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Using numerical simulations we investigate shapes of random equilateral open and closed chains,
one of the simplest models of freely fluctuating polymers in a solution. We are interested in the 3D
density distribution of the modeled polymers where the polymers have been aligned with respect to
their three principal axes of inertia. This type of approach was pioneered by Theodorou and Suter
in 1985. While individual configurations of the modeled polymers are almost always nonsymmetric,
the approach of Theodorou and Suter results in cumulative shapes that are highly symmetric. By
taking advantage of asymmetries within the individual configurations, we modify the procedure of
aligning independent configurations in a way that shows their asymmetry. This approach reveals, for
example, that the 3D density distribution for linear polymers has a bean shape predicted
theoretically by Kuhn. The symmetry-breaking approach reveals complementary information to the
traditional, symmetrical, 3D density distributions originally introduced by Theodorou and Suter.
© 2010 American Institute of Physics. �doi:10.1063/1.3495482�

I. INTRODUCTION

Freely jointed equilateral chains provide simple models
used to study polymer behavior.1–19 While one can generate
millions of independent configurations and visualize them
individually, difficulty arises when one wants to study the
aggregation of many configurations to obtain cumulative
measures of polymer shape. The cumulative shapes depend
on the way the aggregation of the coordinates is accom-
plished. A conceptually simple approach is to collect coordi-
nates of many independent polymer configurations and then
translate the coordinates of each configuration so that their
centers of mass coincide with the origin. Using such an ap-
proach, the integrated shape of the fluctuating polymer mol-
ecules is spherical and its principal characteristic can be ex-
pressed by the radius of gyration, revealing the average
spatial extension of the modeled chain. Its standard deviation
characterizes its fluctuations over time.

A more sophisticated approach is to use the coordinate
system based on the three principal axes of inertia deter-
mined for each given configuration. The configurations are
rotated so that their principal axes of inertia coincide. Such
an approach breaks the spherical symmetry and shows that
the average shapes of linear polymers can be approximated
as prolate ellipsoids.15,20 Interestingly, for a given form of a
polymer �e.g., unbranched linear polymer� and given solvent
conditions �e.g., � solvent, where the segments of the poly-
mer neither attract nor repel each other�, the ratios between
the three principal moments of inertia rapidly approach a

universal �i.e., independent of the particular chemistry of a
given polymer� asymptotic value as the polymer length
increases.21 Although the time-averaged three principal mo-
ments of inertia and their respective standard deviations give
us a more detailed description of the time-cumulative shapes
of polymers, using these measures alone does not reveal how
the density of states is distributed within the time-cumulated
shapes with ellipsoidal symmetry.

Theodorou and Suter22 �TS� introduced an approach to
investigate the distribution of mass density within accumu-
lated polymer configurations aligned with respect to their
three principal axes of rotation. The density distribution was
quite complex and showed a low density region around the
center of mass of the aggregated configurations. In addition,
the three-dimensional density maps obtained by TS are
highly symmetric. We know, however, that individual con-
figurations of freely fluctuating polymers are almost never
symmetric. Our goal is to construct density maps that reveal
this asymmetry. For example, if the TS procedure were ap-
plied to aggregate the coordinates of thousands of eggs, the
resulting cumulated shape would not resemble an ovoid but
rather an ellipsoid since the symmetry along the principal
axis would not have been broken. It is relatively simple to
align ovoids along their three principal axes of rotation in
such a way that the aggregated shape does resemble an
ovoid. For example, upon aligning the ovoids along their
three principal axes of rotation, one defines the positive prin-
cipal axis as the direction for which the extension is largest.
We have applied this principle of symmetry-breaking in gen-
erating three-dimensional �3D� mass density maps of cumu-
lative configurations for six-segment long equilateral chains
with four different topologies: linear chains, unknotted
circles, and right- and left-handed trefoil knots.
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II. DATA GENERATION

The linear chains were generated by joining six random
unit vectors. The equilateral hexagonal polygons were
sampled using the hedgehog method.23 In this algorithm an
initial configuration is generated by randomly selecting three
unit vectors and adding their negatives to give a collection of
six unit vectors whose sum is zero. The collection is then
subjected to a sequence of independent moves given by ran-
domly selecting two vectors of the six, randomly rotating the
vectors about the axis determined by their sum, and replac-
ing the two vectors by the two resulting vectors. These
moves have been rigorously proved to be ergodic.24 The only
topological forms that can be produced with six edges are the
unknot and left- and right trefoils �see Fig. 1�.25

The resulting open or closed chain configuration is then
rigidly moved to standard position as follows: First one cal-
culates the center of mass of the conformation and translates
the configuration so that its center of mass coincides with the
origin. Next one determines the three principal axes of rota-
tion assuming that the mass of the polygons is equally redis-
tributed among its vertices. These axes are defined as the
eigenvectors of the gyration tensor. Since the gyration tensor
is symmetric, the three eigenvectors are mutually orthogonal.
The eigenvector corresponding to the largest eigenvalue is
aligned with the x-axis. Of course, there are two possible
orientations, and this is where our work diverges from the
work of TS. We choose the positive axis to be the one which
gives a positive x-coordinate value to the vertex with the
highest absolute value of x. Next, holding the x-axis fixed,
one rotates the configuration so that the eigenvector corre-
sponding to the second largest eigenvalue coincides with the
y-axis and is oriented so that the vertex with the highest
absolute value of y has a positive y-component. Notice that
the orientation of the third eigenvector cannot be changed
without also changing the previously selected orientation of
the x- or y-axis. Therefore, the vertex with highest absolute
value in the z-coordinate may have a positive or negative
z-value. We call this alignment the symmetry-breaking align-
ment �SBA�. In the work of TS, the configurations are
aligned so that the principal axes coincide with the coordi-
nate axes, without the additional SBA step of ensuring that

the largest x- and y-values are positive for each configura-
tion.

The final collection of configurations is separated into
linear chains, unknotted circles, and right- and left-handed
trefoil knots. For the circular chains, the discrimination of
individual knot types was achieved by calculating the HOM-
FLYPT polynomial.26,27 For each of these four collections,
the 3D vertex mass density distributions is determined �as-
suming unit masses at each of the six vertices�. These density
distributions determine equidensity surfaces in 3D-space that
characterizes the average shape of these four classes of
chains.22 We use a scaling with respect to the maximum den-
sity ��max� as originally proposed by TS. We consider six
such nested surfaces with values 0.03�max, 0.10�max,
0.25�max, 0.35�max, 0.5�max, and 0.75�max, respectively, for
each of the types of chains and alignment algorithms.

III. RESULTS

A. Effect of symmetry imposing and SBA
on linear chains and unknotted circular chains

In Fig. 2, we compare the 3D density distribution of
vertices of random six-segment long equilateral linear chains
when 1 000 000 independent configurations are aligned
along their three principal axes of inertia using the TS
method22 �Fig. 2�a�� and using the SBA method �Fig. 2�b��.
The 3D density distribution is visualized using surfaces that
approximate the boundary of the volume enclosing voxels
with a given density of vertex points. As these surfaces are
nested, we present them separately starting from isodensity
surfaces connecting voxels with a low occupation rate �left
side of Fig. 2� and ending with the isodensity surfaces join-
ing voxels with a high density of occupation �right side of
Fig. 2�. In the case of the alignment procedure proposed by
TS �Fig. 2�a�� the shapes traced by isodensity surfaces are
highly symmetric and show 180° symmetry about the three
principal axes and mirror symmetry with respect to the three
coordinate planes. These highly symmetric forms were de-
scribed as bar of soap shapes by TS. The SBA procedure
leads to a shape with a much lower degree of symmetry
although still having a mirror symmetry with respect to
xy-plane. Interestingly, the shape resembles a bean, as was
predicted for random linear chains by Kuhn in 1934.6 Kuhn
used probabilistic arguments to reveal that the average shape
of a random polygonal chain breaks the spherical symmetry
and can be better approximated by the shape of a bean.

Figure 3 shows the comparison of 3D density distribu-
tions for 200 000 independent configurations of unknotted
random hexagons when they are aligned using the symmetry
imposing �TS� and SBA. Focusing first on the symmetries,
we see the same principal features as in Fig. 2, i.e., highly
symmetric bar of soap shapes using the TS method and bean
shapes with one mirror plane when using the SBA method.
With regard to shape descriptors such as the overall size and
proportions, we see that the circular chains are more compact
than linear chains, as would be expected intuitively. The
scale bar on the figures shows the individual segment length.

FIG. 1. An equilateral hexagonal trefoil knot in R3.

1-2 Millett et al. J. Chem. Phys. 133, 1 �2010�

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

AQ:
#2

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141
142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178



B. Effect of symmetry imposing and SBA
on polygons forming chiral knots

Using the SBA procedure, we decrease the order of sym-
metry of the surfaces for unknotted random polygons. How-
ever, we still have one mirror plane. A natural way of under-
standing the remaining mirror symmetry is that any
configuration of an unknot is as likely as its mirror image.
For chiral objects, such as polygons or polymers forming
chiral knots, there will be no mirror plane symmetry.

Trefoil knots are chiral and they have right- and left-
handed forms that are not topologically interconvertible. We
applied the two alignment procedures to see how the chiral
nature of random trefoil knot configurations affects the cu-
mulative shapes. Figure 4 compares the 3D density distribu-
tion of vertices of random hexagons forming right-handed
trefoil knots using the alignment method of TS �Fig. 4�a��
and using the SBA method �Fig. 4�b��. It is quite apparent
that the alignment method of TS produces a 3D density dis-
tribution with a high order of symmetry, i.e., having 180°
rotational symmetry with respect to each of the three princi-
pal axes. Interestingly, despite this symmetry, the aggregated

shape is chiral. In Fig. 4�a�, the density surfaces are not
invariant under mirror reflection through the coordinate
planes, which demonstrate their chirality. Note, however,
they are invariant under a 180° rotation about the coordinate
axes. The SBA images provide strong evidence of this chiral-
ity.

Looking at the overall size of surfaces relative to the
edge length bars in each image, we see that both alignment
procedures �i.e., TS and SBA� reveal that the cumulative
shapes of trefoil knots are most compact, followed by sur-
faces for the unknotted polygons and open chains.

To verify that the symmetry imposing and SBAs are real
signatures of chirality in the trefoil configurations, we ana-
lyzed the 3D density distributions for hexagons forming left-
handed trefoils �see the supplementary materials�.28 Indeed
the aggregated shapes are mirror symmetric to those shown
in Fig. 4.

IV. CONCLUSIONS

We have presented a new method of aligning individual
configurations of random chains such as those realized by
momentary configurations of thermally fluctuating polymer
molecules in a solution. Our method uses the intrinsic asym-
metry of individual configurations to specifically orient them
along their respective three principal axes of rotation. The
SBA alignment procedure performed for random configura-
tions of amphichiral character �i.e., linear and unknotted cy-

FIG. 2. This figure contains the density isosurfaces for the six-segment long
linear chains using the two alignment procedures. The leftmost surfaces
engulf the regions with smaller vertex densities and the rightmost surfaces
engulf the regions with higher vertex densities. The densities shown are
0.03�max, 0.10�max, 0.25�max, 0.35�max, 0.5�max, and 0.75�max, respectively,
where �max is the maximum voxel density within this class of chains �linear�
using the designated alignment method. The top row shows an angled view
followed by a view along each of the three principal axes. The black bar on
the left below the third column is the length of one edge segment.

FIG. 3. This figure contains the density isosurfaces for the vertex sets of
hexagonal unknots. The densities shown are the same as in Fig. 2.
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clic chains� reveals a mirror symmetry within the superposed
collection of independent configurations. For linear and un-
knotted circular chains, this mirror symmetry is simply a
consequence of the fact that any individual configuration is
as likely as its mirror image. However, our alignment method
applied to random configurations forming a given chiral knot
�with a given handedness� clearly reveals the chiral character
of the superposed collection of independent configurations
and results in an aggregated shape that is intrinsically asym-
metric.
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