean absolute linking number between an open
chain and a fixed closed curve (theorem 3.9).

More precisely, the paper is organized as follows. In section 2 we study the scaling of
the mean squared writhe, the mean squared linking number and the mean squared self-linking
number of oriented uniform random walks and polygons in confined space with respect to
their length. Next, we study the scaling of the mean absolute linking number of an oriented
uniform random walk or polygon and a simple closed curve, both contained in a unit cube,
with respect to the length of the random walk or the polygon, respectively. In section 3 we
present the results of our numerical simulations which confirm the analytical results presented
in section 2. Although theoretical results about the absolute linking number between two
uniform random walks or polygons in confined space appear difficult to acquire, we are able
to provide numerical results in section 3. Also it is more difficult to provide analytical results
for equilateral random walks or polygons than for uniform random walks or polygons. An
equilateral random walk is an ideal chain composed of freely jointed segments of equal length
in which the individual segments have no thickness (Diao et al 2003, 2005, Dobay et al 2003).
In this direction, we give in section 3 numerical estimations of the scaling of the mean absolute
linking number and the mean absolute self-linking number of equilateral random walks.

2. Measures of entanglement of open curves

In a generic orthogonal projection of two oriented polygonal chains, each crossing is of one
of the types shown in figure 1. By convention, we assign +1 and −1 to a crossing of the first
type and second type, respectively.
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(a) (b)

Figure 1. (a) +1 crossing and (b) −1 crossing.

For a generic projection of two oriented curves l1, l2 to a plane defined by a vector ξ ∈ S2,
the linking number of a diagram, denoted lkξ(l1, l2), is equal to one half of the algebraic sum
of crossings between the projected curves. The linking number of two oriented curves is then
equal to the average linking number of a diagram over all possible projection directions, i.e.
L(l1, l2) = 1/4π

( ∫
ξ∈S2 lkξ(l1, l2) dS

)
. This can be expressed by the Gauss linking integral

for two oriented curves.

Definition 2.1. The Gauss linking number of two oriented curves l1 and l2, whose arc-length
parametrization is γ1(t), γ2(s) respectively, is defined as a double integral over l1 and l2
(Gauss 1877):

L(l1, l2) = 1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t) − γ2(s))

|γ1(t) − γ2(s)|3
dt ds, (1)

where (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) is the triple product of γ̇1(t), γ̇2(s) and γ1(t) − γ2(s).

Similarly, for the generic orthogonal projection of one oriented curve l to a plane defined
by a vector ξ ∈ S2, we define the writhe of a diagram, denoted Wrξ(l), to be equal to the
algebraic sum of crossings of the projection of the curve with itself. Then the writhe of a
curve is defined as the average writhe of a diagram of the curve over all possible projections,
i.e. Wr(l) = 1/4π

( ∫
ξ∈S2 Wrξ(l) dS

)
. This can be expressed as the Gauss linking integral over

one curve.

Definition 2.2. The writhe of an oriented curve l, whose arc-length parametrization is γ (t),
is defined by the Gauss linking integral over a curve

Wr(l) = 1

2π

∫
[0,1]∗

∫
[0,1]∗

(γ̇ (t), γ̇ (s), γ (t) − γ (s))

|γ (t) − γ (s)|3 dt ds, (2)

where [0, 1]∗ × [0, 1]∗ = {(x, y) ∈ [0, 1] × [0, 1]|x �= y}.
We define the average crossing number of a curve l, whose parametrization is γ (t), to be

the average sum of crossings in a generic orthogonal projection over all possible projection
directions. It is expressed by a double integral over l:

ACN = 1

2π

∫
[0,1]

∫
[0,1]

|(γ̇ (t), γ̇ (s), γ (t) − γ (s))|
|γ (t) − γ (s)|3 dt ds, (3)

where (γ̇ (t), γ̇ (s), γ (t) − γ (s)) is the triple product of γ̇ (t), γ̇ (s) and γ (t) − γ (s).
We observe that the geometrical meaning of the linking number and the writhe is the same

for open or closed curves. The linking number of two curves is the average over all possible
projection directions of half the algebraic sum of crossings between the two components in
the projection of the curves. Similarly the writhe of a curve is the average over all projection
directions of the algebraic sum of crossings in the projection of the curve.

In the case of oriented closed curves, the linking number is an integer topological invariant,
i.e. it is invariant under isotopic moves of the curves. But in the case of oriented open curves,
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the linking number is not topological invariant and it is not an integer. If the open curves
are allowed to move continuously without intersecting each other or themselves in space, all
the above measures are continuous functions in the space of configurations. Furthermore,
as the endpoints of the curves move toward coincidence, the linking number, self-linking
number or writhe tends to the values of those measures for the resulting closed knots or
links.

Polymer chains are often modeled using open or closed polygonal curves. There exist
several models of random walks or polygons that can be used and that are representative of the
properties of different polymer melts. Since a polymer melt can take different formations in
space through time, we are interested in a measure of complexity of polymer chains that will
be independent of a specific configuration and characteristic of the configuration space and
how it depends on the length of the chains. In this paper, we will focus our study on uniform
random walks in a confined space as this provides a simplified model for our theoretical study
and will have a similar behaviour to other polymer models (or will give us some insight into
the study of more realistic models).

3. Uniform random walks and polygons in a confined space

The uniform random walks and polygons are modeled after the URP model, introduced by
Millett (2000). In this model there are no fixed bond lengths and each coordinate of a vertex
of the uniform random polygon contained in C3, where C = [0, 1] is drawn from a uniform
distribution over [0, 1].

The following theorem has been proved by Arsuaga et al (2007).

Theorem 3.1. The mean squared linking number between two oriented uniform random
polygons X and Y of n edges, each contained in C3, is 1

2n2q where q > 0. A similar result
holds if C3 is replaced by a symmetric convex set in R

3.

The above result is independent of the orientation of the two uniform random polygons.
Due to the weight squaring given to larger linking number, we propose that the mean of the
absolute value of the linking number between oriented uniform random walks or polygons
would be a more informative measure of the expected degree of linking.

3.1. The mean squared writhe of an oriented uniform random walk in a confined space

In this section, we study the scaling of the writhe of an oriented uniform random walk (or
polygon) contained in C3.

We are interested in defining the average squared writhe of an n-step uniform random
walk or polygon in confined space, where the average is taken over the entire population of
open or closed uniform random walks or polygons in the confined space C3. We distribute
vertices according to the uniform distribution on the cube. More explicitly, the space of
configurations in this case is � = [0, 1]3(n+1)\N and � = [0, 1]3n\N , respectively, where N
is the set of singular configurations, i.e. when a walk or polygon intersects itself. Then N is a
set of measure zero (Randell 1988a, 1988b, Calvo 1999).

The average writhe over the space of chains or polygons is zero as there is a sign balance
occurring due to the mirror reflection involution on the space of configurations. This is
why we choose to study the mean squared writhe of a uniform random walk of n edges
in C3.
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Theorem 3.2. The mean squared writhe of an oriented uniform random walk or polygon of
n edges, each contained in C3, is of the order of O(n2). Similar results hold if C3 is replaced
by a symmetric convex set in R

3.

Let us consider two (independent) oriented random edges l1 and l2 of an oriented uniform
random polygon Pn and a fixed projection plane defined by a normal vector ξ ∈ S2. Since the
end points of the edges are independent and are uniformly distributed in C3, the probability
that the projections of l1 and l2 intersect each other is a positive number which we will call 2p.
We define a random variable ε in the following way: ε = 0 if the projection of l1 and l2 has no
intersection, ε = −1 if the projection of l1 and l2 has a negative intersection, and ε = 1 if the
projection of l1 and l2 has a positive intersection. Note that, in the case the projections of l1 and
l2 intersect, ε is the sign of their crossing. Since the end points of the edges are independent
and are uniformly distributed in C3, we then see that P(ε = 1) = P(ε = −1) = p, E[ε] = 0
and Var(ε) = E[ε2] = 2p.

We will need the following lemma, modeled after lemma 1 by Arsuaga et al (2007),
concerning the case when there are four edges involved (some of them may be identical or
they may have a common end point): l1, l2, l

′
1 and l′2. Let ε1 be the random number ε defined

above between l1 and l′1 and let ε2 be the random number defined between l2 and l′2.

Lemma 3.3.

(1) If the end points of l1, l2, l
′
1 and l′2 are distinct, then E[ε1ε2] = 0 (this is the case when

there are eight independent random points involved).
(2) If l1 = l2, and the end points of l1, l′1 and l′2 are distinct (this reduces the case to where there

are only three random edges with six independent points involved), then E[ε1ε2] = 0.
(3) If l1 and l′1, or l2 and l′2, have a common end point, then E[ε1ε2] = 0.
(4) In the case where l1 = l2, the endpoints of l1 and l′1 and l1 and l′2 are distinct, and l′1

and l′2 share a common point (so there are only five independent random points involved
in this case), let E[ε1ε2] = u. In the case where l1 and l2 share a common point, the
endpoints of l1 and l′1 and l1 and l′2 are distinct, and l′1 and l′2 also share a common point
(so there are four edges defined by six independent random points involved in this case),
let E[ε1ε2] = v. Finally let E[ε1ε2] = w in the case where l1, l2, l′1 and l′2 are consecutive
(so in this case, there are four edges defined by five independent random points). Then
we have q ′ = 3p + 2(2u + v + w) > 0, where p is as defined before.

Note that in comparison with lemma 1 by Arsuaga et al (2007), we have included the case
in which some of the four or three edges involved are consecutive.

Proof.

(1) This is true since ε1 and ε2 are independent random variables in this case.
(2) For each configuration in which the projections of l′1 and l′2 both intersect the projection

of l1(since otherwise ε1ε2 = 0), there are eight different ways to assign the orientations
to the edges. Four of them yield ε1ε2 = −1 and four of them yield ε1ε2 = 1. Since the
joint density function of the vertices involved is simply 1

V 6 , where V is the volume of the
confined space C3, thus by a symmetry argument we have E[ε1ε2] = 0.

(3) This is true since in that case ε1 = 0 or ε2 = 0.
(4) Consider the case when the polygon has six edges. Let εij be the crossing sign number ε

between the edges li and lj. Consider the variance of the summation
∑

1�i�6

∑
j>i

j �=i−1,i,i+1
εij
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(the summation indices are taken modulo 6):

V

⎛
⎜⎜⎝ ∑

1�i�6

∑
j>i

j �=i−1,i,i+1

εij

⎞
⎟⎟⎠ = E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

1�i�6

∑
j>i

j �=i−1,i,i+1

εij

⎞
⎟⎟⎠

2⎤
⎥⎥⎦ =

∑
1�i�6

∑
j>i

j �=i−1,i,i+1

E
[
ε2
ij

]

+ 2
∑

1�i�6

∑
j>i

j �=i−2,i−1,i,i+1

E[εij εi(j+1)] + 2
∑

1�i�6

∑
j>i

j �=i−1,i,i+1,i+2

E[εij ε(i+1)j ]

+ 2
∑

1�i�6

∑
j>i

j �=i−2,i−1,i,i+1,i+2

(E[εij ε(i+1)(j+1)] + E[εi(j+1)ε(i+1)j ])

+ 2
∑

1�i�6

E[εi(i+2)ε(i+1)(i+3)]. (4)

Since the εij are identical random variables, i.e. they have the same distributions, each term
in the first summation of the right-hand side in the above yields 2p, each term in the second
summation yields u (see lemma 1), each term in the third and fourth summation yields v and
each term in the fifth summation yields w. There are 9 terms in the first summation, there
are 12 terms in the second summation, 6 terms in the third summation, 6 terms in the fourth
summation and 6 terms in the fifth summation. This leads to

V

⎛
⎜⎜⎝ ∑

1�i�6

∑
j>i

j �=i−1,i,i+1

εij

⎞
⎟⎟⎠ = 9 · 2p + 2(12 · u + 6 · v + 6 · w) = 6(3p + 2(2u + v + w)). (5)

Since V
(∑

1�i�6

∑
j>i

j �=i−1,i,i+1
εij

)
> 0, this implies that 3p + 2 (2u + v + w) > 0, as

claimed. �

Proof of Theorem 3.2. Let us consider the orthogonal projection of Pn to a plane
perpendicular to a random vector ξ ∈ S2. Throughout the proof the averaging, E, is always
over the space of configurations. The average, over the space of configurations, squared writhe
of the projection of Pn to that plane is given by

E
[
Wr2

ξ(Pn)
] = E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

1�i�n

∑
j>i

j �=i−1,i,i+1

εij

⎞
⎟⎟⎠

2⎤
⎥⎥⎦ =

∑
1�i�n

∑
j>i

j �=i−1,i,i+1

E
[
ε2
ij

]

+ 2
∑

1�i�n

∑
j>i

j �=i−2,i−1,i,i+1

E[εij εi(j+1)] + 2
∑

1�i�n

∑
j>i

j �=i−1,i,i+1,i+2

E[εij ε(i+1)j ]

+ 2
∑

1�i�n

∑
j>i

j �=i−2,i−1,i,i+1,i+2

(E[εij ε(i+1)(j+1)] + E[εi(j+1)ε(i+1)j ])

+ 2
∑

1�i�n

[εi(i+2)ε(i+1)(i+3)]

= n2(p + 2(u + v)) − n(3p + 2(4u + 5v − w)) (6)
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where p, u, v,w are defined as in lemma 3.3. By Arsuaga et al (2007) it has been proved that
p + 2(u + v) = q > 0, thus E

[
Wr2

ξ(Pn)
] = qn2 + O(n). Using lemma 3.3 we can see that

E
[
Wr2

ξ(Pn)
]

is bounded from below by qn2 − 6qn.
Let us now take a partition of the surface of the 2-sphere � = {I1, I2, . . . , Im} such that

the writhe of the projection of Pn is constant in each Ij , 1 � j � m. By definition, we have
that, for a sequence of partitions �k such that μ(�k) → 0, the mean squared writhe of Pn is
equal to

E[Wr2(Pn)] = E

⎡
⎢⎣
⎛
⎝ 1

4π
lim

μ(�k)→0

∑
1�s�mk

Wrξs
(Pn)δS

⎞
⎠

2
⎤
⎥⎦

= 1

16π2
E

⎡
⎢⎣
⎛
⎝ lim

μ(�k)→0

∑
1�s�mk

Wrξs
(Pn)δS

⎞
⎠

2
⎤
⎥⎦

= 1

16π2
E

⎡
⎣ lim

μ(�k)→0

⎛
⎝ ∑

1�s�mk

Wr2
ξs

(Pn)δS
2 + 2

∑
1�s,t�mk

Wrξs
(Pn)Wrξt

(Pn)δS
2

⎞
⎠
⎤
⎦

= 1

16π2
lim

μ(�k)→0
E

⎡
⎣
⎛
⎝ ∑

1�s�mk

Wr2
ξs

(Pn)δS
2 + 2

∑
1�s,t�mk

Wrξs
(Pn)Wrξt

(Pn)δS
2

⎞
⎠
⎤
⎦

= 1

16π2
·

lim
μ(�k)→0

⎛
⎝ ∑

1�s�mk

E
[
Wr2

ξs
(Pn)

]
δS2 + 2

∑
1�s,t�mk

E
[
Wrξs

(Pn)
]
E
[
Wrξt

(Pn)
]
δS2

⎞
⎠ , (7)

where we use Lebesgue’s theorem of dominated convergence, since the functions Sk(Pn) =(∑
1�s�mk

Wrξs
(Pn)δS

)2
, Sk : � → R are measurable functions, bounded above by(∑

1�s�m Crξs
(Pn)δS

)2
, where Crξs

(Pn) is the number of crossings of the projection of

Pn to the plane perpendicular to ξs and
(∑

1�s�mk
Crξs

(Pn)δS
)2 � (24n2)2.

The second term in (7) is equal to zero, because

E
[
Wrξ(Pn)

] = E

⎡
⎢⎢⎣ ∑

1�i�n

∑
j>i

j �=i−1,i,i+1

εij

⎤
⎥⎥⎦ =

∑
1�i�n

∑
j>i

j �=i−1,i,i+1

E[εij ] = 0. (8)

But we proved that E
[
Wr2

ξ(Pn)
] = qn2 + O(n), and E

[
Wrξ(Pn)

] = 0, ∀ξ ∈ S2 so

E[Wr2(Pn)] = 1

16π2
lim

μ(�k)→0

⎛
⎝ ∑

1�s�mk

(qn2 + O(n))δS2

⎞
⎠

⇒ 1

16π2
(qn2 + O(n))

(∫
ξ∈S2

dS

)

� E[Wr2(Pn)] � 1

16π2
(qn2 + O(n))

(∫
ξ∈S2

dS

)2

⇒ 1

4π
(qn2 + O(n)) � E(Wr2(Pn)) � qn2 + O(n). (9)

9
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Note that in the case of a uniform random walk Rn, one has to add to the writhe the
crossing between the first and last edges, otherwise the proof is the same and we obtain the
same result, i.e. E

[
Wr(Rn)

2
] ≈ qn2 + O(n). �

Remark 3.4. In Janse van Rensburg et al (1993), the mean absolute writhe of a self-avoiding
polygon in Z

3 is shown to have a lower bound of the form O(
√

n). The behavior of random
walks on a lattice compared to the off-lattice random walks can have significant differences
from walks of comparable lengths due to the special constraints of the lattice. In the case of
uniform random walks confined to a cube, there are additional confounding influences that
increase the effective density due to the uniform measure on the cube and the confinement.
These result in striking differences in scaling of the writhe, that we have observed here,
compared to the lattice scaling.

3.2. The mean squared linking number of two oriented uniform random walks in confined
space

The proof of theorem 3.2 can be easily adapted in order to provide an analysis of the rate
of scaling of the mean squared linking number of open chains. Specifically, we have the
following theorem, generalizing theorem 3.1 by Arsuaga et al (2007).

Theorem 3.5. The mean squared linking number between two oriented uniform random
walks X and Y of n edges, contained in C3, is of the order of O(n2). Similar results hold if C3

is replaced by a symmetric convex set in R
3.

Proof. For a fixed orthogonal projection of the walks to a plane perpendicular to a vector
ξ ∈ S2, adapting theorem 3.1 of Arsuaga et al (2007) to the case of open walks, we have
E[lkξ(X, Y )] = 1

2n2q + O(n) where q > 0. Then, following the proof of our theorem 3.2, we
have that E[Lk(X, Y )] = O(n2). �

Note that q = p + 2(u + v) has the same value in all theorems. By Arsuaga et al (2007), it
has been estimated to be q = 0.0338 ± 0.024. Our numerical results confirm this estimation.

3.3. The mean squared self-linking number of an oriented uniform random walk or polygon

The self-linking number was introduced to model two stranded DNA and is defined as
the linking number between a curve l and a translated image of that curve lε at a small
distance ε, i.e. Sl(l) = L (l, lε). This can be expressed by the Gauss integral over
[0, 1]∗ × [0, 1]∗ = {(x, y) ∈ [0, 1] × [0, 1]|x �= y} by adding to it a correction term, so that it
is a topological invariant of closed curves (Banchoff 1976):

SL(l) = 1

4π

∫
[0,1]∗

∫
[0,1]∗

(γ̇ (t), γ̇ (s), γ (t) − γ (s))

|γ (t) − γ (s)|3 dt ds

+
1

2π

∫
[0,1]

(
γ ′(t) × γ ′′(t)

) · γ ′′′(t)
|γ ′(t) × γ ′′(t)|2 dt. (10)

The first term, in the above, is the writhe of the curve which we studied in the last section.
The second term is the total torsion of the curve, τ(l), divided by 2π . This measures how
much the curve deviates from being planar. The torsion of a curve can be expressed as

τ(l) =
∑

1�i�n

φi(l), (11)

10
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where φi(l) is the signed angle between the binormal vectors Bi and Bi+1 defined by the edges
i − 1, i, i + 1 (Banchoff 1976).

The following theorem concerns the mean squared self-linking number of an oriented
uniform random walk or polygon.

Theorem 3.6. The mean squared self linking number of an oriented uniform random walk
or polygon of n edges, contained in C3 is of the order O(n2). Similar results hold if C3 is
replaced by a symmetric convex set in R

3.

Proof. We will use the definition of the self-linking number given by (10), i.e. SL(l) =
Wr(l) + 1

2π

∑
i φi . The proof is based on the fact that the torsion angles φi ∀i �= 1, n and that

the products εijφi ∀j �= i + 2, k �= i + 1 are independent in the URP model.
Let Pn denote a uniform random polygon in the confined space C3. We project Pn to a

fixed plane defined by a normal vector ξ ∈ S2. For each pair of edges of the uniform random
polygon li and lj, we define a random variable εij as we did in the precious section. Then
E[ε] = 0 and E[ε2] = 2p. For each edge we define a random variable φi such that φi is
equal to the signed angle between Bi and Bi+1, the normal vectors to the planes defined by
the edges i, i + 1 and i + 1, i + 2, respectively. Then φi ∈ [−π, π ],∀i. Since each vertex
of the uniform random polygon is chosen with respect to the uniform distribution, φi has
equal probability of being positive or negative, thus E(φi) = 0,∀i. Now let E

[
φ2

i

] = w and
E[|φi |] = w′. For each pair of edges φi, φj , i �= 1, j �= n we have that E[φiφj ] = 0, since
φi, φj are independent random variables in that case. We will now compute the mean squared
self-linking number:

E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

1�i<j�n

j �=i−1,i,i+1

εij +
∑

1�i�n

φi

⎞
⎟⎟⎠

2⎤
⎥⎥⎦

= E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

1�i<j�n

j �=i−1,i,i+1

εij

⎞
⎟⎟⎠

2

+

⎛
⎝ ∑

1�i�n

φi

⎞
⎠

2

+ 2
∑

1�i<j�n

j �=i−1,i,i+1

∑
1�k�n

εijφk

⎤
⎥⎥⎦

= E

⎡
⎢⎢⎣
⎛
⎜⎜⎝ ∑

1�i<j�n

j �=i−1,i,i+1

εij

⎞
⎟⎟⎠

2⎤
⎥⎥⎦ + E

⎡
⎢⎣
⎛
⎝ ∑

1�i�n

φi

⎞
⎠

2
⎤
⎥⎦ + 2E

⎡
⎢⎢⎣ ∑

1�i<j�n

j �=i−1,i,i+1

∑
1�k�n

εijφk

⎤
⎥⎥⎦ . (12)

In the previous section, we proved that E
[(∑

1�i<j�n

j �=i−1,i,i+1
εij

)2] = O(n2). For the second term

we have that

E

⎡
⎢⎣
⎛
⎝ ∑

1�i�n

φi

⎞
⎠

2
⎤
⎥⎦ =

∑
1�i�n

E
[
φ2

i

]
+ 2

∑
1�i<j�n

E[φiφj ] = wn + 2E[φ1φn] = O(n). (13)

For the third term, we proceed as follows. If j �= i − 2, i + 2, then εij , φk are independent
random variables for all k, thus E[εijφk] = 0. If j = i + 2 then εij , φk are independent random
variables for all k �= i +1. For k = i +1, then there are eight different cases that can occur such
that E[εii+2φi+i] �= 0 (see figure 2). All of them give +|φi+1|. Since the vertices of the polygon

11
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Figure 2. For all the possible configurations of the edges i, i + 1 and i + 2 such that εi,i+2 �= 0, we
have that εi,i+2φi+1 = |φi+1|.

are chosen with respect to the uniform distribution, all the cases have the same probability,
thus E[εii+2φi+1] = E[|φi+1|] = w′. So, finally, we have that

E[Sl2(Pn)] = qn2 + O(n). (14)

In the case of a uniform random walk Rn the self-linking number is not a topological
invariant and one has to follow a similar averaging procedure as in the proof of theorem 3.2.
Finally, the mean squared self-linking number of a uniform random walk Rn is E[Sl2(Rn)] =
O(n2). �

Remark 3.7. In the case of a uniform random polygon, theorem 3.6 can be proved using
the following thinking. For a polygon Pn, E[Sl2(Pn)] = E

[
Lk
(
Pn, Pnε

)2]
, where Pnε

is the
polygon that results by substituting every circular arc of the normal polygon of Pn (Banchoff
1976) by a straight segment. We can then apply the same method as for the mean squared
linking number of two uniform random polygons used in theorem 3.1 by Arsuaga et al (2007).
We note that small changes in this method are necessary due to the structure of Pnε

. This
does not change the rate of the scaling of the mean squared linking number and we obtain
E[Sl2(Pn)] = O(n2).

Remark 3.8. We call attention to the fact that the scalings of the mean squared writhe, the
mean squared linking number and the mean squared self-linking number do not depend upon
the size of the box in the URP model, i.e. this model is ‘scale invariant’. The same data are
randomly generated for any sized cube as the measure determining the random selection of
points is uniform. If one wishes to increase the density of the chain, on average, it is necessary
to increase the number of points that are selected in defining the chain. One defines the density
of a chain contained in C3 as ρ = n/C3, as in Orlandini et al (2000) and Orlandini and
Whittington (2004). One could determine the critical value of n at which the linking between
the chains starts to become important. At the value for which linking becomes important, one
would expect to observe correlated phase transitions of other polymeric properties.

3.4. The mean absolute value of the linking number of a uniform random walk or polygon
with a simple closed curve in a confined space

In this section, following the proof of theorem 4 by Arsuaga et al (2007), we analyze the scaling
of the absolute value of the linking number between a uniform random walk or polygon and a
fixed simple closed curve in confined space.

12
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Theorem 3.9. Let Rn (or Pn) denote an oriented uniform random walk (or polygon,
respectively) of n edges and S a fixed simple closed curve both confined in the interior of a
symmetric convex set of R

3. Then the mean absolute value of the linking number between Rn

(or Pn) and S has a scaling with respect to the length of the walk (or the polygon) of the form

E[|L(Rn, S)|] ≈ O(
√

n). (15)

In order to prove this theorem, we will need the following theorem from probability theory
by Stein (1972). It is used to obtain a bound between the distribution of a sum of the terms
of an m-dependent sequence of random variables (that is X1, X2, . . . , Xs is independent of
Xt,Xt+1, . . . , provided t − s � m) and a standard normal distribution.

Theorem 3.10. Let x1, x2, . . . , xn be a sequence of stationary and m-dependent random
variables such that E[xi] = 0, E[x2

i ] < ∞ for each i and

0 < C = lim
n→∞

1

n
E

⎡
⎢⎣
⎛
⎝ ∑

1�i�n

xi

⎞
⎠

2
⎤
⎥⎦ < ∞, (16)

then 1√
nC

∑
1�i�n xi converges to the standard normal random variable. Furthermore, if we

let (a) = 1√
2π

∫
(−∞,a] e− x2

2 dx be the distribution function of the standard normal random
variable, then we have∣∣∣∣∣∣P

⎛
⎝ 1√

nC

∑
1�i�n

xi � a

⎞
⎠− (a)

∣∣∣∣∣∣ � A√
n

(17)

for some constant A > 0

Proof of theorem 3.9. Note that the confined space can be any convex space and a simple
closed curve may be of any knot type, but for simplicity we will assume that the confined
space is the cube given by the set C = {

(x, y, z) : − 1
2 � x, y, z � 1

2

}
and that the simple

closed curve S is the circle on the xy-plane whose equation is x2 + y2 = r2, where r > 0 is a
constant that is less than 1

2 . Let εj be the sum of the ±1’s assigned to the crossings between
the projections of the j th edge lj of Pn and S, we need to take the sum since, in this case, the
projections of lj may have up to two crossings with S. It is easy to see that εj = 0,±1,±2 for
each j , the εj ’s have the same distributions and that, by symmetry, we have E[εj ] = 0 for any
j . If |i − j | > 1 mod (n), then εi and εj are independent; hence, we have E[εiεj ] = 0. Let
p′ = E

[
ε2
j

]
and u′ = E[εiεi+1]. Then, if n = 3,

V

⎛
⎝ ∑

1�i�3

εi

⎞
⎠ = E

⎡
⎢⎣
⎛
⎝ ∑

1�i�3

εi

⎞
⎠

2
⎤
⎥⎦ =

∑
1�i�3

E[ε2
i ] + 2

∑
1�i,j�3

E[εiεj ]

= 3p′ + 6u′ = 3(p′ + 2u′) > 0. (18)

Thus, we have p′ + 2u′ > 0, where p′ = E
[
ε2
i

]
and u′ = E[εiεj ]. It follows that

0 < C = 1

n
E

⎡
⎢⎣
⎛
⎝ ∑

1�j�n

εj

⎞
⎠

2
⎤
⎥⎦ = p′ + 2u′ (19)

13
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for any n. If we ignore the last term εn in the above, then we still have

0 < C = lim
n→∞

1

n − 1
E

⎡
⎢⎣
⎛
⎝ ∑

1�j�n−1

εj

⎞
⎠

2
⎤
⎥⎦ = p′ + 2u′. (20)

Furthermore, the sequence ε1, ε2, . . . , εn−1 is a stationary and 2-dependent random
number sequence since the εj ’s have the same distributions, and what happens to ε1, . . . , εj

clearly do not have any affect to what happens to εj+2, . . . , εn−1 (hence they are independent).
By theorem 3.10, there exists a constant A > 0 such that∣∣∣∣∣∣P
⎛
⎝ 1√

(n − 1)(p′ + 2u′)

∑
1�i�n−1

εi � α

⎞
⎠− (α)

∣∣∣∣∣∣ � A√
n − 1

⇒
∣∣∣∣∣∣P

⎛
⎝ ∑

1�i�n−1

εi � α
√

(n − 1)(p′ + 2u′)

⎞
⎠− (α)

∣∣∣∣∣∣ � A√
n − 1

⇒
∣∣∣∣∣∣P

⎛
⎝ ∑

1�i�n−1

εi � w

⎞
⎠− 

(
w√

(n − 1)(p′ + 2u′)

)∣∣∣∣∣∣ � A√
n − 1

, (21)

where w = α
√

(n − 1)(p′ + 2u′).
Note that the linking number between the oriented uniform random polygon Pn and S is

equal to the sum 1
2

∑
1�i�n εi .

Then as n → ∞, 1
2

∑
1�i�n−1 εi → Z, where Z is a random variable that

follows the normal distribution with mean 0 and variance σ 2 = 1
4 (n − 1)(p′ + 2u′), i.e.

N
(
0, 1

4 (n − 1)(p′ + 2u′)
)
. So the random variable

∣∣ 1
2

∑
1�i�n−1 εi

∣∣ follows the half normal
distribution and E

[∣∣ 1
2

∑
1�i�n−1 εi

∣∣] = 1
2 (2/π(n − 1)(p′ + 2u′))1/2 = O(

√
n).

Thus,∣∣∣∣∣∣E
⎡
⎣
∣∣∣∣∣∣
1

2

∑
1�i�n−1

εi

∣∣∣∣∣∣
⎤
⎦− E

[∣∣∣∣12εn

∣∣∣∣
]∣∣∣∣∣∣ � E [|Lk(Rn, S)|] � E

⎡
⎣
∣∣∣∣∣∣
1

2

∑
1�i�n−1

εi

∣∣∣∣∣∣
⎤
⎦ + E

[∣∣∣∣12εn

∣∣∣∣
]

.

(22)

But E
[∣∣ 1

2

∑
1�i�n−1 εi

∣∣] = O(
√

n) and E[|εn|] is a constant independent of n, so
E[|Lk(Pn, S)|] = O(

√
n).

The proof carries through similarly in the case of a uniform random walk Rn and a simple
closed curve S. Note that in that case one does not have to ignore the last term in (19) and has
to carry through an averaging procedure over all possible projections as well as in the proof
of theorem 3.2. The result is again E[|Lk(Rn, S)|] = O(

√
n). �

Remark 3.11. One can understand the above result, for the case of a uniform random polygon,
and a simple closed curve using the following argument proposed by De Witt Sumners. We
know that Lk(Rn, S) equals the algebraic number of times the polygon Rn passes through the
surface S1 with S as perimeter. Let m = O(n) be the number of times the polygon Rn passes
through the surface S1 with S as perimeter. We can assume that k = O(n) of those edges are
non-consecutive (note that consecutive edges cancel each other and do not contribute to the

14
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linking number). Then we associate a variable xi = ±1 to each one of those non-consecutive
edges depending upon the orientation of the edge. Observe that these are independent random
variables. Then xi, 1 � i � k is a one-dimensional random walk; thus, the distance of
the starting point of the random walk of k = O(n) steps is of the order O(

√
n), and thus

|Lk(Rn, S)| = O(
√

n).

Remark 3.12. We stress that it is the mean absolute value of the linking number of two
uniform random walks or polygons in confined space and the mean absolute writhe and self-
linking number of a uniform random walk or polygon in confined space that are of greatest
interest for us. Although their analysis is much more challenging, we propose that these
provide a clearer picture of the scaling of the quantities associated with the geometry and
topology of the chains or polygons. We study these numerically in the next section. It would
be interesting for future work to prove the numerical scaling analytically.

4. Numerical results

In this section, we will describe results obtained by simulations of uniform random walks and
polygons in confined space and of equilateral random walks. First we consider the scaling of
the mean squared writhe, E[Wr2], and the mean absolute value of the writhe, E [|Wr|], of an
oriented uniform random walk and polygon of n edges in confined space. Then we study the
scaling of the mean absolute value of the linking number E[|Lk|] between an oriented uniform
random walk or polygon of n edges and a fixed oriented simple closed curve; and the mean
absolute value of the linking number between two oriented uniform random walks or polygons
of n edges each. Finally we study the scaling of the mean absolute value of the linking number
between two oriented equilateral random walks of n edges whose starting points coincide,
〈ALN〉, and the scaling of the mean absolute value of the self-linking number of an oriented
equilateral random walk of n edges, with respect to the number of edges, 〈ASL〉.

4.1. Generation of data

To generate uniform random walks and polygons confined in C3, each coordinate of a vertex
of the uniform random walk was drawn from a uniform distribution on [0, 1], and to generate
equilateral random walks, each edge vector was drawn from a uniform distribution on S2.

For the computation of the linking number or the writhe of uniform or equilateral random
walks or polygons, we used the algorithm by Klenin and Langowski (2000), which is based
on the Gauss integral. For each pair of edges e1, e2, their linking number is computed as
the signed area of two antipodal quadrangles defined by the two edges over the area of the
2-sphere.

We estimated the linking, the writhe and the self-linking numbers between oriented
uniform random walks and polygons by analyzing pairs of 10 subcollections of 500 oriented
uniform random walks or polygons ranging from 10 edges to 100 edges by a step size of 10
edges, for which we calculated the mean and then computed the mean of the 10 means for our
estimate. We did the same for the study of the linking number and the self-linking number of
equilateral random walks. For the computation of the scaling of the linking number between
an oriented uniform random walk or polygon and an oriented simple closed planar curve,
first we considered a fixed square and we analyzed 10 subcollections of 500 oriented uniform
random walks or polygons ranging from 10 edges to 100 edges by a step size of 10 edges. In
order to illustrate that the result holds for any fixed knot, we also considered a fixed trefoil and
we did the same analysis.
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4.2. Analysis of data

In this section, first we analyze our data on the mean squared writhe of an oriented uniform
random walk and for an oriented uniform random polygon in confined space. We fit our data
to a function of the form predicted in theorem 3.2 using the method of least-squares. Then
we check the variance and the coefficient of determination. The coefficient of determination
takes values between 0 and 1 and is an indicator of how well the curve fits the data. We
continue further our study of the writhe of uniform random walks and polygons by analyzing
our data on the mean absolute value of the writhe of a uniform random walk or polygon in
confined space. We do not have an analytical result for this scaling, but the data are very well
fitted to a linear function. Thus, we observe that the distribution of the writhe of a uniform
random walk or polygon has the property that the scaling of the mean squared writhe is equal
to the scaling of the squared mean absolute writhe. We know that if a random variable X
follows the normal distribution, X ∼ N(0, σ 2), then |X| follows the half-normal distribution
and E[|X|] = σ

√
2/π . Then |X|/σ follows the χ -distribution and X2/σ 2 follows the χ2-

distribution with one degree of freedom and mean 1. Thus, E[X2/σ 2] = 1, E[X2] = σ 2;
hence we have that E[X2] ≈ E[|X|]2. This indicates that the writhe of a uniform random
walk or polygon in confined space follows the normal distribution.

By Arsuaga et al (2007), it has been proved and confirmed numerically that the mean
squared linking number of two oriented uniform random polygons in confined space has a
scaling of the form O(n2). We stress that in the proof of this theorem they have used the fact
that the linking number of two closed oriented curves is independent of the projection. For two
oriented uniform random walks (open curves) in confined space we have proved that the mean
squared linking number has a scaling of the form O(n2) (theorem 3.1). This is confirmed by
our data. Furthermore, we study numerically the mean absolute value of the linking number
between two uniform random walks or polygons in confined space. Our data are well fitted
to a linear function. This matches the observation of Arsuaga et al (2007) that the linking
number follows the normal distribution.

The analytic study of the mean absolute linking number is a very challenging problem,
but in the same subsection, we study the scaling of the mean absolute linking number of the
special case of a uniform random walk or polygon and a fixed simple closed curve in confined
space. In theorem 3.9 we proved that it has a scaling of the form O(

√
n) and this agrees with

our data. We note that this is different from the mean absolute linking number of two uniform
random walks or polygons in confined space for which our numerical results indicate a scaling
of the form O(n).

Next we analyze numerical data for the mean squared self-linking number of uniform
random walks and polygons. The data strongly support a scaling of the form O(n2) and, thus,
confirm theorem 3.6. We analyze our data for the mean absolute value of the self-linking
number of a uniform random walk or polygon in confined space. Again, we observe a scaling
of the form O(n) which suggests that the self-linking number of a uniform random walk or
polygon in confined space follows the normal distribution.

We conclude that all the above measures follow the same type of distribution. Furthermore
this distribution has the property that the square root of the mean squared random variable is
equal to the mean absolute random variable. This strengthens our intuition that the linking
number follows a normal distribution.

4.2.1. Mean squared writhe and mean absolute writhe of an oriented uniform random walk
or polygon in a confined space. Our first numerical study concerns the writhe of a uniform
random walk or polygon. By theorem 3.2 the mean squared writhe of an oriented uniform
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Figure 3. The mean squared writhe of uniform random walks and polygons. Values obtained by
computer simulations are shown by triangles and squares, respectively. The black curve is the
graph of the mean squared writhe of a uniform random polygon and the dashed curve is the graph
of the mean squared writhe of a uniform random walk (open chain).

random polygon grows at a rate E[Wr2] ≈ qn2 + O(n). For comparison with this analytical
result we calculated the mean squared writhe of an oriented uniform random walk of varying
length and of an oriented uniform random polygon of varying length.

Results are shown in figure 3. The black curve in the figure illustrates the scaling of the
mean squared writhe of a uniform random polygon with respect to its number of edges and
is fitted to a function of the form qn2 + a where q is estimated to be 0.0329 ± 0.0002 and
a is estimated to be −2.1293 ± 0.9466, with a coefficient of determination R2 = 0.9998.
Thus, the estimate given in the theorem is strongly supported by the data. The dashed curve
in the figure illustrates the scaling of the mean squared writhe of a uniform random walk
with respect to its number of edges and is fitted to a function of the form qn2 + a where q is
estimated to be 0.0324±0.0002 and a is estimated to be −1.1499±0.9948, with a coefficient
of determination R2 = 0.9997. Hence, the estimate given in the theorem is strongly supported
by the data.

Note that q was estimated to be equal to 0.0329 ± 0.0002 and 0.0324 ± 0.0002,

respectively, which coincides with the predicted value of q given by Arsuaga et al (2007), i.e.
q = 0.0338 ± 0.024.

We next estimate the mean absolute value of the writhe of an oriented uniform random
walk or polygon. Results are shown in figure 4. The black curve in the figure represents
the mean absolute writhe of a uniform random polygon contained in C3 with respect to its
number of edges. The curve is fitted to a function of the form a + bn where a is estimated
to be −0.2372 ± 0.042 62 and b is estimated to be 0.1460 ± 0.0007, with a coefficient of
determination R2 = 0.9998. The dashed curve in the figure represents the mean absolute
writhe of a uniform random walk contained in C3 with respect to its number of edges. The
curve is fitted to a function of the form a + bn where a is estimated to be −0.1958 ± 0.0630
and b is estimated to be 0.1460 ± 0.0010, with a coefficient of determination R2 = 0.9996.
Note that in both cases b ≈ √

q.
As the number of edges of the polygons increases, we observe a growth at a rate O(n).

This suggests the conjecture
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Figure 4. The mean absolute writhe of uniform random walks and polygons in confined space.
Values obtained by computer simulations are shown by triangles and squares, respectively. The
black curve corresponds to the mean absolute value of the writhe of a uniform random polygon
and the dashed curve corresponds to the mean absolute value of the writhe of a uniform random
walk (open chain).

Conjecture 4.1.√
E[Wr2] ∼ E[

√
Wr2] = E[|Wr|]. (23)

The proof of conjecture 4.1 would strengthen our intuition that the mean writhe of a
uniform random walk or polygon in confined space follows the normal distribution.

Remark 4.2. We observe a difference between the scaling of the mean absolute writhe of
a uniform random walk or polygon confined in a cube and that of a self-avoiding polygon in
Z

3. In Janse van Rensburg et al (1993) the mean absolute writhe of a self-avoiding polygon
in Z

3 is proved to have a lower bound of the form O(
√

n). Furthermore, the numerical results
in Janse van Rensburg et al (1993) and Orlandini et al (1994) show a scaling of the form
E[|Wr|] ≈ n0.52 in the case of self-avoiding walks and polygons in Z

3. Indeed, considering
the fact that a uniform random walk or polygon is confined in a cube, and each vertex is
chosen with respect to the uniform distribution, as well as the differences between lattice and
off-lattice models, we should expect that the mean absolute writhe of a uniform random walk
or polygon would scale faster than that of a self-avoiding polygon in Z

3.

Remark 4.3. Comparing our numerical results to those concerning phantom chains in
confined space presented in Micheletti et al (2006), we notice a significant difference. In
Micheletti et al (2006) it is shown that the mean absolute writhe of phantom chains in confined
space has a scaling of the form O(n0.75). This difference in the order of scaling may be
due to the fact that in the URP model there is no fixed bond length. The phantom polygons
considered in Micheletti et al (2006) are equilateral, so the polygon cannot get knotted as
easily as in the case of the URP model, i.e. a polygon should have a greater length in order
to reach the abilities of conformation of a uniform random polygon confined in a cube of
fixed length. Furthermore, the spatial constraint considered in Micheletti et al (2006) is of a
different nature than the one that we study. One more aspect that could influence the numerical
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Figure 5. The mean squared self-linking number of uniform random walks and polygons. Values
obtained by computer simulations are shown by triangles and squares, respectively. The black
curve is the graph of the mean squared self-linking number of uniform random polygons contained
in C3. The dashed curve is the graph of the mean squared self-linking number of uniform random
walks contained in C3.

results presented in Micheletti et al (2006) is that the writhe is computed by using only 500
projections and taking their average.

4.2.2. Mean squared self-linking number and mean absolute self-linking number of an oriented
uniform random walk or polygon in a confined space. Our second numerical study concerns
the self-linking of an oriented uniform random walk or polygon in confined space.

The self-linking number is defined as (Banchoff 1976)

SL(l) = Wr(l) +
1

2π
τ(l). (24)

The first term is the writhe of the curve, which we studied in the previous subsection, and
the second term is the total torsion of the curve, τ(l) divided by 2π which measures how much
the curve deviates from being planar.

We calculated the mean squared self-linking number of an oriented uniform random walk
of varying length and of an oriented uniform random polygon of varying length.

Results are shown in figure 5. The black curve in the figure illustrates the mean squared
self-linking number of uniform random polygons in confined space and is fitted to a function
of the form qn2 + a where q is estimated to be 0.0331 ± 0.0003 and a is estimated to be
−0.0131 ± 1.5226, with a coefficient of determination R2 = 0.9993. The dashed curve in the
figure illustrates the mean squared self-linking number of uniform random walks in confined
space and is fitted to a function of the form qn2 +a where q is estimated to be 0.0331±0.0002
and a is estimated to be 0.3980 ± 1.1778, with a coefficient of determination R2 = 0.9996.
Thus the estimates given in the theorem are strongly supported by the data.

Note that the estimated value of q coincides with the predicted value of q given by Arsuaga
et al (2007), i.e. q = 0.0338 ± 0.024.

We next estimate the mean absolute value of the self-linking number of an oriented
uniform random walk or polygon. Results are shown in figure 6. The black curve in the figure
illustrates the mean absolute self-linking number of uniform random polygons contained in
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Figure 6. Mean absolute self-linking number of uniform random walks and polygons in confined
space. Values obtained by computer simulations are shown by triangles and squares, respectively.
The black curve is the graph of the mean absolute self-linking number of uniform random polygons
and the dashed curve is the graph of the mean absolute self-linking number of uniform random
walks.

C3 and is fitted to a curve of the form a + bn where a is estimated to be −0.1516 ± 0.1051 and
b is estimated to be 0.1476 ± 0.0017, with a coefficient of determination R2 = 0.9990. The
dashed curve in the figure illustrates the mean absolute self-linking number of uniform random
walks contained in C3 and is fitted to a curve of the form a + bn where a is estimated to be
−0.1089±0.0809 and b is estimated to be 0.1463±0.0013, with a coefficient of determination
R2 = 0.9994. Note that in both cases b ≈ √

q. This suggests the conjecture

Conjecture 4.4.√
E[SL2] ∼ E[

√
SL2] = E[|SL|]. (25)

The proof of conjecture 4.4 would suggest that the mean self-linking number of a uniform
random walk or polygon follows the normal distribution.

4.2.3. Mean squared and mean absolute linking number of oriented uniform random walks
in a confined space. Our third numerical study concerns the linking between two oriented
uniform random walks or polygons in confined space. By theorem 3.1, the mean squared
linking number between two oriented uniform random polygons grows at a rate O(n2) with
regard to the number of edges of the polygons.

We calculated the mean squared linking number between two oriented uniform random
walks of varying lengths and the results are shown in figure 7. The curve in the figure is
fitted to a function of the form a + q

2 n2 where a is estimated to be −0.5499 ± 0.9297 and q is
estimated to be 0.0346±0.0004, with a coefficient of determination R2 = 0.9991. Clearly, as
the number of edges of the walks increases, we observe a growth at a rate O(n2), as expected
from theorem 3.5.

Next we calculated the mean absolute linking number between two oriented uniform
random walks or polygons of varying length and results are shown in figure 8. The black
curve in the figure illustrates the mean absolute linking number of two uniform random
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Figure 7. The mean absolute linking number of two uniform random walks contained in C3.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

20 40 60 80 100
n

2

4

6

8

10

Lk

Figure 8. The mean squared linking number of two uniform random walks and polygons contained
in C3. Values obtained by computer simulations are shown by triangles and squares, respectively.
The black curve is the graph of the mean absolute linking number of two uniform random polygons
and the dashed curve is the graph of the mean absolute linking number of two uniform random
walks.

polygons contained in C3 and is fitted to a function of the form a + bn where a is estimated
to be −0.0300 ± 0.0256 and b is estimated to be 0.1030 ± 0.0004, with a coefficient of
determination R2 = 0.9999. The dashed curve in the figure illustrates the mean absolute
linking number of two uniform random walks contained in C3 and is fitted to a function
of the form a + bn where a is estimated to be −0.0251 ± 0.0350 and b is estimated to be
0.1044 ± 0.0006, with a coefficient of determination R2 = 0.9998. Clearly, as the number
of edges of the polygons increases, we observe a growth at a rate O(n). This suggests the
conjecture

Conjecture 4.5.√
E[Lk2] ∼ E[

√
Lk2] = E[|Lk|]. (26)
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Figure 9. The mean absolute linking number of a uniform random walk or polygon and a fixed
square in confined space. Values obtained by computer simulations are shown by triangles and
squares, respectively. The black curve is the graph of the mean absolute linking number of a
uniform random polygon and a fixed square and the dashed curve is the graph of the mean absolute
linking number of a uniform random walk and a fixed square.

Remark 4.6. Note that (26) agrees with our intuition and with the numerical results
obtained by Arsuaga et al (2007) that the linking number of two uniform random walks or
polygons in confined space follows the normal distribution. Indeed, if Lk ∼ N(0, σ 2), where
σ 2 = O(n2), then |Lk| follows the half-normal distribution and E[|Lk|] = σ

√
2/π = O(n).

Then |Lk|
σ

follows the χ -distribution and Lk2/σ 2 follows the χ2-distribution with one degree
of freedom and mean 1. Thus, E[Lk2/σ 2] = 1, E[Lk2] = σ 2 = O(n2), hence we have that
E[Lk2] ≈ E[|Lk|]2.

Our next numerical study concerns the linking between an oriented uniform random walk
or polygon and a fixed simple closed curve in confined space. By theorem 3.9, the mean
absolute value of the linking number between an oriented uniform walk or polygon of n edges
and a fixed oriented simple closed curve in confined space has a scaling of the form O(

√
n).

First we consider the oriented square S1 defined by the sequence of vertices (0.1, 0.1, 0.5), (0.9,
0.1, 0.5), (0.9, 0.9, 0.5), (0.1, 0.9, 0.5), (0.1, 0.1, 0.5) and a uniform random walk or polygon.
The results of our simulations can be seen in figure 9. The black curve shows the growth
rate of the mean absolute linking number of a uniform random polygon and S1. The data are
fitted to a function of the form a + b

√
n, where a is estimated to be −0.1665 ± 0.0212 and

b is estimated to be 0.1794 ± 0.0029, with a coefficient of determination R2 = 0.9980. The
dashed curve shows the growth rate of the mean absolute linking number of a uniform random
walk and S1. The data are fitted to a function of the form a + b

√
n, where a is estimated to be

0.0848 ± 0.0153 and b is estimated to be 0.1576 ± 0.0021, with a coefficient of determination
R2 = 0.9986. Thus, we can see that the data are consistent with theorem 3.9.

To illustrate that the growth rate of the mean absolute linking number does not depend on
the knot type of the fixed simple closed curve, we consider the oriented trefoil S2 defined
by the sequence of vertices (0.9, 0.5, 0.5), (0.1, 0.5, 0.4), (0.5, 0.3, 0.9), (0.6, 0.3, 0.1),

(0.2, 0.9, 0.6), (0.5, 0.2, 0.5), (0.9, 0.5, 0.5) and a uniform random walk or polygon. The
results of our simulations can be seen in figure 10. The black curve shows the growth rate of
the mean absolute linking number of a uniform random polygon and S2. The data are fitted
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Figure 10. The mean absolute linking number of a fixed trefoil and a uniform random walk or
polygon in confined space. Values obtained by computer simulations are shown by triangles and
squares, respectively. The black curve is the graph of the mean absolute linking number of a fixed
trefoil and a uniform random polygon. The dashed curve is the graph of the mean absolute linking
number of a fixed trefoil and a uniform random walk.

to a function of the form a + b
√

n, where a is estimated to be −0.1232 ± 0.0381 and b is
estimated to be 0.3610 ± 0.00514, with a coefficient of determination R2 = 0.9984. The
dashed curve shows the growth rate of the mean absolute linking number of a uniform random
walk and S2. The data are fitted to a function of the form a + b

√
n, where a is estimated

to be −0.0142 ± 0.0432 and b is estimated to be 0.3496 ± 0.0058, with a coefficient of
determination R2 = 0.9978. Hence, the data confirm our analytical result in theorem 3.9 for
any fixed simple closed curve.

4.3. Numerical results on equilateral random walks

Equilateral random walks are widely used to study the behavior of polymers under θ -
conditions. It is of great interest to study the scaling of the linking number, the self-linking
number and the writhe of equilateral random walks and polygons. These situations are also
much more complex in comparison to the uniform models studied in previous sections, since
the probability of crossing of two edges depends on their distance and the probability of
positive or negative crossing is independent upon the previous edges. In this section, we
present numerical results concerning equilateral random walks and polygons. It would be of
great interest to have rigorous proofs of the scaling observed.

4.3.1. Mean absolute self-linking number of an equilateral random walk. In this section we
discuss our numerical results on the scaling of the self-linking number of a random walk.

The self-linking number of a random walk X is equal to the writhe plus the total torsion
of the random walk:

E[|SL(X)|] = E[|Wr(X) + τ(X)|] � E[|Wr(X)|] + E[|τ(X)|]

= E[|Wr(X)|] + E

[∣∣∣∣∣
∑

i

φi

∣∣∣∣∣
]

� E[|Wr(X)|] + E

[∑
i

|φi |
]

(27)
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Figure 11. Mean absolute value of the self-linking number of an equilateral random walk.

where E
[∑

i |φi |
]

has been proved to be approximately equal to nπ
2 − 3π

8 (Plunkett et al 2007,
Grosberg 2008).

Previous numerical results (Orlandini et al 1994) suggest that the average of the absolute
value of the writhe of an ideal walk increases as

√
n, where n is the length of the walk.

Figure 11 shows the 〈|ASL|〉 values obtained in numerical simulations of ideal random
walks.

We have fitted the computing data points with the function a + b
√

n, leaving the two
parameters a and b free. Then a was estimated to be −0.3131 ± 0.0313 and b was estimated
to be 0.4014 ± 0.0042, with a coefficient of determination R2 = 0.9991.

Remark 4.7. We observe that our numerical results concerning the mean absolute self-
linking number of an equilateral random walk are consistent with those observed for the mean
absolute writhe of a self-avoiding polygon in Z

3 (Janse van Rensburg et al 1993, Orlandini
et al 1994). Recall that in Janse van Rensburg et al (1993), the mean absolute writhe of a
self-avoiding polygon in Z

3 is shown to have a lower bound of the form O(
√

n). Furthermore,
the numerical results in Janse van Rensburg et al (1993) and Orlandini et al (1994) show a
scaling of the form E[|Wr|] ≈ n0.52 in the case of self-avoiding walks and polygons in Z

3.

4.3.2. Mean absolute linking number of two equilateral random walks whose starting points
coincide. In this section we discuss our numerical results on the scaling of the linking number
between two equilateral random walks whose starting points coincide. Figure 12 shows the
〈ALN〉 values obtained in numerical simulations of ideal random walks in a non-constrained
linear form.

By the numerical results presented in the last section, we expect that the mean absolute
value of the writhe of an oriented equilateral random walk X of n steps will have a power-law
dependence on the length of the walk:

〈AWR〉 ≈ O(
√

n). (28)

Let X = (X0, X1, . . . , Xn) and Y = (Y0, Y1, . . . , Yn) denote two oriented equilateral
random walks of length n whose starting points coincide, i.e. X0 = Y0 = 0. One can use the
scaling of 〈AWR〉 to give information concerning the scaling of 〈ALN〉 as follows.
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Figure 12. The mean absolute value of the linking number of two equilateral random walks whose
starting points coincide.

We define X–Y to be the oriented equilateral random walk of 2n steps (Yn, . . . , Y1, Y0 =
X0, X1, . . . , Xn). Its writhe then is

Wr(X − Y ) = Wr(X) + Wr(−Y ) + 2L(X,−Y )

⇔ Wr(X − Y ) = Wr(X) + Wr(−Y ) − 2L(X, Y )

⇒ 2L(X, Y ) = −Wr(X − Y ) + Wr(X) + Wr(Y )

⇒ |L(X, Y )| � 1
2 (|Wr(X − Y )| + |Wr(X)| + |Wr(Y )|)

⇒ |L(X, Y )| � 1
2 (O(

√
2n) + O(

√
n) + O(

√
n))

⇒ |L(X, Y )| � O(
√

n). (29)

We decided therefore to check whether the average of the absolute value of the linking
number between two ideal walks increases as

√
n. We have fitted the computing data points

with the function a + b
√

n, leaving the two parameters a and b free. Then a was estimated
to be 0.0294 ± 0.0130 and b was estimated to be 0.0387 ± 0.0018 with a coefficient of
determination 0.9839.

5. Conclusions

The measurement of the entanglement of open chains is of great interest for many applications,
such as the study of the properties of polymer melts. In this paper, we focused our study in
the case of uniform random walks (open chains) and polygons in confined volumes. In
theorems 3.2, 3.1 and 3.6, we gave rigorous proofs that the scaling of the mean squared linking
number, the mean squared writhe and the mean squared self-linking number of oriented
uniform random walks and polygons in confined space, with respect to their length, is of the
form O(n2).

Further, we are interested in the mean absolute value of the linking number of two uniform
random walks or polygons in confined space. In this direction, we prove in theorem 3.9 that the
mean absolute value of the linking number of an oriented uniform random walk or polygon and
a fixed oriented simple closed curve in confined space is of the form O(

√
n). Our numerical

results confirm the analytical prediction and furthermore suggest that for two oriented uniform
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random walks or polygons in confined space
√

E[lk2] ∼ O(n) ∼ E[
√

lk2]. A possible
direction for future work would be to prove these results analytically.

Ideal random walks are used to model the behaviour of polymers under θ -conditions.
We have analyzed numerically the scaling of the mean absolute value of the linking number
between two equilateral random walks of n steps and the mean absolute value of the self-
linking number of an equilateral random walk of n steps. Both appear to scale as O(

√
n).

An important direction for future work is to complete the analysis and provide proofs for the
scaling of the self-linking number and that of the linking number of equilateral random walks
and polygons.
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