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Abstract Freely jointed random equilateral polygons serve as a common model for poly-
mer rings, reflecting their statistical properties under theta conditions. To generate equilat-
eral polygons, researchers employ many procedures that have been proved, or at least are
believed, to be random with respect to the natural measure on the space of polygonal knots.
As a result, the random selection of equilateral polygons, as well as the statistical robust-
ness of this selection, is of particular interest. In this research, we study the key features of
four popular methods: the Polygonal Folding, the Crankshaft Rotation, the Hedgehog, and
the Triangle Methods. In particular, we compare the implementation and efficacy of these
procedures, especially in regards to the population distribution of polygons in the space of
polygonal knots, the distribution of edge vectors, the local curvature, and the local torsion.
In addition, we give a rigorous proof that the Crankshaft Rotation Method is ergodic.
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1 Introduction

Polymer chains have been modeled as freely jointed random polygons under certain condi-
tions [10, 15, 18, 21, 29, 55, 60, 62, 63, 66]. This simple representation of polymeric chains
derives from their statistical properties under theta conditions, in which the effects of ex-
cluded volume have been eliminated [9, 10, 26]. The physical behavior of linear polymers
under theta conditions is relatively well-understood and extensively explored by numerical
simulations and in experiments [10, 71]. The situation for polymer rings, however, becomes
more complicated when the topology of the polymer ring is taken into account. For example,
one might be interested in how the average behavior of circular polymers of a certain knot
type compares with that of another knot type, or with the average properties of the entire
population of polymers. In this setting, there is also a growing body of experimental [1–3,
22, 23, 64, 70] and numerical research [14, 15, 18, 21, 29, 50, 55, 60, 62, 63, 67].

In this paper, we will focus on the numerical simulation methods used to study three-
space models of such polymer rings. Specifically, we will take a close look at four popular
approaches for sampling the space of oriented equilateral knots (based at the origin) in R3,
and at how, under normal circumstances, one might ensure that the chosen sample is suffi-
ciently random, as measured by a wide range of geometric characteristics of the polygon.
In addition, we will give a rigorous proof that, like the Polygonal Folding Method [46],
the Crankshaft Rotation Method [36, 72] also gives a Markov chain Monte Carlo algorithm
where the Markov chain has a unique limit distribution which is uniform. Some of these
methods are, for the most part, inspired by methods employed in the study of self-avoiding
polygons in the cubic lattice where one wishes to construct an ergodic Markov chain in order
to characterize, for example, the frequency and complexity of knotting [58]. The Polygonal
Folding Method is a three-space translation of the pivot algorithm employed in the study of
self-avoiding walks [37, 40, 41]. The Crankshaft Rotation Method is, similarly, analogous
to the pivot algorithm although quite different from the Polygonal Folding Method. Each
randomly selects a pair of vertices that separate the polygon into two components, only one
of which is then modified in a random structure-preserving manner. The lattice models have
been much more amenable to rigorous theoretical and analytical study than the continuum
models that are the subject of this paper.

For the space K(n) of equilateral polygonal knots with n edges, we take the collection
of n-edge polygons in three-dimensional Euclidean space whose edge length is one and for
which we have selected an initial vertex and an orientation or direction along the vertices.
See Fig. 1. A translation of three-space allows us to assume that the initial vertex is situ-
ated at the origin of Euclidean space, so that we might characterize a polygon by its edge
vectors e1, e2, . . . , en leading from the initial vertex to the second, from the second vertex
to the third, from the third vertex to the fourth, and so on. This sequence of edge vectors
corresponds to a point in the product space of n two-dimensional spheres:

(e1, e2, . . . , en) ∈ S2 × S2 × · · · × S2.

The closure of the space of equilateral polygons is the subset K(n) of this product on which
the sum of the edge vectors is the zero vector:

e1 + e2 + e3 + · · · + en = 0 = (0,0,0).

K(n) is endowed with a natural measure inherited from the product measure on S2 ×· · ·×S2.
The result is the (2n−3)-dimensional set of polygons whose vertices are defined by the edge
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Fig. 1 (Color online) An
eight-edge equilateral 819 knot.
(Image provided by Peterson
Trethewey)

vectors as

v0 = 0,

v1 = e1,

v2 = e1 + e2,

v3 = e1 + e2 + e3,

...

vn−1 = e1 + e2 + e3 + · · · + en−1.

The space of equilateral polygonal knots K(n) is the open dense subset of K(n) defined
by the requirement that the polygons be topologically embedded, that is, that two edges
either intersect exactly at their common endpoint (assuming they are adjacent) or not at
all. From K(n), it inherits the structure of a (2n − 3)-dimensional manifold. The connected
components of K(n) are defined to be the geometric knot types of our space. In this work,
however, we will be concerned with the topological knot types defined by the requirement
that there be an orientation-preserving homeomorphism of three-space taking one polygonal
configuration to the other.

The complement of K(n) is the set of measure zero in K(n) consisting of the singular
images of polygons. When sampling uniformly with respect to the measure, these singular
polygons will occur with probability zero. Thus the knot type of a polygon in K(n) will
be defined with probability one. Furthermore, as the Hedgehog and Triangle methods em-
ploy singular configurations as starting points, this shows that these initial configurations
are converted, with probability one, into non-singular configurations after sufficiently many
polygonal folds or crankshaft rotations. In particular, proving that these operations define er-
godic Markov chains is critical to ensuring that the resulting data reflects the actual measure
structure of the space of polygons.

When our equilateral polygons have three, four, or five edges, the corresponding space
K(n) consists of a single component containing only the trivial unknot, a polygon which is
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both geometrically and topologically equivalent to a circle. At six edges, the trefoil knot 31

makes its first appearance. In fact, Calvo [4] proved that K(6) contains five components: one
of unknots and two for the left- and right-handed trefoils, respectively. Calvo also showed
that there are at least five components in K(7): one each for the trivial knot, the left-handed
trefoil, and right-handed trefoil, and two for the figure-eight knot 41. For K(8), where the
situation is even more complex, Calvo showed that at most twenty distinct topological knot
types (taking chirality into account) were possible. In 2006, Millett confirmed the final case
by constructing the equilateral eight-edge 819 knot with vertices

v0 = (0.0,0.0,0.0),

v1 = (4.24498869823336,−5.2980622416122225,4.2320925599369605),

v2 = (1.6213894406256604 − 2.44655836102984,−2.7668825474986716),

v3 = (6.955383417168724,−3.144912356769294,3.154334384419697),

v4 = (−0.5839489586644555,−5.8100837980223154,2.91911424190918),

v5 = (3.927828645068674,−2.44655836102984,−2.7668825474986716),

v6 = (2.059118770743978,−5.191514251536551,4.511382394420769),

v7 = (5.379505488302319,−5.235005412573363,−2.7668825474986716),

shown in Fig. 1. Despite intense Monte Carlo and constructive efforts, the existence of this
equilateral knot has otherwise escaped detection, a fact making the limitations of both of
these approaches concrete.

One commonly-used strategy for identifying equilateral knots with small numbers of
edges employs a random search of knot space. Of course, for nine edges and above, where
one does not know exactly which knots can be realized as polygons, this strategy cannot
yield a demonstrably complete enumeration of equilateral polygonal knots. Nevertheless, we
do know that the number of topologically distinct knots increases exponentially as a function
of the number of edges, and that the knots observed become more and more complex by
any of the standard measures. Furthermore, Rawdon and Scharein [61] have developed a
variety of perturbative methods that allow them to take a polygonal knot with unequal edge
lengths and, simultaneously, reduce the number of edges and make the edge lengths very
nearly equal. Using a result from [49], they are then able to deduce from this numerical
approximation the existence of a large number of truly equilateral knots. This method has
been particularly fruitful in the area of nine-edge polygons, in which any new polygonal
knot realization must necessarily be minimal, thanks to the complete enumeration of knot
types possible with eight or fewer edges.

The purpose of the research presented here is to study the properties of four attractive
Markov chain random walk and Markov chain Monte Carlo algorithms used to generate
large samples from knot space. These algorithms, which we describe in Sect. 2, can be used
to develop estimates of unknown topological knot populations with a fixed number of edges,
as well as of their relative probability distribution functions. In Sect. 3, we give a rigorous
foundation for the use of one of these algorithms, the Crankshaft Rotation Method. Then,
in Sect. 4, we describe six different numerical experiments concerning the implementation
and efficacy of these algorithms.



106 S. Alvarado et al.

2 Random Walk and Monte Carlo Algorithms

2.1 The Polygonal Folding Method

The Polygonal Folding Method PFM [46, 47] may take as its initial state any equilateral
polygon in K(n). Often this is taken as the standard regular n-edge planar polygon. An
elementary polygonal fold begins by randomly selecting a pair of non-adjacent vertices in
the polygon. As long as the vertices are distinct, they determine a folding axis that separates
the polygon into two pieces, at least one of which does not contain the base vertex at the
origin. An angle between 0 and 2π radians is then randomly selected, and the piece of the
polygon not containing the base vertex is folded (or rotated) by the selected angle about
the given axis. Figure 2 shows the effects of one such polygonal fold. In each frame of this
figure, the dotted line shows the axis of folding, while the dashed lines indicate the original
position of the polygon. Animation 1 shows an animated version of this figure; please refer
to the Electronic Supplemental Material for more details.1

The Polygonal Folding Method has been used to study the energy, rope length, and other
spatial properties of random equilateral knots [5, 6, 16, 18, 21, 46–49, 51, 60, 62, 63].
Theorem 1, originally proven in 1994 by Millett [46], implies that the PFM is a Markov
chain random walk. In 1996, Kapovich and Millson [34] gave an independent proof of this
result, and, in 2005, Toussaint [69] corrected a gap in Millett’s original proof, extending the
result to higher dimensions and showing that the algorithm requires only O(n) time per fold.

Theorem 1 ([34, 46, 69]) There exists a finite sequence of elementary polygonal folds taking
any equilateral polygon in K(n) to the standard regular planar polygon.

Note that this theorem does not imply that either the geometric or topological knot type
of a polygon is preserved, as a single elementary polygonal fold may pass through a number
of singular positions thereby repeatedly changing knot types. In fact, although it is natural
to apply PFM to embedded polygons in K(n), it may also be applied to singular polygons in
K(n), as long as one verifies at each step that the axis of folding is well-defined. Typically,
this is done by restricting our attention only to those polygons in K(n) for which all n

vertices are distinct.
In order to accelerate the effectiveness of the mixing, and the convergence of measured

quantities of configurations, it is common to invoke a Metropolis sampling strategy [43]
in which some number of elementary polygonal folds are taken before the next sample is
collected [16, 49]. This strategy reduces the correlation between the various samples taken,
and ensures that our sampling of knot space creates a more advantageous Markov chain
Monte Carlo algorithm. In addition, often one employs a simulated annealing strategy in
conjunction with the Metropolis sampling in implementation of the polygonal fold algorithm
[7, 16, 35, 49]. In Sect. 4.2, we will study the sampling rate (in other words, the number of
elementary steps performed between samples) required to minimize, as much as possible,
the correlation between the edge vectors of successive samples.

2.2 The Crankshaft Rotation Method

Another strategy, originally proposed by A.M. Dykhne [36, 72] as a constituent of the
Hedgehog Method (see Sect. 2.3), is the Crankshaft Rotation Method CRM. One be-
gins with an equilateral polygon in K(n), or more generally in K(n), having edge vectors

1Animations 1 and 2 can also be viewed online at www.avemaria.edu/calvopubs.

http://www.avemaria.edu/calvopubs
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Fig. 2 Various stages of the Polygonal Folding Method. In each frame, the dotted line shows the axis of
folding, while the dashed lines indicate the original position of the portion of the polygon which rotates about
this axis. Note that this motion modifies every edge vector in the rotating portion of the polygon. Refer to
Animation 1 in the Electronic Supplemental Material to see additional frames
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Fig. 3 Various stages of the Crankshaft Rotation Method. In each frame, the dashed lines indicate the orig-
inal position of the portion of the polygon which is moved by this rotation. The thin solid lines show the
components of each rotating edge in the direction of the axis of rotation. The dotted lines show their com-
ponents perpendicular to the axis of rotation. Observe that, with the exception of the two rotating edges, all
other edge vectors remains fixed throughout the motion. Refer to Animation 2 in the Electronic Supplemental
Material to see additional frames
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(e1, e2, . . . , en). An elementary crankshaft rotation consists of the random selection of two
non-parallel edge vectors ej and ek . These are then simultaneously rotated by a randomly
chosen angle θ between 0 and 2π about the axis determined by ej + ek . In particular, this
rotation will take

ej �→ crm(ej , ek, θ) = ej + ek

2
+ ej − ek

2
cos θ + ej × ek

‖ej + ek‖ sin θ,

ek �→ crm(ek, ej , θ) = ek + ej

2
+ ek − ej

2
cos θ + ek × ej

‖ek + ej‖ sin θ.

Figure 3 shows the effects of a crankshaft rotation. In each frame of this figure, the dashed
lines indicate the original position of the polygon. In addition, the thin solid lines show the
components of each rotating edge in the direction of the axis of rotation, while the dotted
lines show their components perpendicular to the axis of rotation. Animation 2 shows an
animated version of this figure; please refer to the Electronic Supplemental Material for
more details.

Note that this rotation is defined as long as ej and ek are not parallel. Otherwise, either
ej = ek and the rotation does not alter the polygon, or else ej +ek = 0 and the axis of rotation
is not well-defined. Of course, these cases are easily avoided outside a set of measure zero in
K(n). In particular, in our implementations, we need only verify that the two selected edge
vectors are not parallel before proceeding with an elementary crankshaft rotation.

In Sect. 3, we prove that the CRM is ergodic, and therefore determines a Markov chain
random walk. This result provides the rigorous theoretical foundation for the broad use
of the CRM in the generation of equilateral polygons. In particular, when coupled with
a Metropolis sampling strategy in which some number of elementary crankshaft rotations
are taken before the next sample is collected, the CRM becomes a Markov chain Monte
Carlo algorithm where the Markov chain has a unique limit distribution which is uniform.
In Sect. 4.2, we will study the sampling rate required to minimize, as much as possible, the
correlation between the edge vectors of successive samples.

2.3 The Hedgehog Method

The Hedgehog Method [36, 72] is a modification of the PFM and CRM used to generate
equilateral polygons with an even number of edges. Instead of starting with the standard
regular polygon, one first selects m unit vectors at random. This collection is then doubled
in size by including the negatives of these initial vectors, so as to create a set of n = 2m

unit vectors whose sum is automatically equal to zero. If we view all of these edge vectors
as starting at a common origin then, indeed, we obtain an object which roughly looks like a
hedgehog, as shown in Fig. 4(a). Having accomplished this, a number of elementary polyg-
onal folds or crankshaft rotations are then invoked to ensure that the resulting edge vectors
are as independent of each other as possible before selecting a representative and starting
over with the selection at random of another set of m unit vectors.

The implementation of the Hedgehog Method poses two important problems. First of all,
before any folds or rotations are applied, one might require that the polygon corresponding
to the hedgehog of n unit vectors have n distinct vertices. This is particularly important when
using polygonal folds to do our sampling, since these require us to select at random two dis-
tinct vertices to determine the axis of folding.2 One strategy employed to achieve this setup

2Of course, if one can determine that the two randomly-selected vertices are distinct, then one can proceed
with the polygonal fold without first requiring that the rest of the vertices of the polygon are distinct. Similarly,
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Fig. 4 Two sets of 18 unit vectors produced by (a) the Hedgehog Method and (b) the Triangle Method.
Observe that the symmetry intrinsic to the Hedgehog Method is easier to see than that produced by the
Triangle Method

is to permute the collection of n edge vectors until the sum of every proper subsequence of
edge vectors is non-zero:

ei + ei+1 + · · · + ej−1 + ej �= 0 whenever 1 ≤ i ≤ j < n.

As we observe in Sect. 4.1, this requires, on average, 1.56n transpositions.
Secondly, the number of elementary polygonal folds or crankshaft rotations employed

to guarantee the independence of the edges has varied widely throughout the literature. For
example, [36, 72] use up to 30n crankshaft rotations, while [60] propose that roughly 3n

are sufficient. In each of these cases, the stated objective is to eliminate the correlation be-
tween the edge vectors with the ultimate objective of randomly sampling the space of poly-
gons. Observe that, if one insures distinct vertices in the implementation of polygonal folds
or crankshaft rotations, the elimination of edge correlations will produce (with probability
one) an embedded polygon. Thus, one could dispense with the preparation of an embedded
hedgehog polygon and simply be careful to avoid singularities in the implementation of the
folds or crankshafts. In Sect. 4.2, we will compare the Pearson Correlation Index [38] be-
tween edge vectors (as a function of the sampling rate) to the observed correlation between
two independent sets of n random unit vectors.

2.4 The Triangle Method

The Triangle Method [53, 55–57] is a modification of the Hedgehog Method in which the
initial state (originally consisting of pairs of random unit vectors and their negatives) is
replaced by triples of vectors taken from randomly selected equilateral triangles. Thus, an
initial ordered set of m vectors is selected. Next, a second ordered set of m vectors, each
orthogonal to the corresponding vector in the first set, is selected. Each of these pairs of
orthogonal vectors is then used to determine a random equilateral triangle with unit-length
edges. The edges of each of each of these triangles are collected together to form a set of n =
3m unit vectors whose sum again equals zero. Observe that while one can visually identify

we can perform a crankshaft rotation by first verifying that the two edge vectors selected are not parallel,
regardless of whether the same holds for all the other edge vectors.



The Generation of Random Equilateral Polygons 111

the antipodal symmetry of the vectors generated by the Hedgehog Method in Fig. 4(a), the
symmetry intrinsic to the Triangle Method is more difficult to see in Fig. 4(b).

As in the case of the Hedgehog Method, this initial state is followed by some number
of elementary polygonal folds or crankshaft rotations (assuming that the conditions permit
them), thus reducing as much as possible any correlations between the edge vectors. In
Sect. 4.2, we will test how the number of iterations affects the value of the Correlation
Index, as compared to the value observed between two independent sets of n random unit
vectors.

Before applying any polygonal folds or crankshaft rotations, however, we might desire
to begin with a polygon having n distinct vertices. In particular, this setup simplifies the im-
plementation of any subsequent polygonal folds. Therefore, we may first choose to permute
the sequence of initial edge vectors, paying special attention to sufficiently randomize this
sequence so that vectors from the same triangle do not finish in adjacent positions. In partic-
ular, we wish to ensure that the turning angles are no longer 2π

3 , as they are in an equilateral
triangle. As we shall see in Section 4.1, on average, about 0.77n random transpositions are
required in order to produce a polygon with n distinct vertices. While the resulting config-
urations continue to have, now hidden, correlations among their edge vectors, Moore and
Grosberg [53, 54] have studied the abundance of knotting to confirm the adequacy of this
method, at least for their purposes, stating:

We therefore take special care to compare the results of this method with the unbiased
generation using the conditional probability method for both Gaussian distributed and
equal length models. We found that no appreciable deviations in knot abundance data
arise from the imperfection of the Triangle Method. ([54], p. 9085)

Thus, it seems that the original Triangle Method, without the use of either elementary polyg-
onal folds or crankshaft rotations, may be adequate for some purposes.

3 Ergodicity of the Crankshaft Rotation Method

In the previous section, we described how the Crankshaft Rotation Method has been a cen-
tral feature of the Hedgehog Method since its inception [36, 72]. Here we will provide the
rigorous theoretical foundation to support its widespread application by proving that the ac-
tion of crankshaft rotations on K(n) is ergodic. We do this by showing that any point in K(n)

can be deformed by crankshaft rotations into a standard position, namely one corresponding
to a planar regular n-gon. To begin, observe that, according to the formulas in Sect. 2.2, a
crankshaft rotation of two unit vectors through an angle of π reverses the roles of the two
vectors:

crm(ej , ek, π) = ek and crm(ek, ej , π) = ej .

We shall call this type of rotation a crankshaft flip.

Lemma 1 Any point (e1, e2, e3, . . . , en) in K(n) can be deformed by a sequence of
crankshaft rotations until it corresponds to a convex planar polygon.

Proof Let P be a plane in R
3 passing through the origin with unit normal vector u, and

suppose that (e1, e2, . . . , en) does not already lie in P . Since an appropriate sequence of
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crankshaft flips will permute these vectors, we may assume that e1, e2, e3, . . . , ej−1 lie in P

and that ej · u is, say, positive. By definition,

e1 + e2 + e3 + · · · + en = 0

so there is some other vector ek in this list such that ek · u is negative. Since a crankshaft flip
of ej and ek will reverse the sign of ej · u, there must be some value of θ0 between 0 and π

for which

crm(ej , ek, θ0) · u = 0.

After performing this crankshaft rotation, e1, e2, e3, . . . , ej−1 and the new ej all lie in the
plane P . Proceeding inductively, we can eventually place all n vectors in P . Then the vectors
can be permuted by a sequence of crankshaft flips so that the (oriented) angles between e1

and ei form an increasing sequence; this will make the polygon convex as desired. �

Note that Lemma 1 can be used to place a polygon, or any part of a polygon, inside any
plane P through the origin. In particular, if the first j vectors already lie in P , then they need
not be altered in the transformation. Unfortunately, this lemma does not quite hit the mark,
since it does not guarantee that the convex planar polygon at which we arrive is regular. For
this, we shall need the following result concerning the geometry of regular planar polygons.

Lemma 2 Suppose that (e1, e2, e3, . . . , en) corresponds to a regular planar polygon. See
Fig. 5. Then,

(a) the angle between the edge vectors ei and ei+1 measures 2π
n

, and
(b) the angle between the edge vector ei+1 and the secant

si = en−i+1 + en−i+2 + · · · + en−1 + en + e1 + e2 + · · · + ei

measures (2i + 1) π
n

.

Proof Recall that the interior angles of a simple planar n-edge polygon sum to (n − 2)π .
This means that each interior angle in a regular planar polygon measures 1

n
(n − 2)π =

π − 2π
n

. Since the angle between ei and ei+1 is an exterior angle of the polygon, its measure
is 2π

n
.

Now consider the (2i + 1)-edge polygon formed by en−i+1, en−i+2, . . . , en−1, en, e1, e2,

. . . , ei−1, and ei , together with the secant si . By the argument above, 2i − 1 of the interior
angles for this new polygon measure π − 2π

n
; thus, the measure of each of the interior angles

on either end of the secant si is

1

2

(
(2i − 1)π − (2i − 1)

(
π − 2π

n

))
= (2i − 1)

π

n
.

The desired angle between si and ei+1 is the sum of the angle between si and ei (which is
equal to one of these last two interior angles) and the angle between ei and ei+1 (which was
computed above). Therefore this angle measures

(2i − 1)
π

n
+ 2π

n
= (2i + 1)

π

n

as required. �
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Fig. 5 In a regular planar polygon, each edge vector ei makes an angle measuring 2π
n with the next

edge ei+1, and an angle measuring (2i − 1) π
n with the secant vector si = en−i+1 + en−i+2 + · · · +

en−1 + en + e1 + e2 + · · · + ei

Theorem 2 (Calvo and Millett, 2006) There exists a finite sequence of pairwise crankshaft
rotations taking any equilateral polygon in K(n) to the standard regular planar polygon.

Proof By Lemma 1, we can assume that the collection (e1, e2, e3, . . . , en) of edge vectors al-
ready corresponds to a convex polygon on the xy-plane. We may also assume that this poly-
gon is not already regular. In particular, this means that n ≥ 4. We shall make our polygon
regular in three steps, each of which will require several crankshaft rotations. To simplify
our notation, at the outset of each step we shall assume that (e1, e2, e3, . . . , en) corresponds
to a polygon satisfying the properties established in the previous steps.

Step 1. Set the angle between en and e1 equal to 2π
n

.
Let φ1 be the angle between en and e1. We can assume (by relabeling if necessary) that

φ1 < 2π
n

. Then

e1 · en = cosφ1 > cos
2π

n
≥ cos

π

2
= 0.

Since e1 + e2 + e3 + · · · + en = 0, there must be some ek for which

ek · en < 0 = cos
π

2
≤ cos

2π

n
.

In particular, this means that the angle between ek and en is greater than 2π
n

. A crankshaft
rotation of e1 and ek by an angle of θ will deform the angle φ1(θ) between en and
crm(e1, ek, θ), taking it from a value less than 2π

n
(when θ = 0) to a value greater than

2π
n

(when θ = π ). Thus, there is an intermediate value θ0 ∈ (0,π) for which φ1(θ0) = 2π
n

.
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Let ẽ1 = crm(e1, ek, θ0) and ẽk = crm(ek, e1, θ0) denote the first and kth edge vectors
after performing this crankshaft rotation, and let P1 be the plane determined by ẽ1 and en.
We can then apply Lemma 1 and deform the polygon (ẽ1, e2, e3, . . . , ek−1, ẽk, ek+1, . . . , en)

until it corresponds to a planar polygon in P1; in particular, we can do this without altering
the angle between ẽ1 and en, which will still measure 2π

n
.

Step 2. For each 1 < i ≤ n
2 , make the secant vector

si = en−i+1 + · · · + en−1 + en + e1 + e2 + · · · + ei

parallel to s1 = en + e1.
We begin by assuming that the secants s1, s2, . . . , sj−1, sj are all parallel. Consider the

angles φj+1 and φn−j between the secant sj and each of the vectors ej+1 and en−j , respec-
tively. If these angles are equal, then sj+1 is already parallel to sj and hence to s1. If not,
a crankshaft flip of ej+1 and en−j will interchange the relative size of these angles; thus,
there is a rotation angle θ0 ∈ (0,π) for which the angles between sj and each of the vectors
ẽj+1 = crm(ej+1, en−j , θ0) and ẽn−j = crm(en−j , ej+1, θ0) are equal. After this rotation, the
new secant vector

s̃j+1 = ẽn−j + en−j+1 + · · · + en−1 + en + e1 + e2 + · · · + ej + ẽj+1

will be parallel to s1.
Let Pj+1 be the plane determined by sj and ẽj+1. Since the secant vectors s̃j+1 and sj are

parallel, this plane contains

ẽn−j = s̃j+1 − sj − ẽj+1.

Furthermore, the pair of vectors ej and en−j+1 rotate about the axis

ej + en−j+1 = sj − sj−1

which is parallel to sj and therefore lies in Pj+1. This pair of vectors can therefore be brought
into Pj+1 by a crankshaft rotation. For similar reasons, the axis of rotation

ej−1 + en−j+2 = sj−1 − sj−2

lies in Pj+1, so the pair of vectors ej−1 and en−j+2 can also be brought into Pj+1 by a
crankshaft rotation. Continuing in this fashion, we can bring each one of the edge vectors
en−j+1, . . . , en−1, en, e1, e2, . . . , ej−1, and ej into Pj+1. Then using Lemma 1 we can bring
the rest of the polygon into Pj+1, all the while keeping the secants s1, s2, . . . , sj , and s̃j+1

parallel to each other.
Proceeding inductively, we can get every single secant si parallel to s1, as desired.
Step 3. For each 1 ≤ i ≤ n

2 , adjust the vectors ei+1 and en−i so the angles they each make
with the secant vector

si = en−i+1 + · · · + en−1 + en + e1 + e2 + · · · + ei

measure (2i + 1) π
n

.
As above, let φi+1 be the angle between si and ei+1; similarly, let φn−i be the angle

between si and en−i . We shall proceed by induction, assuming that

φi+1 = φn−i = (2i + 1)
π

n
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whenever 1 ≤ i < j . In particular, this means that the polygon formed by the vectors
en−j+1, en−j+2, . . . , en−1, en, e1, e2, . . . , ej−1, ej , and sj agrees in 2j consecutive edges with
a regular planar n-gon. Furthermore, we shall assume that the polygon determined by the
vectors ej+1, ej+2, . . . , en−j−1, en−j , and sj is also convex, so that

φj+1 ≤ φj+2 ≤ · · · ≤ φ	 n
2 
 ≤ π.

Case A. Suppose that φj+1 < (2j + 1) π
n

.
There must be some k with j + 2 ≤ k ≤ n

2 for which φk > (2k − 1) π
n

; for otherwise, let
u = sj /‖sj‖ be a unit vector pointing in the same direction as sj . Then

‖sj‖ = sj · u

= (−ej+1 − ej+2 − · · · − en−j−1 − en−j ) · u

= −ej+1 · u − ej+2 · u − · · · − en−j−1 · u − en−j · u

= − cosφj+1 − cosφj+2 − · · · − cosφn−j−1 − cosφn−j

= − cosφj+1 − cosφj+2 − · · · − cosφ	 n
2 


− ε − cosφ	 n
2 
 − · · · − cosφj+2 − cosφj+1

< − cos

(
(2j + 1)

π

n

)
− cos

(
(2j + 3)

π

n

)
− · · · − cos

((
2

⌊
n

2

⌋
+ 1

)
π

n

)

− ε − cos

((
2

⌊
n

2

⌋
+ 1

)
π

n

)
− · · · − cos

(
(2j + 3)

π

n

)
− cos

(
(2j + 1)

π

n

)
,

where ε equals 0 if n is even and 1 if n is odd. The last expression gives the length of
the secant joining two vertices separated by n − 2j edges in a regular n-gon. Of course,
looking at the other side of the regular n-gon, we find that this length is also equal to that
of a secant joining two vertices separated by 2j edges. Thus, it is equal to ‖sj‖, which is a
contradiction. Therefore we can assume that φk > (2k − 1) π

n
for some k.

Now, a crankshaft rotation of ej+1 and ek by an angle of θ will deform the angle φj+1(θ)

between sj and crm(ej+1, ek, θ), taking it from a value less than (2j +1) π
n

to a value greater
than (2k − 1) π

n
> (2j + 1) π

n
. Thus, there is an intermediate value θ0 ∈ (0,π) for which

φj+1(θ0) = (2j + 1) π
n

.
Let ẽj+1 = crm(ej+1, ek, θ0) and ẽk = crm(ek, ej+1, θ0) denote the j + 1st and kth edge

vectors after performing this rotation. By symmetry, a pairwise crankshaft rotation of en−j

and en−k+1 by the same angle θ0 will set φn−j equal to (2j + 1) π
n

, so we let ẽn−k+1 =
crm(en−k+1, en−j , θ0) and ẽn−j = crm(en−j , en−k+1, θ) be the results of this second rotation.
Since our rotation angles agree, each of the new secant vectors

s̃i = en−i+1 + · · · + ẽn−k+1 + · · · + ẽn−j + · · · + en + e1 + · · · + ẽj+1 + · · · + ẽk + · · · + ei

is still parallel to s1. Let Qj+1 be the plane determined by sj and ẽj+1; note that this plane
also contains ẽn−j = s̃j+1 − sj − ẽj+1. Furthermore, since the secants s̃i are parallel, we can
bring the rest of the polygon (two edges at a time) into Qj+1 just as in Step 2. The resulting
polygon will then have

φi+1 = φn−i = (2i + 1)
π

n

whenever 1 ≤ i < j + 1, and thus agree with a regular n-gon in at least 2j + 2 edges.
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Case B. Suppose that φj+1 > (2j + 1) π
n

.
Then, there must be some k with j +2 ≤ k ≤ n

2 for which φk < (2k −1) π
n

; for otherwise,
let u = sj /‖sj‖ be a unit vector pointing in the same direction as sj . Then

‖sj‖ = sj · u

= (−ej+1 − ej+2 − · · · − en−j−1 − en−j ) · u

= −ej+1 · u − ej+2 · u − · · · − en−j−1 · u − en−j · u

= − cosφj+1 − cosφj+2 − · · · − cosφn−j−1 − cosφn−j

= − cosφj+1 − cosφj+2 − · · · − cosφ	 n
2 


− ε − cosφ	 n
2 
 − · · · − cosφj+2 − cosφj+1

> − cos

(
(2j + 1)

π

n

)
− cos

(
(2j + 3)

π

n

)
− · · · − cos
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⌊
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2

⌋
+ 1

)
π

n
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− ε − cos
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− cos

(
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π

n

)
,

where ε equals 0 if n is even and 1 if n is odd. As before, the last expression gives the
length of the secant joining two vertices separated by 2j edges in a regular n-gon and must
therefore equal ‖sj‖. This would be a contradiction.

Applying the same method as in Case A, we can set φk and φn−k+1 equal to (2k−1) π
n

, all
the while reducing the size of φj+1 and φn−j . If, after this reduction, φj+1 is still greater than
(2j + 1) π

n
, we can repeat Case B. Each time we do so, there will be one fewer value of k for

which φk < (2k−1) π
n

, and so this process must eventually terminate with φj+1 ≤ (2j +1) π
n

.
We can then perform the rotations prescribed in Case A and obtain a polygon for which

φi+1 = φn−i = (2i + 1)
π

n

whenever 1 ≤ i < j +1. Again, such a polygon agrees with a regular n-gon in at least 2j +2
edges.

According to Lemma 2, when Step 3 is completed, we will have a collection of edge
vectors (e1, e2, e3, . . . , en) corresponding to a regular planar polygon, as desired. �

Theorem 2 shows that the random crankshaft rotations are sufficient to define a Markov
chain random walk. By adding permutations of the edge vectors to each elementary
crankshaft rotation, the rate of mixing inherent in the algorithm is further increased. We
can also use a Metropolis sampling strategy by performing some given number of elemen-
tary steps before selecting a sample. For instance, in Sect. 4.2, we determine experimentally
that performing as few as n random crankshaft rotations between samples will produce sam-
ple polygons whose edge vectors are, on average, as uncorrelated as possible according to
the Pearson Correlation Index.

In the next section we describe six different experiments forming part of our statistical
comparison of the algorithms discussed above. In particular, our investigation looks at issues
concerning the implementation of these algorithms, and their application in determining
geometric measures such as the total curvature, total torsion, and spherical distribution of
edge vectors of a random equilateral polygon, as well as the probability distribution function
of knots in the space of equilateral polygons.
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4 Experiment Design, Analysis and Conclusions

In this section, we analyze the data gathered in our numerical study of the four methods
described in Sect. 2. Our main goal is to illuminate several critical features of both the
implementation and the results of these algorithms, and to provide other researchers with
information that may assist them in selecting the most appropriate method for their specific
application. In our analysis, we propose to explore to the following questions:

1. How must the polygons generated by the Hedgehog or Triangle Methods be modified in
order to prevent those singular cases that can interfere with sampling by random polygo-
nal folds or crankshaft rotations?

2. How many iterations of random polygonal folds or crankshaft rotations should be em-
ployed in order to minimize the correlation between successive polygon selections, and
thereby improve the random sampling of the space of knots?

3. How much time, relatively speaking, does it take to determine successive polygons when
one takes into account the number of operations required to initialize a random walk and
to accomplish the desired selection?

4. How does the distribution of edge vectors selected by the algorithms compare to that of
a random selection of edge vectors without the closure requirement?

5. How well do these algorithms represent the geometry of random polygons as measured
by the total curvature and total torsion of the polygons?

6. How well do these algorithms sample the space of equilateral polygonal knots with re-
spect to its partition by topological knot type?

The four polygon generation algorithms were implemented independently in Mathemat-
ica 6.0 and in Fortran 77. In both settings, the programs were essentially identical, with
only the polygon generation modules being changed. Random numbers were generated us-
ing Mathematica’s RandomReal extended cellular automata-based method and Fortran’s
random number generator. Seed numbers for each of the programs were provided by Mads
Haahr’s random.org website [31]. For the statistical analysis, we used Mathematica’s
built-in Pearson Correlation Index function and wrote Mathematica programs to perform
the other statistical tests.

4.1 Preparation of Initial Edge Vectors

As we noted earlier, polygonal folds and crankshaft rotations form the key constituents in
the sampling phase of the Hedgehog and the Triangle Methods. Although it is not a strict
requirement, most implementations of PFM and CRM require that the starting configuration
be a non-singular, generic polygon. In particular, for the PFM, the two randomly-selected
vertices must be distinct in order to determine a well-defined axis of folding. Similarly, for
the CRM, the two edge vectors selected must be non-parallel. Of course, a polygon need
only have one pair of distinct vertices or one pair of non-parallel edges to serve as a suitable
initial state for PFM or CRM, respectively, assuming that one checks for this condition every
time a random pair of vertices or edges is selected. In general, however, a starting polygon
all of whose vertices are distinct and none of whose edges are parallel is preferred.

For the simple versions of the PFM and CRM, in which a regular planar polygon is taken
as the initial position, the only problems occur only for an even number of edges. In this
case, every pair of opposite edges is parallel, so our implementation of CRM must confirm
that these opposite edges are never selected simultaneously.

On the other hand, unless special care is taken, the initial generation phase in both the
Hedgehog and Triangle Methods will typically produce a starting polygon which is neither
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Table 1 The mean number of
transpositions (and their standard
deviation) required to achieve
non-singular polygons from the
Hedgehog and Triangle Methods
as a function of the number n of
edges

Number of edges Hedgehog Method Triangle Method

n = 12k transpositions std dev transpositions std dev

12 13.61 8.09 5.58 2.79

24 28.54 14.59 12.30 5.08

36 45.05 22.83 20.27 7.50

48 63.02 28.87 28.87 10.22

60 80.52 35.51 37.79 12.71

72 99.81 42.68 47.41 15.29

84 120.42 49.54 57.93 18.49

96 139.77 56.72 67.63 19.69

108 160.53 64.03 77.64 23.03

120 181.37 73.47 87.50 25.14

non-singular nor generic. As a consequence, before applying any PFM’s or CRM’s, it is typ-
ical to randomly permute the initial edge vectors some number of times until a non-singular
configuration is achieved.3 In as much as these transpositions represent an intrinsic over-
head in the implementation of the Hedgehog or Triangle Methods, we provide a numerical
estimate of the number of transpositions required to transform a polygon generated by each
of these methods into one having all distinct vertices.

4.1.1 Computations

A sample set of 1 000 random 12k-edge polygons was generated for each integer k =
1, . . . ,10 using each of the Hedgehog and Triangle Methods. Each polygon in these sample
sets then underwent a sequence of edge permutations until a polygon with distinct vertices
was produced. The mean number of transpositions required for each sample set is reported
in Table 1 and in Fig. 6.

4.1.2 Analysis

Using the least-squares linear regression for the data in Table 1, we determine that, for the
Hedgehog Method, roughly 1.56n transpositions are required to produce a non-singular n-
edge polygon. Similarly, for the Triangle Method, roughly 0.77n transpositions are required.
Since a closer inspection of the data suggests that the growth may actually be a power
function, we also computed the best-fitting power function describing each data set. With an
R2 value of 0.999, the mean number of transpositions necessary for the Hedgehog Method
is 0.797n1.1309 while that for the Triangle function is 0.2715n1.207. This provides another
expression of the increasing cost of data preparation for the Hedgehog Method as compared
to the Triangle Method when embedded polygons are required for the initial state.

4.1.3 Conclusions

Our results show that roughly twice as many transpositions are required for the Hedgehog
Method than for the Triangle Method. Nevertheless, because of the large standard deviation

3Unfortunately, permutations alone will not create the generic polygon required by CRM. For this reason,
before each rotation, our implementation of CRM always verifies that the selected edges are not parallel.
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Fig. 6 (Color online) A
comparison of the mean number
of transpositions required to
achieve non-singular polygons
from the Hedgehog and Triangle
Methods as a function of the
number n of edges

for both methods (roughly 0.59n and 0.20n, respectively), one should probably not rely
solely on performing 1.56n or 0.77n transpositions as a means of preventing problems in
the implementation of the polygonal folds. Instead, it may be wise to continue the random
permutations until one can verify that a configuration with distinct vertices has been reached.
Alternatively, it might be prudent to check that conditions permitting the implementation of
a polygonal fold are satisfied at each step.

4.2 Determination of the Sampling Rate

The principal objective of all of the algorithms described in Sect. 2 consists of generating
a collection of polygons which randomly sample the space of knots and, therefore, are as
different as possible from each other. In particular, the edge vectors of each polygon should
be as uncorrelated as possible with those of the preceding polygon. This is accomplished by
means of a Metropolis sampling method in which the polygonal folding or the crankshaft
rotation steps are repeated a specified number of times prior to the selection of the next
sample polygon. This number of iterations, also known as the sampling rate, is typically
given as a function of the number of edges in the class of polygons being studied. This
sampling rate is a principal contributor to the complexity of the method, i.e. the number of
operations that are required to generate a random sampling of the space of knots.

In the literature, there appears to be a considerable range of views on how large this
sampling rate ought to be. Thus, we now compare the effect of using various sampling rates
on the Pearson Correlation Index (PCI) between each successive pair of polygons sampled.

4.2.1 Computations

The Pearson Correlation Index (also known as the Pearson Product-Moment Correlation)
provides a measure of the degree to which two sets of data, X and Y, are linearly related [38].
It is defined as the covariance between the two sets of data divided by their standard devia-
tions; in other words,

PCI(X,Y) =
∑n

i=1 (xi − X)(yi − Y)√∑n

i=1 (xi − X)2
√∑n

i=1 (yi − Y)2
,

where X and Y denote the mean of X and Y, respectively. Thus, PCI(X,Y) takes on a
value in the closed interval [−1,1]; values near ±1 indicate a strong linear relationship
between the data sets, while values near 0 indicate a weak relationship. In our case, we shall
determine the correlation between two n-edge polygons by comparing the sequences of 3n
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coordinates obtained from the n edge vectors. We calculate the PCI for these sequences
n times, once for each choice of starting vertex, taking as our final result the maximum
absolute value observed.

First, two sample sets of 1 000 random 12k-edge polygons were generated for each inte-
ger k = 1, . . . ,10 by repeatedly applying the PFM and the CRM, respectively, to a standard
12k-edge regular polygon. After every n = 12k iterations, the Pearson Correlation Index
between the new and the initial polygons was computed. In addition, after every 5n = 60k

iterations, the resulting polygon was taken as the initial polygon for the next round of PFM’s
or CRM’s. The whole process was repeated 1 000 times. The mean PCI values for these
sample sets are recorded in Tables 2 and 3, respectively. These values give a measure of the
relative efficacy between the PFM and the CRM under the various sampling rates tested (n,
2n, 3n, 4n, and 5n).

Next, two new sample sets of 1 000 random 12k-edge polygons were generated for each
integer k = 1, . . . ,10 using the Hedgehog Method. In each case, a sequence of edge per-
mutations was used to ensure the non-singularity of the resulting polygons as described in
Sect. 4.1. Each polygon in the first of these sets then underwent a sequence of polygonal
folds, while each polygon in the second set underwent a sequence of crankshaft rotations. In
each case, the Pearson Correlation Index between the new and the initial polygons was com-
puted every n = 12k iterations. The mean PCI values for these polygons appear in Tables 4
and 5.

Finally, two more sample sets of 1 000 random 12k-edge polygons were produced for
each integer k = 1, . . . ,10 using the Triangle Method. As in the previous case, a sequence
of edge permutations was used to ensure the non-singularity of the resulting polygons. Then
polygons in the first of these sets were subjected to polygonal folds, while polygons in the
second set were subjected to crankshaft rotations. The Pearson Correlation Index between
the new and the initial polygons was computed every n = 12k iterations. The mean PCI
values for these polygons are reported in Tables 6 and 7. In order to establish a benchmark
for the data above, we calculated the Peterson Correlation Index between two random se-
quences of 12k unit vectors (without any closure condition) for each integer k = 1, . . . ,10.
This benchmark value was computed 1 000 times and its mean appears in the column labeled
“random” in Tables 2 through 7.

4.2.2 Analysis

For each of the six scenarios outlined above, we consider the correlation between the edge
vectors (as measured by the average PCI values) as a function of the number of iterations
of polygonal folds or crankshaft rotations performed (in other words, as a function of the
sampling rate). These values are then compared to the mean PCI calculated for the corre-
sponding set of random edge vectors without the closure requirement, as reported in the
“random” column of Tables 2 through 7. For each value of n, the PCI that comes closest to
this “random” mean correlation is indicated in bold font.

In many cases, the computed PCI values were actually lower than the mean correlation
associated with a set of random edge vectors. This might lead one to erroneously conclude
that the resulting polygon is somehow “more random” than a random collection of vectors.
Indeed, with the exception of the data presented in Table 2, all of the computed PCI values
lie within one standard deviation of the mean “random” correlations. Whereas this indicates
that the differences among this data should not be considered statistically significant, it also
points to the fact that all six scenarios are quite effective at reducing edge correlations, even
when the sampling rate used is relatively small. At any rate, we shall assume that any PCI
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Table 2 Edge vector correlations (PCI) for the Polygonal Folding Method using various sampling rates as a
function of the number n of edges. The mean PCI values (and their standard deviation) between two random
sequences of n unit vectors without any closure condition are given in the columns labeled “random” to
provide a benchmark for comparison. For each value of n, the PCI that comes closest to this random mean
correlation is indicated in bold font

Edges Polygonal folds Random

n = 12k n 2n 3n 4n 5n mean std dev

12 0.3471 0.3443 0.2371 0.2274 0.2312 0.3280 0.0828

24 0.2717 0.1921 0.1633 0.1571 0.1550 0.2695 0.0605

36 0.2199 0.1525 0.1343 0.1306 0.1228 0.2352 0.0484

48 0.1969 0.1362 0.1123 0.1081 0.1113 0.2127 0.0413

60 0.1707 0.1140 0.0998 0.0949 0.0937 0.1972 0.0360

72 0.1533 0.1025 0.0923 0.0881 0.0873 0.1836 0.0319

84 0.1389 0.0945 0.0830 0.0845 0.0776 0.1732 0.0289

96 0.1233 0.0861 0.0792 0.0768 0.0756 0.1650 0.0269

108 0.1130 0.0798 0.0721 0.0706 0.0714 0.1574 0.0247

120 0.1066 0.0752 0.0699 0.0672 0.0642 0.1510 0.0236

Table 3 Edge vector correlations (PCI) for the Crankshaft Rotation Method using various sampling rates
as a function of the number n of edges. The mean PCI values (and their standard deviation) between two
random sequences of n unit vectors without any closure condition are given in the columns labeled “random”
to provide a benchmark for comparison. For each value of n, the PCI that comes closest to this random mean
correlation is indicated in bold font

Edges Crankshaft rotations Random

n = 12k n 2n 3n 4n 5n mean std dev

12 0.3457 0.3371 0.3354 0.3377 0.3330 0.3280 0.0828

24 0.2737 0.2665 0.2648 0.2673 0.2679 0.2695 0.0605

36 0.2326 0.2346 0.2339 0.2307 0.2302 0.2352 0.0484

48 0.2106 0.2086 0.2106 0.2089 0.2093 0.2127 0.0413

60 0.1946 0.1931 0.1919 0.1932 0.1928 0.1972 0.0360

72 0.1811 0.1808 0.1786 0.1797 0.1808 0.1836 0.0319

84 0.1696 0.1692 0.1692 0.1699 0.1694 0.1732 0.0289

96 0.1623 0.1614 0.1628 0.1609 0.1612 0.1650 0.0269

108 0.1546 0.1542 0.1554 0.1535 0.1550 0.1574 0.0247

120 0.1498 0.1459 0.1480 0.1490 0.1497 0.1510 0.0236

value below the benchmark reflects a level of correlation comparable to that of a random
collection of vectors.

4.2.3 Conclusions

The data in Tables 2, 3, and 5 shows that the Polygon Folding Method, the Crankshaft Ro-
tation Method, and the Hedgehog Method with repeated crankshaft rotations can all be ex-
pected to achieve a distribution of edge vectors whose correlations are comparable to those
of a random collection of vectors by sampling every n iterations (or slightly more when n is
small). Similarly, the data in Tables 4 and 6 indicates that a sampling rate of 2n iterations is
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Table 4 Edge vector correlations (PCI) for the Hedgehog Method with repeated polygonal folds at various
sampling rates as a function of the number n of edges. The mean PCI values (and their standard deviation)
between two random sequences of n unit vectors without any closure condition are given in the columns
labeled “random” to provide a benchmark for comparison. For each value of n, the PCI that comes closest to
this random mean correlation is indicated in bold font

Edges Polygonal folds Random

n = 12k n 2n 3n 4n 5n mean std dev

12 0.3699 0.3440 0.3312 0.3362 0.3260 0.3280 0.0828

24 0.2930 0.2667 0.2671 0.2641 0.2640 0.2695 0.0605

36 0.2508 0.2359 0.2336 0.2265 0.2278 0.2352 0.0484

48 0.2265 0.2153 0.2086 0.2057 0.2073 0.2127 0.0413

60 0.2044 0.1957 0.1916 0.1883 0.1917 0.1972 0.0360

72 0.1944 0.1818 0.1796 0.1771 0.1778 0.1836 0.0319

84 0.1833 0.1723 0.1689 0.1679 0.1673 0.1732 0.0289

96 0.1765 0.1627 0.1599 0.1605 0.1587 0.1650 0.0269

108 0.1660 0.1558 0.1535 0.1529 0.1525 0.1574 0.0247

120 0.1596 0.1500 0.1478 0.1460 0.1461 0.1510 0.0236

Table 5 Edge vector correlations (PCI) for the Hedgehog Method with repeated crankshaft rotations at
various sampling rates as a function of the number n of edges. The mean PCI values (and their standard
deviation) between two random sequences of n unit vectors without any closure condition are given in the
columns labeled “random” to provide a benchmark for comparison. For each value of n, the PCI that comes
closest to this random mean correlation is indicated in bold font

Edges Crankshaft rotations Random

n = 12k n 2n 3n 4n 5n mean std dev

12 0.3473 0.3285 0.3269 0.3295 0.3267 0.3280 0.0828

24 0.2671 0.2626 0.2611 0.2636 0.2624 0.2695 0.0605

36 0.2318 0.2261 0.2280 0.2252 0.2253 0.2352 0.0484

48 0.2117 0.2070 0.2065 0.2046 0.2052 0.2127 0.0413

60 0.1943 0.1889 0.1903 0.1875 0.1883 0.1972 0.0360

72 0.1819 0.1781 0.1766 0.1776 0.1760 0.1836 0.0319

84 0.1701 0.1688 0.1676 0.1673 0.1665 0.1732 0.0289

96 0.1613 0.1606 0.1588 0.1597 0.1593 0.1650 0.0269

108 0.1543 0.1534 0.1540 0.1522 0.1518 0.1574 0.0247

120 0.1479 0.1478 0.1476 0.1463 0.1473 0.1510 0.0236

sufficient for both the Hedgehog Method and the Triangle Method using repeated polygonal
folds. In comparison, the data in Table 7 offers much less consistent results for the Triangle
Method with repeated crankshaft rotations. Nevertheless, a conservative sampling rate of 3n

crankshaft rotations seems adequate in this situation. In fact, in all of these cases, a sam-
pling rate of n iterations appears to be sufficient to achieve PCI values within one standard
deviation of the random distribution without the closure condition.
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Table 6 Edge vector correlations (PCI) for the Triangle Method with repeated polygonal folds at various
sampling rates as a function of the number n of edges. The mean PCI values (and their standard deviation)
between two random sequences of n unit vectors without any closure condition are given in the columns
labeled “random” to provide a benchmark for comparison. For each value of n, the PCI that comes closest to
this random mean correlation is indicated in bold font

Edges Polygonal folds Random

n = 12k n 2n 3n 4n 5n mean std dev

12 0.3092 0.3078 0.3054 0.3066 0.3036 0.3280 0.0828

24 0.2554 0.2495 0.2531 0.2483 0.2532 0.2695 0.0605

36 0.2199 0.2174 0.2174 0.2171 0.2170 0.2352 0.0484

48 0.1978 0.1965 0.1968 0.1969 0.1970 0.2127 0.0413

60 0.1811 0.1800 0.1786 0.1808 0.1800 0.1972 0.0360

72 0.1683 0.1681 0.1685 0.1690 0.1687 0.1836 0.0319

84 0.1585 0.1590 0.1587 0.1576 0.1578 0.1732 0.0289

96 0.1511 0.1504 0.1495 0.1505 0.1498 0.1650 0.0269

108 0.1444 0.1425 0.1437 0.1442 0.1441 0.1574 0.0247

120 0.1376 0.1372 0.1367 0.1367 0.1381 0.1510 0.0236

Table 7 Edge vector correlations (PCI) for the Triangle Method with repeated crankshaft rotations at various
sampling rates as a function of the number n of edges. The mean PCI values (and their standard deviation)
between two random sequences of n unit vectors without any closure condition are given in the columns
labeled “random” to provide a benchmark for comparison. For each value of n, the PCI that comes closest to
this random mean correlation is indicated in bold font

Edges Crankshaft rotations Random

n = 12k n 2n 3n 4n 5n mean std dev

12 0.3680 0.3652 0.3669 0.3625 0.3649 0.3280 0.0828

24 0.2842 0.2787 0.2761 0.2755 0.2794 0.2695 0.0605

36 0.2439 0.2383 0.2427 0.2381 0.2371 0.2352 0.0484

48 0.2150 0.2139 0.2143 0.2124 0.2132 0.2127 0.0413

60 0.1986 0.1965 0.1968 0.1955 0.1956 0.1972 0.0360

72 0.1826 0.1828 0.1840 0.1826 0.1828 0.1836 0.0319

84 0.1744 0.1733 0.1721 0.1721 0.1707 0.1732 0.0289

96 0.1661 0.1628 0.1632 0.1627 0.1642 0.1650 0.0269

108 0.1581 0.1565 0.1557 0.1572 0.1562 0.1574 0.0247

120 0.1511 0.1502 0.1504 0.1492 0.1494 0.1510 0.0236

4.3 Computation Time Comparison

Since computational time is often an important factor in determining the size of the data
set employed in a study, we have estimated the CPU time required by the Mathematica im-
plementation of each of the algorithms discussed above. More precisely, we approximated
the average CPU time (in seconds) associated with each iteration of these algorithms by
calling on the TimeUsed command. Of course, it must be noted that the data reported by
this command depends on many factors, including memory caching, “memoization,” and
other internal optimizations which depend on the precise state of the Mathematica session
at the time the computations are performed [73]. To avoid many of these issues, we restarted
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Table 8 Iteration time (in
seconds) for the Polygonal
Folding Method using various
sampling rates as a function of
the number n of edges

Number of edges Number of polygonal folds

n = 12k n 2n 3n 4n 5n

12 0.0176 0.0375 0.0620 0.0889 0.0912

24 0.0857 0.1588 0.2290 0.3375 0.3380

36 0.1888 0.3610 0.5113 0.7283 0.7769

48 0.3316 0.6308 0.9686 1.2679 1.2288

60 0.5431 1.0081 1.4474 1.8528 2.1093

72 0.7907 1.3783 2.0695 2.7889 3.1104

84 1.0573 1.8293 2.6880 3.7830 4.4460

96 1.3632 2.3366 3.4377 4.7942 5.9450

108 1.7521 3.0207 4.6758 5.7636 7.5260

120 2.1440 3.7336 5.8153 7.1627 9.3135

Table 9 Iteration time (in
seconds) for the Crankshaft
Rotation Method using various
sampling rates as a function of
the number n of edges

Number of edges Number of crankshaft folds

n = 12k n 2n 3n 4n 5n

12 0.0060 0.0081 0.0101 0.0122 0.0154

24 0.0140 0.0184 0.0223 0.0263 0.0349

36 0.0244 0.0323 0.0368 0.0429 0.0572

48 0.0372 0.0506 0.0537 0.0643 0.0835

60 0.0538 0.0704 0.0760 0.0895 0.1122

72 0.0735 0.0919 0.1048 0.1135 0.1369

84 0.0958 0.1168 0.1310 0.1457 0.1796

96 0.1214 0.1405 0.1635 0.1801 0.2230

108 0.1476 0.1745 0.1976 0.2138 0.2457

120 0.1816 0.2096 0.2316 0.2524 0.3031

the kernel before running each implementation. Thus, all other factors being equal, the con-
sequences of timing our algorithms in Mathematica should have been kept to a minimum
and distributed evenly among all four methods. Nevertheless, we must be careful not to
overreach as we draw conclusions based on data that may be influenced by these issues. In
particular, although the absolute times are not important in and of themselves, we assert that
their relative size do provide a useful measure of the intrinsic complexity of the algorithms
in question.

4.3.1 Computations

As in Sect. 4.2, we constructed two sample sets, each consisting of 1 000 polygons with 12k

edges for each k = 1, . . . ,10, by starting with a standard regular polygon and repeatedly
applying polygonal folds or crankshaft rotations, respectively. In each case, the total CPU
time was measured after n, 2n, 3n, 4n, and 5n iterations. The average times are shown in
Tables 8 and 9.

Two additional sample sets, once again consisting of 1 000 polygons with 12k edges for
each k = 1, . . . ,10, were generated by the Hedgehog and the Triangle Methods, respectively.
These were subjected to a sequence of repeated crankshaft rotations and, as above, the total
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Table 10 Iteration time (in
seconds) for the Hedgehog
Method with repeated crankshaft
rotations at various sampling
rates as a function of the number
n of edges

Number of edges Number of crankshaft folds

n = 12k n 2n 3n 4n 5n

12 0.0100 0.0127 0.0141 0.0237 0.0217

24 0.0228 0.0296 0.0365 0.0523 0.0503

36 0.0404 0.0509 0.0649 0.0759 0.0837

48 0.0619 0.0776 0.0986 0.0940 0.1304

60 0.0876 0.1082 0.1110 0.1254 0.1577

72 0.1108 0.1382 0.1465 0.1542 0.2054

84 0.1288 0.1455 0.1554 0.1922 0.2279

96 0.1615 0.1744 0.2060 0.2339 0.2692

108 0.1605 0.2089 0.2539 0.2935 0.3150

120 0.1857 0.2532 0.3022 0.3443 0.3602

Table 11 Iteration time (in
seconds) for the Triangle Method
with repeated crankshaft
rotations at various sampling
rates as a function of the number
n of edges

Number of edges Number of crankshaft folds

n = 12k n 2n 3n 4n 5n

12 0.0160 0.0202 0.0203 0.0271 0.0287

24 0.0358 0.0443 0.0503 0.0569 0.0594

36 0.0625 0.0751 0.0854 0.0951 0.0912

48 0.0949 0.1098 0.1251 0.1377 0.1394

60 0.1326 0.1509 0.1711 0.1863 0.1835

72 0.1760 0.1951 0.2173 0.2377 0.2234

84 0.1819 0.2049 0.2335 0.2599 0.2608

96 0.2267 0.2509 0.2798 0.3112 0.3075

108 0.2713 0.3030 0.3369 0.3674 0.3588

120 0.3155 0.3511 0.3968 0.4200 0.4208

Fig. 7 (Color online) A
comparison of the average CPU
time (in seconds) required for 5n

iterations of the Polygonal
Folding, Crankshaft Rotation,
Hedgehog, and Triangle Methods
as a function of the number n of
edges. Both the Hedgehog and
Triangle Methods were
implemented using repeated
crankshaft rotations

CPU time was measured after n, 2n, 3n, 4n, and 5n iterations. The average times are shown
in Tables 10 and 11. Note that these values include the time necessary to generate the initial
embedded configuration, including any permutations of the initial edge vectors, as discussed
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in Sect. 4.1, in addition to the time required to perform the appropriate number of crankshaft
rotations.

Figure 7 presents a graphical comparison of all of four computational times (as a function
of the number n of edges) after 5n iterations.

4.3.2 Analysis

There are three important points to be observed from the data presented in these tables. First
of all, we note that the implementation of the Polygonal Folding Method is dramatically
slower than that of the Crankshaft Rotation Method, as illustrated in Tables 8 and 9. We
surmise that the difference is a direct consequence of the number of computations required
by each basic step. More specifically, each crankshaft rotation modifies only the two edge
vectors selected, while each polygonal fold requires an average of roughly n

3 vertex (or edge)
modifications.

Secondly, our data in Tables 10 and 11 shows that the iteration times for the Triangle
Method are consistently larger than those for the Hedgehog Method. Since the only differ-
ence in the implementation of these algorithms is the initial data generation, this seems to
imply that the principal factor contributing to the Triangle Method’s slower performance
is precisely the generation and permutation of the initial edge vectors. As expected, this
overhead grows in significance as the number of edges increases.

Finally, we note that average iteration times for the Hedgehog and the Crankshaft Ro-
tation Methods in Tables 9 and 10 are generally comparable to one another. In fact, they
do not seem to differ by more than a few milliseconds per iteration. This certainly adds
credence to our hypothesis above, concerning the slower behavior of the Triangle Method,
since it does not appear that the overhead involved in the Hedgehog Method’s initialization
is significantly hampering its overall performance.

4.3.3 Conclusions

We believe that one may safely draw several conclusions from these comparisons. To begin
with, the Polygonal Folding Method is substantially slower than both the Crankshaft Ro-
tation and the Hedgehog Methods, most likely due of its computationally intensive steps.
Similarly, the initial data preparation time required by the Triangle Method is a slight hin-
drance to the implementation of this algorithm, especially when compared to the Crankshaft
Rotation and the Hedgehog Methods. Finally, it seems that the Hedgehog Method performs
about as well as the Crankshaft Rotation Method, even given the overhead associated to its
initial data preparation. Taking into consideration its small sampling rate, as determined in
Sect. 4.2, one begins to see the benefits of implementing the classical Hedgehog Method
with repeated crankshaft rotations as the preferred algorithm for generating random poly-
gons.

4.4 Edge Vector Distribution on the Unit Sphere

We now turn our attention to the distribution of edge vectors on the unit sphere. We wish
to determine how randomly our four algorithms select edge vectors, when compared to an
unconstrained set of random unit vectors. Taking into consideration the closure requirement,
one may expect that our random polygons experience a biasing influence on the distribution
of their edges on the sphere. To test the degree of uniformity of the edge vector distribution
of a polygon, we partition the sphere into 625 disjoint regions. We then count the number
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of edge vectors in each of these regions. If the number of vectors is large, and they are uni-
formly distributed, one would expect that their distribution among these regions would be
roughly proportional to the distribution of area among these regions. We shall use the χ2

Goodness of Fit Test [38] to measure the degree of consistency between two such distribu-
tions.

4.4.1 Computations

Each of the four algorithms was used to produce a collection of random 12k-edge equilat-
eral polygons for each integer k = 1, . . . ,10. As in Sects. 4.2 and 4.3 above, five distinct
sampling rates ranging from n to 5n were used. The results for each algorithm and each
sampling rate were grouped into 100 families, each consisting of 1 000 random equilateral
polygons. For each polygon, we determined the distribution of the edge vectors among the
625 regions of the sphere, and, using the χ2 Goodness of Fit Test, we estimated the consis-
tency of the data against the corresponding distribution of area among the regions. For each
family of polygons, we computed the proportion of polygons that satisfied the χ2 test with a
level of consistency of 95%. These proportions were averaged together and recorded in Ta-
bles 12, 13, 14, and 15. A comparison of the relative effectiveness of each of the algorithms
after 5n iterations is found in Table 16 and Fig. 8.

In order to establish a benchmark for spherical uniformity, 100 families, each consisting
of 1 000 sample sets of 12k random unit vectors (without any closure condition), were gen-
erated for each integer k = 1, . . . ,10. For each one of these sample sets, the distribution of
vectors among the 625 regions of the sphere was evaluated for consistency by the χ2 Good-
ness of Fit Test, as above, and the proportion of sets in each family satisfying this test with a
95% level of consistency was computed. Finally, these proportions were averaged together
to produce our target benchmarks. These values appear in the column labeled “random” in
Tables 12, 13, 14, and 15. Furthermore, Table 16 and Fig. 8 provide a direct comparison
between this random measure of spherical uniformity and the corresponding values after 5n

iterations for each of our four algorithms.

4.4.2 Analysis

Because we know that the distribution of individual edge vectors of a polygon is constrained
by the closure condition, one might expect that the algorithms will fall short of the bench-
mark values to some systematic extent. This effect, however, does not seem to be apparent
in our data. To the contrary, the effects of closure and knotting appear to increase the degree
of uniformity. The data suggests that, with increasing numbers of edges, the difference in
the degree of uniformity as compared to that of random vectors may be relatively constant,
as seen in Fig. 8.

4.4.3 Conclusions

Each of the algorithms appears to produce a level of spherical uniformity comparable to that
of a set of random vectors. In fact, as Fig. 8 shows, there seems to be a systematic tendency
to achieve greater uniformity as a consequence, perhaps, of the closure of the polygons.
The data also suggests that the potential increase in uniformity is nearly constant across the
number of edges.
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Table 12 Spherical uniformity of edge vector distributions (as a percentage) produced by the Polygonal
Folding Method using various sampling rates. The mean values in the column labeled “random,” correspond-
ing to a collection of random unit vectors without any closure condition, provide a benchmark for comparison

Number of edges Number of crankshaft rotations Random

n = 12k n 2n 3n 4n 5n

12 84.19 83.32 82.38 82.22 82.21 78.10

24 78.55 77.55 77.77 78.16 78.58 75.94

36 76.64 77.01 77.27 76.39 76.84 75.08

48 74.74 78.50 78.49 79.45 78.18 76.57

60 67.56 78.59 80.17 80.82 81.07 78.17

72 61.78 79.32 81.83 81.43 81.23 79.53

84 55.14 78.91 81.87 82.48 81.00 81.10

96 49.24 79.05 82.98 82.96 83.34 82.40

108 43.63 79.73 83.39 83.85 84.49 83.50

120 38.54 78.90 84.27 85.20 85.08 84.30

Table 13 Spherical uniformity of edge vector distributions (as a percentage) produced by the Crankshaft Ro-
tation Method using various sampling rates. The mean values in the column labeled “random,” corresponding
to a collection of random unit vectors without any closure condition, provide a benchmark for comparison

Number of edges Number of crankshaft rotations Random

n = 12k n 2n 3n 4n 5n

12 91.41 83.28 79.83 79.52 78.77 78.10

24 90.12 81.84 78.56 77.22 76.70 75.94

36 91.57 83.61 78.12 76.03 75.54 75.08

48 93.60 85.71 81.00 78.47 78.12 76.57

60 95.56 89.74 84.54 83.44 82.75 78.17

72 95.32 88.88 84.49 81.27 80.45 79.53

84 95.58 90.42 85.50 82.68 81.97 81.10

96 95.92 91.53 86.67 83.31 83.60 82.40

108 95.31 92.47 87.49 85.31 83.09 83.50

120 95.25 93.26 88.75 86.67 85.73 84.30

4.5 Local Curvature and Torsion Distributions

The four methods discussed here have been applied throughout the literature to make esti-
mations of many potentially interesting measures of the shape of a polygon, including the
radius of gyration, the average crossing number, the diameter, the miniball radius, the box
and skinny box dimensions (as well as the associated surface area and volume), the volume
and surface area of the convex hull of the polygon, the inertial asphericity, and the envelop-
ing ellipsoid asphericity [11, 17, 18, 20, 21, 39, 59, 62, 63, 66, 67]. Another application of
particular importance for this study is the estimation of the total curvature and total torsion
of the polygon [60].

Generalizing the notions of curvature and torsion for smooth curves [19], the local cur-
vature at each vertex of a polygon is defined to be the turning angle at that vertex, while
the local torsion at each edge of a polygon is defined to be the dihedral angle between the
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Table 14 Spherical uniformity of edge vector distributions (as a percentage) produced by the Hedgehog
Method with repeated crankshaft rotations. The mean values in the column labeled “random,” corresponding
to a collection of random unit vectors without any closure condition, provide a benchmark for comparison

Number of edges Number of crankshaft rotations Random

n = 12k n 2n 3n 4n 5n

12 78.24 76.85 76.54 77.10 76.44 78.10

24 75.25 77.24 77.67 77.55 77.43 75.94

36 77.61 76.52 76.23 75.56 75.02 75.08

48 76.40 76.91 77.60 78.18 76.83 76.57

60 74.63 79.40 78.64 79.28 78.57 78.17

72 75.37 80.18 80.23 79.53 80.62 79.53

84 75.99 81.35 81.61 82.51 81.04 81.10

96 87.28 87.15 87.14 87.38 87.07 82.40

108 87.97 87.48 87.91 87.78 88.36 83.50

120 88.70 88.89 88.59 88.47 88.18 84.30

Table 15 Spherical uniformity of edge vector distributions (as a percentage) produced by the Triangle
Method with repeated crankshaft rotations. The mean values in the column labeled “random,” corresponding
to a collection of random unit vectors without any closure condition, provide a benchmark for comparison

Number of edges Number of crankshaft rotations Random

n = 12k n 2n 3n 4n 5n

12 78.50 75.95 77.00 77.95 76.45 78.10

24 75.50 77.00 77.40 76.35 76.45 75.94

36 72.50 80.30 79.50 80.50 79.95 75.08

48 76.00 82.60 82.10 82.30 83.10 76.57

60 78.30 82.60 84.10 83.30 83.85 78.17

72 79.40 85.30 84.85 84.25 84.20 79.53

84 80.60 86.65 85.25 85.75 85.55 81.10

96 87.13 86.99 87.55 86.51 86.50 82.40

108 87.59 87.76 87.90 87.91 87.66 83.50

120 88.68 88.55 88.46 88.39 88.36 84.30

two planes determined by the edge and each of its adjacent edges. Consequently, the total
curvature is defined to be the sum of the turning angles, and the total torsion is defined to be
the sum of the dihedral angles. Evidence has shown that the effects of curvature and torsion
may be reflected in the physical properties of polymers [60].

The average total curvature and the average total torsion for a collection of random equi-
lateral polygons have been shown to differ from the expected values for a random collection
of vectors [30, 60]. These differences indicate a certain degree of internal correlation among
the edge vectors of a polygon, arising as a consequence of the closure condition of the poly-
gon. In fact, the average total curvature of an equilateral polygon contains a bias of + 3π

8 ,
while the average total torsion of an equilateral polygon contains a bias of − 3π

8 [30, 60].
We shall now consider the distributions of local curvature and local torsion angles and

compare these to the distributions arising from a random sequence of edges without the
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Table 16 Spherical uniformity
of edge vector distributions (as a
percentage) produced after 5n

iterations of each algorithm. The
mean values in the column
labeled “random,” corresponding
to a collection of random unit
vectors without any closure
condition, provide a benchmark
for comparison

Edges PFM CRM Hedgehog Triangle Random

12 82.22 79.52 77.10 77.95 78.10

24 78.16 77.22 77.55 76.35 75.94

36 76.39 76.03 75.56 80.50 75.08

48 79.45 78.47 78.18 82.30 76.57

60 80.82 83.44 79.28 83.30 78.17

72 81.43 81.27 79.53 84.25 79.53

84 82.48 82.68 82.51 85.75 81.10

96 82.96 83.31 87.38 86.51 82.40

108 83.85 85.31 87.78 87.91 83.50

120 84.27 86.67 88.47 88.39 84.30

Fig. 8 (Color online) A
comparison of the spherical
uniformity of edge vector
distributions (as a percentage)
after 5n iterations as a function
of the number n of edges. The
curve labeled “random,”
corresponding to a collection of
random unit vectors without any
closure condition, provide a
benchmark for comparison

closure constraint. We will observe that it may be necessary to employ sufficiently many
polygonal folds or crankshaft rotations in order to eliminate curvature and torsion relation-
ships arising in the initial data produced by the Hedgehog or Triangle Methods.

4.5.1 Computations

We collected and analyzed 10 000 60-edge polygons, grouped in sample sets of 1 000 poly-
gons each, using the Mathematica implementations of each of our four algorithms, employ-
ing a sampling rate of 3n = 180 polygonal folds (for the PFM) or crankshaft rotations (for
the CRM, the Hedgehog Method, and the Triangle Method). In addition, we analyzed the
data collected from the Triangle Method both before and after the application of crankshaft
rotations. For each sample set, we computed the local curvature and torsion angles, and
sorted these in increasing order. The Kolmogorov-Smirnov Goodness of Fit Test [8] was
then employed to quantify the similarity of the resulting distributions, thus providing a mea-
sure of the likelihood that they arose from the same probability distribution function.

4.5.2 Analysis

Figure 9 shows a graphical representation of the average distribution of local curvature for
(a) a benchmark collection of 60 000 random unit vectors without the closure condition,
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Fig. 9 Curvature distributions for (a) a random collection, (b) the Crankshaft Rotation Method, (c) the
Triangle Method without crankshaft rotations, and (d) the Triangle Method with crankshaft rotations. Note
the anomalous flat segment at κ = 2π/3 in the middle of the graph in (c). This plateau is a consequence of the
small but positive probability that two edges from the same equilateral triangle end up in adjacent positions in
the polygon after the initial permutation of edges, and disappears after the application of an adequate number
of crankshaft rotations

(b) the Crankshaft Rotation Method, (c) the Triangle Method prior to any crankshaft ro-
tations, and (d) the Triangle Method after repeated crankshaft rotations. In the case of the
Triangle Method without crankshaft rotations, we note an anomalous flat segment at κ = 2π

3
in the middle of the graph in Fig. 9(c). This plateau is a consequence of the small but pos-
itive probability that two edges from the same equilateral triangle end up in adjacent po-
sitions in the polygon after the initial permutation of edges. Therefore, for applications in
which local geometry might be important, it would appear advisable to employ polygonal
folds or crankshaft rotations to eliminate these relationships. Nevertheless, according to the
Kolmogorov-Smirnov test, there is a strong agreement between the benchmark curvature
distribution in Fig. 9(a) and the curvature distributions for each of our four methods. For
instance, in the case of the curvature distributions for the Triangle method prior to and af-
ter the application of crankshaft rotations, the statistic Dmn takes on values of 0.4623 and
0.1036, with maximum distances of 0.00642 and 0.00144, respectively. Since these values
of Dmn are smaller than the critical value of 1.35, we can conclude at the 5% significance
level that the curvatures are likely to arise from the same probability distribution function.
It turns out that the PFM, CRM, and Hedgehog Methods also generate polygons that, with
respect to local curvature, agree with the expected distributions.

Figure 10 shows a graphical representation of the average distribution of torsion for (a) a
benchmark collection of 60 000 random unit vectors without the closure condition, (b) the
Crankshaft Rotation Method, (c) the Triangle Method prior to any crankshaft rotations, and
(d) the Triangle Method after repeated crankshaft rotations. According to the Kolmogorov-
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Fig. 10 Torsion distributions for (a) a random collection, (b) the Crankshaft Rotation Method, (c) the Tri-
angle Method without crankshaft rotations, and (d) the Triangle Method with crankshaft rotations. As in the
case of curvature (see Fig. 9), there is a small (essentially indiscernible) flat segment corresponding to a di-
hedral angle of τ = 0 in the middle of the graph in (c); this is due to the very small but positive probability
that three adjacent edges belong to the same equilateral triangle. As before, introducing polygonal folds or
crankshaft rotations quickly eliminates this problem

Smirnov test, the local torsion produced by the various algorithms has a similarly robust
distribution. Once again, the exceptional case here is the distribution produced by the Trian-
gle Method prior to crankshaft rotations. In this case, there is a small but positive probability
that three adjacent edges belong to the same equilateral triangle. Such instances give a small
(essentially indiscernible to the naked eye) flat segment corresponding to a dihedral angle of
τ = 0. As before, introducing polygonal folds and crankshaft rotations quickly eliminates
this problem.

4.5.3 Conclusions

Our study suggests that all four methods for generating random equilateral polygons yield
consistent distributions of local curvature and local torsion angles. The only exceptions ap-
pear to come from the Triangle Method prior to the application of crankshaft rotations,
where an anomalous abundance of curvature angles of κ = 2π

3 and torsion angles of τ = 0
arise from adjacent edge vectors originating from the same equilateral triangles. In all cases,
these anomalous angles disappeared after the repeated application of crankshaft rotations.

4.6 Knot Probability Distributions

The configurations generated by our four algorithms are often used to estimate a wide range
of average properties of polygonal knots. In these applications, the extent to which the sam-
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Table 17 The number of distinct
HOMFLY polynomials produced
by each algorithm. Since the
number of distinct knots sharing
the same polynomial is small,
this invariant is an suitable
surrogate for knot type

Method Sample size Distinct HOMFLY

PFM 100 000 000 2 219

CRM 10 000 000 6 110

Hedgehog 10 000 000 1 111

Triangle 10 000 000 3 505

ple configurations represent the statistics of the entire population of knots is a critical fac-
tor in evaluating any implications drawn from these estimates. With this in mind, the final
benchmark with which we test the quality of our data is the probability distribution function
of the various knot types, that is, the proportion of equilateral knot space corresponding to
polygons of a specific knot type [12, 13, 46–48].

While a rigorous determination of the knot probability distribution function has not yet
been accomplished, we do have some theorems and estimates concerning the asymptotic
probability of the unknot. For an excellent review of what is known about the asymptotic
distributions for unknots and other individual knot types in both the lattice and continuum
settings, we refer to the excellent review article of Orlandini and Whittington [58]. They dis-
cuss both theoretical bounds and numerical estimates of the exponential decay as a function
of the number of edges. Nevertheless, we encounter the problem of not knowing exactly the
limiting decay or where this asymptotic behavior actually begins, and thus risk that it lies
beyond the range of interest. Additionally, even though there is only a finite number of knot
types for any fixed number of edges, there is no good estimate of just how large this number
might be as a function of the number of edges.

Due to the difficulty of classifying the possible knot types that might be encountered [32,
33], researchers have employed a variety of strategies to give indirect estimates of the num-
ber of distinct knot types and their probabilities as a function of the number of edges. For
example, the Alexander, Jones, or HOMFLY polynomial invariants may be used as a surro-
gate for knot type, although other options are also worthy of consideration. In this study, we
shall use the Ewing-Millett algorithm to calculate the HOMFLY knot invariant [24, 27]. Al-
though not a fully faithful representation of knot type, it is somewhat stronger than many of
the other options, especially for our purposes. In particular, there are relatively few classes of
duplications to undermine the robustness of the statistical analysis using this invariant [32].

4.6.1 Computations

In this study, we will use the Kolmogorov-Smirnov test to assess whether or not the data
developed from the various methods is a consequence of the same probability distribution
function, thereby testing the relative quality of the generation algorithms. As before, we will
focus our analysis on 60-edge polygonal knots, for which we have a benchmark sample of
100 million knots previously generated by the Polygonal Folding Method [47, 48]. We will
use this benchmark to compare a collection of 10 million polygons produced by each of the
other three algorithms studied here. In all four cases, the samples were constructed by the
Fortran 77 implementation of our algorithms using a sampling rate of 3n = 180 polygonal
folds (for the PFM) or crankshaft rotations (for the CRM, the Hedgehog Method, and the
Triangle Method) per sample.

Using the Ewing-Millett program, we determined the HOMFLY polynomial of each
polygon generated. Table 17 gives a summary of the number of distinct polynomials ob-
served in each sample. We note that the Crankshaft Rotation Method produces many more
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Table 18 Results of the Kolmogorov-Smirnov test comparing the distribution of knot types produced by
PFM with those produced by the other algorithms. Since the values of the Dmn statistic is less than the
critical value of 1.35 for this data, the data from the four algorithms appear to be consistent with the knot
probability distribution function for equilateral polygonal knots

Comparison Dmn Max distance

PFM v. CRM 0.030 0.000 7

PFM v. Hedgehog 0.184 0.005 8

PFM v. Triangle 0.495 0.011 0

polynomials and, therefore, identifies many more topological knot types than any of the
other algorithms. To test whether or not the algorithms sampled data from the same knot
probability distribution, the proportions of the resulting polynomials were sorted in decreas-
ing order and their ranking functions were compared using the Kolmogorov-Smirnov test.
Since the Hedgehog Method produced the smallest number of polynomials (only 1 111 dis-
tinct polynomials), we restricted our comparison to only the first 1 000 more likely polyno-
mials from each collection. In particular, as the tails of the distributions represent polyno-
mials arising only once, the fact that they may give slightly different instances should not
adversely distort this comparison.

4.6.2 Analysis

Table 18 presents the results of the Kolmogorov-Smirnov test comparing the benchmark
PFM data to that of the other three algorithms. The values in the “max distance” column of
the table give the largest differences between corresponding values in the two probability
distribution functions being compared. The observed values suggest that the two distribu-
tions are quite similar. Indeed, since each of the Kolmogorov-Smirnov statistic values Dmn

is less than the critical value of 1.35 for this data, we may conclude that the four algorithms
give data consistent with the knot probability distribution function for equilateral polygonal
knots.

4.6.3 Conclusions

Our analysis above leads to a couple of observations. First of all, by restricting our attention
to the 1,000 most frequently observed knot types, we find that the four algorithms do appear
to be sampling the same knot probability function, according to the Kolmogorov-Smirnov
test. Nevertheless, the apparently large differences in the number of distinct polynomials
observed in each of the data sets suggest that one may wish to look closely at the objectives
of the simulation in making a choice of generation method. In particular, there may be
underlying differences making one approach more appropriate than another. For instance,
according to the implementations reported here, the use of CRM produced superior results
than any of the other sampling methods, including the Hedgehog or Triangle Methods. We
recommend further careful study of the algorithms to confirm these observations.

5 Final Remarks

We have described four popular methods to generate random equilateral polygons in three-
space: the Polygonal Folding Method, the Crankshaft Rotation Method, the Hedgehog
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Method, and the Triangle Method. Here, we give the first rigorous proof that the Crankshaft
Rotation Method is ergodic (see Theorem 2). We also show that this provides a fast, attrac-
tive alternative to the Polygonal Folding Method, which was already known to be ergodic.

Both the Hedgehog and Triangle Methods have modest constraints, in that they require
about 1.56n and 0.77n initial edge transpositions, respectively, in order to produce poly-
gons with distinct vertices (see Fig. 6). This overhead does not appear to be significantly
hampering the performance of either of these algorithms, especially when compared to the
drastically slower behavior of the Polygonal Folding Method (see Fig. 7). With regard to
sampling rate, we propose that 2n polygonal folds or crankshaft rotations are typically suffi-
cient to insure independence of samples, and that, in some cases, one could employ as few as
n elementary transformations (see Tables 2 to 7). All four methods appear to give distribu-
tions of edge vectors in the unit sphere comparable to that of a random collection of vectors
with no closure condition, especially when a sufficient number of repeated polygonal folds
or crankshaft rotations is applied (see Fig. 8). Similarly, all four methods produce consis-
tent distributions of local curvature and local torsion, according to the Kolmogorov-Smirnov
goodness of fit test.

In our simulations, the Crankshaft Rotation Method appears to be the strongest, in the
sense that it may access the largest number of distinct topological knot types (see Table 17).
Even though one would expect the Hedgehog or Triangle Methods to do at least as well
as the CRM, the range of knots uncovered by these two methods seems to be somehow
hampered by the intrinsic symmetries in their initial configurations. Further research may
be needed to determine if this is, in fact, the case. Despite this concern, we have shown,
using the Kolmogorov-Smirnov test, that all four methods appear to sample the same knot
probability distribution function, at least with respect to the most prevalent 1,000 knot types
(see Table 18).

As discussed in the introduction, these strategies are well adapted to studies in which the
consequences of excluded volume are neglected. Are they useful when one must take such
interactions into consideration? We believe that they answer is yes, when used in conjunction
with novel statistical methods such as multiple Markov chains or parallel tempering [25,
28, 42, 44, 45, 65, 68] due to the relative speed achievable in implementing, for example,
the crankshaft rotation algorithm. Similarly, these algorithms are useful, again due to their
relative speed, when one wishes to sample the subsets consisting of a conformations having
a specified geometric property, e.g. a range of diameters, or a specific knot type. In such
cases, one employs the algorithms to sample the entire space and applies a filter, such as the
HOMFLY polynomial in the case of a selected knot type, to select those lying in the desired
subspace. While this approach is computationally intensive, it has been applied to study the
effects of confinement [48] or the spatial properties of a fixed knot type [52]. Ideally, one
would like to know that these algorithms are ergodic when restricted to specific geometric or
topological knot types, but this is unknown due to two fundamental problems. First, one does
not know that the sets of specific knot types are connected, even in the case of the unknot.
Second, in the event that they are not connected, one does not know how to ensure that the
individual components are properly sampled. Each of these issues remains a problem even
in the case of the cubic lattice when one fixes the number of edges. On the other hand, there
is a method, the BFACF algorithm [58], which does preserve the knot type at the cost of
allowing the number of edges to change. Properly sampling the set of knots of a fixed type
and fixed number of edges, with or without taking into consideration the consequences of
excluded volume, remains a objective for further research.
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