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We investigate the influence of knotting and chirality on the shape of knotted polygons
forming trefoil knots compared to unknotted polygons by aligning independent configurations
along their principal inertial axes. While for six edge polygons forming trefoil knots the chiral
knotted structure is revealed in the isodensity profiles, the distinct chiral signature of the
trefoil is significantly diminished with 24 edges. We observe that as the number of edges
in the polygons increases, the cumulative shapes of trefoil knots progressively approach the
cumulative shapes for unknotted polygons.

§1. Introduction

To understand the influence of a polymer’s topology on its overall shape, we
characterize the cumulative shapes resulting from aligning individual realizations of
random polygons with different chain sizes and topologies. Inspired by the work
of Theodorou and Suter,19) who considered the mass density distributions of linear
polymer chains aligned with respect to their three principal axes of inertia in order
of decreasing moment, we have extended their method by proposing a symmetry
breaking algorithm as a strategy to detect the impact of knotting and chirality
present in polymer chains.12)

Employing the model of freely moving polymers in solution, i.e. freely jointed
equilateral open and closed chains, we previously have investigated12) the conse-
quences of knotting in very short chains, having only six bonds, as this is the first
length in which non-trivial knotting can occur. Here, we investigate the evolution
of the cumulative average sizes and shapes of knotted polymers as the number of
bonds in the polymer increases.
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§2. Data Generation

Our goal is to analyze the effect of topology, chirality, and length on vertex
isodensity surfaces for random polygons in three-dimensional Euclidean space. We
analyzed three topological knot types (unknots, left-handed trefoils (data not shown),
and right-handed trefoils) at three different polymer lengths (6, 24, and 50 edges).
Polygons were generated using a modified Hedgehog algorithm.7), 14)

For completeness sake, we describe our modified Hedgehog algorithm. To con-
struct one n-edge polygon (where n is even), we generate a list of n/2 random vectors
on the unit sphere. We add the n/2 opposite vectors to the list, which gives us a set
of n vectors whose sum is the 0-vector. We then perform a series of moves to break
the self-correlations between vectors in the list. A random integer k between 2 and
n/2 is generated and k vectors are chosen randomly from our list. We perform a
random rotation of size 0 ≤ θ < 2π to the k vectors about the axis determined by
the sum of the k vectors. This leaves the sum of the k vectors constant, and thus the
sum of all n vectors remains the 0-vector. We perform 10n2 of these randomizing
moves for each set of n vectors.

The knot types of the configurations are determined using the HOMFLYPT
polynomial code of Ewing and Millett.2) The HOMFLYPT polynomial3), 15) is not
a perfect representation of knot type, i.e. there are different knot types that have
the same HOMFLYPT polynomial. However, to date there are no known non-trivial
knot types with the same HOMFLYPT polynomial as the unknot nor knot types
with the same HOMFLYPT polynomial as the trefoil knot. Thus, we expect no
contamination in the range of edges that we analyze.

For 6 edge polymers, we analyzed 199,977 unknots, 92,309 right-handed trefoils,
and 92,330 left-handed trefoils (these configurations were also analyzed in Ref. 12)).
For 24 edge polymers, we analyzed 369,286 unknots, 36,510 right-handed trefoils,
and 36,432 left-handed trefoils. For 50 edge polymers, we analyzed 258,219 unknots,
39,012 right-handed trefoils, and 39,172 left-handed trefoils.

The configurations are then rigidly translated and rotated into a standard posi-
tion as follows. For the Theodorou and Suter (TS) alignment19) on a given polygon,
we first compute the center of mass of the polygon (assuming that the mass of the
polygon is equally distributed over its vertices) and translate the polygon so that the
center of mass coincides with the origin. Next we compute the gyration tensor for the
(now translated) polygon. The eigenvectors of the gyration tensor are the principal
axes of rotation of the polygon and determine a mutually orthogonal system of three
vectors. The polygon is then rotated so that the eigenvector associated with the
largest eigenvalue coincides with the x-axis and the eigenvector associated with the
second largest eigenvalue coincides with the y-axis. Note that the third eigenvector
naturally coincides with the z-axis. This ends the TS alignment procedure.

Eigenvectors are inherently non-oriented, i.e. there is no natural positive and neg-
ative direction for the eigenvector. As a result, the TS alignment generates surfaces
with 180◦ rotational symmetry. However, individual configurations are generically
not symmetric.5) To distinguish this asymmetry, we defined a new alignment in
Ref. 12) called the Symmetry Breaking Algorithm (SBA). The first steps of the al-
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gorithm are identical to the TS alignment procedure, first translate the knot so that
the center of mass is at the origin and then compute the eigenvectors and eigenval-
ues of the gyration tensor. Our goal is to define a default orientation for the system
of vectors defining the principal axes for each polygon. We choose the orientation
for the x-axis to be so that the largest x-coordinate of the polymer vertices lies in
positive x-direction. We then choose the orientation for the y-axis to be so that
the largest y-coordinate lies in the positive y-direction. Note that the z-axis is fixed
based on the choices of x- and y-axes.

Once we have aligned a group of polymer configurations, we generate a smoothed
3D histogram of the data as follows:

1. Determine the extreme values in the x, y, and z directions;
2. Calculate the average density, d, of the points, assuming they are distributed

throughout an ellipsoid with axes corresponding to the range in each direction;
3. Calculate the mean free distance, m = (1/d)1/3, which gives a rough estimate

of the average distance between a point and its nearest neighbor;
4. Create an array of voxels with side length 8m/3;
5. Read in each point in the data set one at a time, center a 3D Gaussian with

standard deviation 2m at the point;
6. For each voxel in the 7× 7× 7 region of voxels surrounding the point, integrate

the Gaussian inside the voxel and add that amount to the voxel value.
A point density function then is computed using a cubic spline interpolation. To

compute the isodensity surfaces, we let ρmax be the maximum density of the point
density function. Then for a given density value ρ, given as a percentage of ρmax,
the isodensity surface is a level curve of the point density function.

§3. Results

Both the TS and SBA methods visibly distinguish the unknotted and knotted
conformations in the case of six-edge polygons, see the top rows of Figs. 1 and 2 (TS
method) and Figs. 3 and 4 (SBA method). The six-edge trefoil knots are significantly
more compact than the unknots and the internal structure of their cumulative shape
surfaces differs significantly from that of the unknots. For 24 and 50 edges (the
bottom two rows of the figures), however, these differences are much less visible
for both the TS and SBA methods. Indeed, the shapes of the isodensity surfaces
obtained by a given method appear to be nearly the same for knots and unknots
although they differ in scale.

To quantify the difference in scale, we show the linear span of the extreme vertex
points in the directions of the three principal axes of rotation in Table I (for the TS
method) and in Table II (for the SBA method). In Table III, we show the ratio of
the right-handed trefoil span to the unknot span for the two methods. These ratios
appear to be converging to one as the length of the polymers increase, demonstrating
the decreasing influence of the presence of the trefoil knot and its associated chirality
as the number of edges in the analyzed polygons increases.

We note that the evolution of the overall shapes of the unknotted and knotted
polygons as their chain length increases is consistent with a high degree of knot local-
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Table I. The linear dimensions (spans) along the three principal axes of rotation of the cumulative

shapes of unknotted and right-handed trefoil knotted polygons aligned using the TS method.

TS Unknots Right-handed trefoils

Edges x y z x y z

6 2.96 2.24 1.52 1.91 1.60 1.33

24 8.39 6.08 4.21 7.45 5.32 3.73

50 12.98 9.37 6.50 11.89 8.50 6.22

Table II. The linear dimensions (spans) along the three principal axes of rotation of the cumulative

shapes of unknotted and right-handed trefoil knotted polygons aligned using the SBA method.

SBA Unknots Right-handed trefoils

Edges x y z x y z

6 2.95 2.11 1.52 1.88 1.47 1.33

24 8.19 5.80 4.26 7.03 4.82 3.74

50 12.16 8.82 6.62 11.32 7.86 6.40

Table III. The trefoil/unknot ratio of spans along the three principal axes of rotation.

TS SBA

Edges x y z x y z

6 0.65 0.72 0.87 0.64 0.70 0.87

24 0.89 0.87 0.89 0.86 0.83 0.88

50 0.92 0.91 0.96 0.93 0.89 0.97

ization.1), 4), 6), 9), 10) This appears to play an essential role in the average structure
of polymer chains, even at relatively small length scales. While, for larger poly-
gons, the isodensity surfaces resemble the “bar of soap” structure identified in the
Theodorou-Suter, the SBA surfaces adopt a shape similar to a bean. Such a shape
was predicted as a cumulative shape of random walks provided that the intrinsic
asymmetry of individual configurations is utilized for their alignment.8)

§4. Conclusions

While the presence of chirality is visible in the isodensity surface structure for
hexagonal trefoil knots, its signature quickly vanishes as the presence of chirally
knotted regions becomes diluted by the presence of much larger achiral unknotted
regions of the polymer chains constituting an increasingly large proportion of the
polymer chains. The overall average cumulative sizes of trefoil knots and unknots
become closer as the number of bonds increases. While their shapes appear, visually,
to become similar as the number of bonds increases, this facet of our study would re-
quire further investigation to confirm this conjecture. A somewhat similar evolution
of the sizes and shapes of unknots and knots with increasing chain size was observed
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Fig. 1. The cumulative shapes of unknotted random polygons that were aligned using the TS

method. The shapes are presented as series of isodensity surfaces with increasing density of

occupation. The leftmost surfaces have a low density of occupation and enclose ca. 95% of all

vertices contributing to a superimposed set of co-aligned configurations, while the rightmost

surfaces are these with high density of occupation but enclose only ca. 10% of all contributing

vertices. The shown isodensity surfaces have voxels densities of 0.03ρmax, 0.10ρmax, 0.25ρmax,

0.35ρmax, 0.5ρmax, and 0.75ρmax, respectively, where ρmax is the maximum voxel density within

a given class of polygons and a given method of alignment. The sequential rows correspond

to polygons with 6, 24 and 50 segments, respectively. The scale bars in the respective rows

correspond to one segment length.

Fig. 2. The cumulative shapes of random polygons forming right-handed trefoil knots that were

aligned using the TS method. See the legend to Fig. 1 for an explanation of the elements of the

figure.
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Fig. 3. The cumulative shapes of unknotted random polygons that were aligned using the SBA

method. See the legend to Fig. 1 for an explanation of the elements of the figure.

Fig. 4. The cumulative shapes of random polygons forming right-handed trefoil knots that were

aligned using the SBA method. See the legend to Fig. 1 for an explanation of the elements of

the figure.

for such measures as the radius of gyration13), 17), 18) and the asphericity (a measure
of shape) and axial dimensions of ellipsoids of inertia16) and enveloping ellipsoids.11)
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