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Abstract

Knot fingerprints provide a fine-grained resolution of the local knot-

ting structure of tight knots. From this fine structure and an analysis of

the associated planar graph, one can define a measure of knot complexity

using the number of independent unknotting pathways from the global

knot type to the short arc unknot. A specialization of the Cheeger con-

stant provides a measure of constraint on these independent unknotting

pathways. Furthermore, the structure of the knot fingerprint supports a

comparison of the tight knot pathways to the unconstrained unknotting

pathways of comparable length.

1 Introduction1

Within the natural sciences, knotted, linked, or entangled macromolecules are2

encountered in a wide range of contexts and scales. Their presence has im-3

portant implications for physical and biological properties. Understanding how4

their presence causes these observed properties is a matter of contemporary in-5

terest. In this research, we focus on the local structure of a robust family of6

knots, the ideal knots [49]. Our focus identifies the locus of the constituent7

local knots of a knotted ring, as expressed in the knotting fingerprint, and their8

interrelationship [43, 44]. To identify the fine-grain knotting structure of a com-9

plex knotted ring, we employ the MDS method [25, 26] that defines the knot10

type of each subchain of the ring. We display this information in the form of11

a color-coded disc in which the color corresponds to the identified knot type.12

The radial distance from the center expresses the length of the subchain, with13

short subchains near the center and the entire chain giving the border of the14
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Figure 1: The knotting fingerprint of 10165

disc. The angular coordinate expresses the starting point of the subchain such15

as shown in Figure 1. This knotting fingerprint is then translated into the pla-16

nar graph associated to the fingerprint. The vertices in this graph correspond17

to the associated knot type regions. Among these vertices, the central unknot18

(as short segments are never knotted) and the peripheral region corresponding19

to the global knot type have special roles. We assess the complexity of the20

knot by looking at a measure of constriction inspired by the Cheeger Constant.21

We also look at a measure of structural complexity using the number of edge-22

and vertex-independent paths in the graph that begin at the central unknot23

vertex and end at the global knot vertex. These measures provide information24

associated with the spatial properties of the knot. For example, the number of25

independent paths is precisely the number of independent unknotting/knotting26

pathways associated to the given spatial conformation. Further analysis sug-27

gests ways that are three-dimensional in character by which one can measure the28

spatial complexity of the knot, in contrast to the classical measure associated29

to minimal crossing knot projections.30

2 Ideal Knots31

Ideal knots [49] are inspired by the result of tying a knot in some physical32

material (e.g. a piece of rope of some uniform thickness) and then seeking a33

conformation of the knot in which the length is the smallest possible. Thus, in34

the context of this study, we consider circular ropes of uniform thickness and35

minimal length among all conformations representing the same knot type. Such36

conformations are mathematically modeled by smooth curves, usually C1,1 or37

C2, for which one can define the radius of an embedded normal tube and the38

length of the curve. The ropelength of a knot is defined to be the minimum39

of ratios of this radius and the length over all conformations of a given knot40

type. A curve realizing this minimum is then a tight knot or, equivalently,41

an ideal knot. Rigorous results for tight knot conformations are very limited.42

For example, we only have estimates of the minimal ropelength for the trefoil43

knot, i.e. it lies between 31.32 and 32.74317 [40, 41]. As a consequence, we44
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are limited to approximate conformations described by polygons resulting from45

computer simulations. In this research, we apply our analysis to the ideal prime46

knot and composite knot conformations resulting from the knot-tightening code47

ridgerunner, developed by Ashton, Cantarella, Piatek and, Rawdon [38, 42].48

3 Knotting Fingerprints49

A closed chain in Euclidean 3-space is knotted if there is no ambient deformation50

of space taking the chain to the standard planar circle. The search for compu-51

tationally efficient and effective methods to determine the specific structure of52

knotting for polygons is a continuing mathematical challenge. More impor-53

tantly, the search for an appropriate formulation of knotting of open chains is54

even more challenging. From the classical topological perspective, knotting of55

open polygons is an artifact of a fixed spatial conformation because, if edge56

lengths and directions in the polygon are allowed to vary, each open polygon57

is ambient isotopic to a standard interval in the “x”-axis in 3-space (this is58

popularly called the “light-bulb” theorem). However, open polygons are geo-59

metrically knotted if the edge lengths are fixed. This is demonstrated by the60

examples of Canteralla-Johnson and others [27, 28, 29]. If one considers the61

case of equilateral polygons, it is unknown at this time whether or not there62

are configurations that cannot be deformed to a straight segment preserving63

the edge lengths. The analogous problem for closed equilateral polygons is also64

unknown, i.e. “Are there topologically unknotted equilateral polygon configu-65

rations in 3-space that cannot be deformed to the standard planar equilateral66

polygon?” These two problems give one a sense that the degree of difficulty67

in describing the knot theory of equilateral polygons in 3-space is considerable.68

Beyond those equilateral polygons having 8 or fewer edges, for which one knows69

more [30, 31, 32], one does not even know how many topological knot types70

can be achieved. If one adds thickness to the structure, one faces the Gordian71

Knot, which can only be unknotted by making it longer or thinner [45, 46].72

While we focus here on prime knots and simple composite knots, one expects73

that Gordian Knots, whose cores are topologically unknotted, will also exhibit74

important complexity in their knotting fingerprint.75

In this study of knots, it is important to be sensitive to questions of chirality,76

i.e. the spatial orientation of the knot in 3-space. A knot is said to be chiral if77

it is not equivalent to its mirror reflection. For many chiral knots, the writhe78

of a minimal crossing projection (defined as the algebraic sum of the crossing79

numbers, see Figure 2) is not zero, thereby defining a positive/negative instance80

dependent upon whether the writhe is positive/negative. If the specific knot,81

K, has positive writhe, it may be denoted by K, by +K, or by pK, depending82

upon the setting. If the negative instance is selected, it will always be denoted83

by -K or mK. Achiral knots, i.e. those equivalent to their mirror reflections, will84

have 0 writhe; however, this condition is not sufficient to determine whether85

or not the knot is achiral, as there are chiral knots having minimum crossing86

presentations of 0 writhe.87
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Figure 2: +1 and −1 algebraic crossing numbers

Figure 3: The MDS knotting closure

3.1 The MDS Method88

In order to identify the knotting present in open chains, especially those used as89

models for protein structures, and being concerned with the uncertain features90

of some popular strategies, Millett, Dobay and Stasiak [25, 26] developed a91

stochastic method to identify and quantitatively measure the extent of knotting92

present in an open polygonal segment. This method was employed in a study of93

knotting in random walks and tested against the previously identified knotting94

present in protein structures. More recently, it has been employed to create the95

knotting fingerprint used in an extensive study of the presence and nature of96

knots and slipknots occurring in protein structures [43]. The MDS Method is97

described as follows: given an open polygonal arc, consider the distribution of98

knot types, the knotting spectrum (see Figure 4), arising from the connection of99

both endpoints of the polygon to a uniform distribution of points on the sphere100

of very large radius that plays the role of the “sphere at infinity” (see Figure 3).101

For all practical purposes, this spectrum identifies a dominant knot type at the102

plurality level. Thus when a single knot type occurs more than any other knot103

type in the closures, we identify this as the knot type of the segment and record104

the proportion of this knot type. In a test of one thousand 300-step random105

walks in 3-space, the 0.50 level test was successful 99.6% of the time [25]. As106

a consequence, the MDS approach provides a powerful method with which to107

analyze the knotting of open chains.108
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Figure 4: The MDS knotting spectrum of 1, 000 300-step random walk

3.2 The Knotting Fingerprint109

For a given knotted or unknotted polygonal ring of n segments, one constructs110

the knotting fingerprint by first determining the knotting spectrum for each111

subsegment of the chain. The color is determined by the predominant knot112

type, and the intensity of the color is determined by the proportion of MDS113

closures having the given knot type. These colored cells are arranged as follows.114

First, a base point and orientation of the chain is selected. For a given segment115

length, starting at one and increasing to n, the colored segments are arranged116

at a constant radius corresponding to the proportion of the total length of the117

chain in a counter-clockwise fashion, with the angle indicating the proportion of118

the circuit from the base point to the start of the segment in the direction of the119

orientation. In Figure 5, we show the knotting fingerprint of an ideal 92 knot.120

The color bar in the right of the figure indicates the color code and intensity121

range for this knotting fingerprint. The color of the unknot is indicated by the122

color red. As very short segments of three or shorter must be unknotted, the123

central region of the knotting fingerprint is always red. As the entire chain is124

always the global knot type, the outer ring of the knotting fingerprint is the color125

attributed to the knot type. Each of the colored regions provides information126

about the knotting structure of the chain. For example, reading the color coding127

of rings of increasing radius, i.e. proportion of the total circular chain, one can128

estimate the length of the shortest subsegment supporting the global knot type.129

3.3 Analysis of the Knotting Fingerprint130

The knotting fingerprints may be limited by resolution of the knot type they131

represent, i.e. corresponding to the number of segments in the chain. Hence132

there are certain scenarios where the apparent knotting fingerprints do not agree133

with what we would expect. In some cases, this is a matter of resolution while, in134

others, it may give evidence of an unanticipated evolution of the local structure.135

For example, we frequently observe tiny, e.g. single cell, isolated regions of a136

certain type near but not contiguous to much larger regions of the same type.137

When this phenomenon occurs near the boundary of two regions in the knotting138

5



Figure 5: The knotting fingerprint of an ideal 92

fingerprint, it suggests that the tiny regions are inadvertent artifacts, due to the139

limited resolution, and should not be considered as singular regions distinct140

from their larger neighbors of the same type. In such situations it may be141

appropriate to “smooth” the data so the boundaries between distinct regions142

are more regular.143

In other situations, we observe features in the knotting fingerprint that ap-144

pear to be inconsistent with one’s interpretation of the consequences of knot145

theory. For example, there are several cases when the global knot has an un-146

knotting number greater than one, but the unknot appears to connect to the147

global knot by the addition of a single segment. One might expect that the148

difference between unknotting numbers of adjacent regions must be no greater149

than one [48, 47], so these fingerprints appear to be incorrect. For a single clo-150

sure point on the sphere, the addition of a sufficiently small edge would account151

for no more than a single strand passage, but in our case, there are two fea-152

tures that weaker this simplistic analysis. First, for a single closure point, our153

edge addition may cause more than one strand passage. This situation could be154

eliminated through a higher resolution, i.e. subdivision of the edge segments of155

the chain. Second, our analysis concerns a stochastic process giving spherical156

regions representing the distinct knot types arising from the closures. The pro-157

cess of adding an edge causes an evolution of these regions. Thus our choice of158

the plurality knot type can lead to a jump of two or more in the strand passage159

difference between the competing knot types (see Figure 6). We will see this160

represents a real artifact of the ideal knot presentation, not merely a question161

of its resolution. Therefore, although with greater resolution we would see a162

more accurate knotting fingerprint, the strand passage difference between two163

adjacent regions may or may not reflect the real structure of the ideal knot.164

For these analyses, one can carefully account for this potential error by deleting165

the edge between the unknot and the global knot in the corresponding knotting166

graph when the idea knot structure suggests that is a resolution artifact.167
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Figure 6: Eckert IV prevention of the spherical distribution of knot types

3.4 The Knotting Graph168

The knotting fingerprint defines the planar Knotting Graph by associating a ver-169

tex for each of the knotting regions, the connected components of the knotting170

fingerprint, and edges connecting vertices corresponding to contiguous regions.171

In Figure 7, we show the Knotting Graph associated to the 92 graph. The ad-172

dition of this edge corresponds to the movement of one of the edges connecting173

to the sphere during which one may pass through one or more other edges of174

the associated conformation. If the resolution of the ideal knot is fine enough,175

one would expect that a single passage would occur and the unknotting num-176

bers of the associated closed conformations could change by at most one. The177

designation of the knot type being given to that type attaining the plurality178

makes our analysis of the knotting fingerprint and the associated graph even179

more complex. The phenomenon that addition of a single small segment can180

correspond to a jumping unknotting number of two or more is quite possible181

and actually occurs. Thus one needs to look very closely at the possibility of a182

complex structural evolution (see Figure 11).183

The knotting graph has two distinguished vertices. The first corresponds to184

the component of small unknotted segments, labeled a0.1. The second corre-185

sponds to the knot type of the entire ring, labeled m9.2 in Figure 7, indicating186

that it is the “minus 92” knot according to the classical knot enumeration. In187

addition, there are two components of m3.1, m5.2, and of m7.2 shown in Figure188

5, each giving a vertex in the knotting graph in Figure 7. There are edges be-189

tween the m3.1 vertices and the 0.1 and 5.1 vertices, as the green 3.1 component190

shares common frontiers with the red 0.1 and blue 5.1 components.191

4 Analysis of the Knotting Graph192

In this paper we employ the knotting graph associated to the knotting finger-193

print of a given knot as the principal vehicle supporting our analysis of the194

complexity and character of the knot. The unknot vertex and the global knot195

vertex anchor our analysis as we study the extent to which there are constraints196

inherent in the evolution from the unknot to the global knot reflected in the197

structure of the knot. For example, to what extent is this evolution constrained?198

Are there a small number of knotting states through which this evolution must199

pass? One powerful measure of such a constraint or “bottleneck” is provided200
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Figure 7: The knotting graph of an ideal 92

by a specialization of the Cheeger Constant.201

4.1 The Cheeger Constant202

In graph theory, the Cheeger Constant is a measure of whether a graph contains
a “constriction” or “bottleneck.” It is inspired by Cheeger’s isoperimetric con-
stant h(M) for a compact Riemannian manifold, M , in terms of the area of a
codimension one hypersurface, S, dividing the manifold into two disjoint pieces
of equal volume. For graphs, the Cheeger Constant is defined as follows: Let G
denote a connected graph, V (G) be the vertices of G, and E(G) be the edges
of G. For a subset of vertices, S, containing either the initial unknot vertex or
the global knot vertex (but not both), let ∂S denote the set of edges that has
exactly one vertex in S and let |∂S| be the number of such edges. We define
the Cheeger Constant by

h(G) = minimum

{

|∂S|

|S|
| 0 < |S| ≤

|V (G)|

2

}

203

This formulation of a Cheeger Constant is designed to detect the presence of204

a constriction in the separation of the knotting graph that lies between the205

trivial knot and the global knot and, as such, represents a constriction in the206

growth of the knotting structure. In Figure 7, we show the set of vertices,207

S = {0.1,m3.1,m5.2,m7.2}, connected by five edges to the remaining vertices,208

including the global knot vertex. This configuration gives the minimal Cheeger209

Constant equal to 5

4
which, since it is greater than one, indicates that the 92210

knotting fingerprint does not suggest a constriction in its knotting.211

4.2 Independent Knotting Pathways212

Another possible measure of constriction is inspired by the Max-Flow-Min-Cut213

Theorem and the related theory of Menger. We determine the maximum number214

of edge independent paths, i.e. no edge appears in more than one path, from215

the unknot vertex to the global knot vertex. In Figure 7, we observe that the216
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Figure 8: The 75 knot illustrates the difference between ER(K) = 6 and
EV R(K) = 5

maximum number of edge independent paths from the unknot vertex to the217

global knot vertex is 3 as, in this case, the constraint is given by the degree of218

the global knot vertex. An initial analysis shows that the maximal number of219

edge independent paths is bounded above by the degree of the unknot vertex, the220

degree of the global knot vertex, and the number of edges in the minimum edge221

cut set separating the unknot vertex from the global knot vertex. The number222

of edges in the minimum edge cut set is related to the Cheeger Constant as well223

as the Max-Flow analysis. We propose to call the maximum number of edge224

independent paths the edge robustness index, ER(K), of the knotting graph.225

We observe, as is shown in Figure 7, that the specific set of paths in not226

unique.227

Perhaps it is more appropriate to require that the connecting paths are both228

edge and vertex independent. In this case one defines the edge vertex robustness229

index, EV R(K), of the knotting graphs. We note that there are cases in which230

these two indices of a knotting graph are different. The smallest crossing number231

example is the knot 75, whose knotting fingerprint is shown in Figure 8. An232

analysis of the associated knotting graph, Figure 8, shows that there are 6 edge233

independent paths while there are only 5 edge-vertex independent paths.234

4.3 Second Order Pathway Independence235

In an analysis of knotting graphs, one discovers a collection of knots for which236

the EV R(K) is equal to 1 due to the existence of a bridge edge in the graph,237

i.e. an edge whose removal disconnects the unknot vertex from the global knot238

vertex. The simplest examples of this structure are the (2, n)-torus knots, see239

Figure 9. In this case, this is the dominant theme, i.e. all edges are bridges. In240

other cases, this first measure of robustness may not fully capture the complexity241

of the knotting fingerprint. One is lead, as a consequence, to create a second242

order measurement associated to the two connected components that result from243

the removal of the bridge edge. One of the bridge’s vertices can be identified as244

a terminal vertex when it lies in the component containing the unknot vertex,245

while the other can be identified as an initial vertex of the other component. We246
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Figure 9: The 71 torus knot has a linear knotting graph

Figure 10: The 940 knot

then determine the edge vertex robustness index for the two resulting subgraphs,247

thereby giving a pair of indices, (p, q), that define the second level of pathway248

independence. In some cases, the bridge is adjacent to the unknot vertex or249

the global knot vertex. In such cases, we assign the index 0 to the component250

consisting of the single vertex.251

4.4 Prime, Composite, and Slipknots in Knotting Finger-252

prints253

We have seen that the knotting fingerprints of ideal prime knots can be quite254

complex (see Figure 1), in that there can be a complex spectrum of knot types255

found among its substructures. One may find subknots of a prime knot that are256

slipknots, i.e. they are contained with larger segments which are unknotted (see257

Figure 10). Ideal composite knots, the connected sums of two or more prime258

knots, exhibit even more complex structure (see Figure 11). Despite having two259

distinct 31 knot components, the knot graph of 31#31 is linear corresponding260

to 31. In contrast, −31#31 exhibits two distinct components for the summands261

separated by an unknot region. In this knot graph, the unknot component is262

contiguous to the connected sum component, a knot of unknotting number two.263

Thus, the fine structure of the knotting evolution in this area must be much more264

complex, perhaps along the lines discussed earlier, in which there is an evolving265
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Figure 11: The knotting fingerprint of connected sums: 31#31 and −31#31

Figure 12: The knotting graph of connected sums: 31#31 and −31#31

proportion that includes the unknot and the two distinct summands. In the266

case where the two summands are the same type, their knot type is cumulative,267

thereby providing the ring separation observed in the knotting fingerprint.268

5 Knot Complexity269

In the following tables, we present our determinations of these measures of knot270

complexity.271

5.1 Cheeger Constant Complexity272

With sufficient resolution, one observes that the only n-vertex linear knotting273

graphs observed are associated with the family of (2, 2n + 1)-torus knots, for274

which the Cheeger constant is 1

n
, the smallest values observed. In our data,275

this is the case for 31, 51, and 71. For 91, we see that this is no longer the case,276

though one can easily see that it should also be confirmed with a finer resolution277

(see Figure 13). One expects to see complete rings of each knot type, as in the278

case of 71 (see Figure 9), but here the 51 and 71 rings are incomplete due the279

lack of sufficient resolution.280

This phenomenon is quite different from the one observed most clearly in281

the case of the connected sums of trefoil knots. There are two chirally distinct282
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Figure 13: Ideal 91

Figure 14: Ideal 31#52 knotting fingerprint and associated knotting graph

cases depending upon the the writhe, i.e. the algebraic sum of the crossings283

numbers: the left trefoil, denoted -31, has negative writhe and the right trefoil,284

denoted 31 has positive writhe. In Figure 12, one sees that 31#31 has a linear285

graph, as its knotting fingerprint consists of concentric rings similar to the torus286

knot case. The graph of -31#31 is more complex because the unknot region and287

the global knot region are contiguous. As mentioned earlier, this contiguity is288

associated with the interplay between the two types of trefoils that prevent their289

knotting regions from contiguity and, thereby, forcing the surprising connection290

between the unknot and the connected sum, an unknotting number two knot.291

An even more complex example of this phenomenon is exhibited by the knotting292

fingerprint of the connected sum, 31#52 and the associated knotting graph (see293

Figure 14).294

As measured by the Cheeger constant, the most complex knotting finger-295

prints among those in our current tables are 83 and 944 whose knotting graphs296

are shown in Figure 15.297
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5.2 Independent Path Complexity298

Since the numerator of the Cheeger constant is the number of edges in an edge-299

cut set separating the global knot from the unknot, this numerator gives an300

upper bound on the number of edge independent paths connecting the unknot301

region to the global knot region. From the tables, one sees that EVR is often302

a bit smaller than this numerator. Such is the case for the knot 72 in Table303

1. If one employs EVR(K) as a measure of complexity instead of the Cheeger304

constant, one finds that the (2, n)-torus knots are identified as the simplest305

structures, along with 814, 819, and 935. The most complex, having 14 inde-306

pendent pathways, are 929, 932 and 933. These latte knots suggest that the307

independent pathway measure may capture a distinctly new dimension of knot308

complexity.309

While there is only one minimal path taking the trefoil knot 31 to the unknot310

01, the story is more complex for other (2, n)-torus knots. For 51, an unknotting311

number two knot, the shortest paths must have length two. However, these312

paths are no longer unique, as one may add any single strand passage resulting313

in an unknotting number one knot, creating another shortest path. Employing314

“TopoIce-X” within the KnotPlot software [50], we find that in addition to315

51 → 31 → 01, one must also consider 51 → 52 → 01, 51 → 87 → 01, and316

51 → 926 → 01, staying within the class of knots of crossing number no larger317

than 10. In the knotting fingerprint for 51, only the first unknotting pathway318

is observed. For 71, the situation is much more complex. In addition to the319

71 → 51 → 31 → 01 pathway, the three other previous pathways occur. Adding320

even more pathways are those knots starting with 71 → 73, 71 → 75, and321

71 → 105 since each of these is an unknotting number two knot with their own322

selection of unknotting pathways. Again, only the first occurs for the ideal 71.323

The constraint that the knotting pathway be supported by knotted subsegments324

of the ideal knot effectively limits the knotting pathway options to the “standard325

(2, n)-torus knot” pathway, despite the knot graph complexity whose occurrence326

we associate with the need for greater resolution (larger number of edges) to327

capture essential features of the structure.328

The twist knots provide another interesting class to consider, the first of329

which is 52, an unknotting number one knot. Thus, its shortest path is 52 → 01330

but, as 31 is a subknot of 52 there is a second, independent unknotting pathway331

52 → 31 → 01 within its knotting fingerprint. Furthermore, there are two332

disjoint 31 components giving rise to a second, independent 52 → 31 → 01333

unknotting pathway. As a consequence, both the Cheeger constant, 1.50, and334

EVR, 3, provide a better measure of the real structural complexity of the twist335

knot. This same complex structure is exhibited in the knotting fingerprints of336

61, 72, 81, and 92.337

What does this tell us about more complex knots, e.g. 83 shown in Figure338

15? The Cheeger constant is 2.00 and EVR is 8. It is an unknotting number339

two knot whose knotting fingerprint contains ±61 and 41 supporting knotting340

pathways: 83 → −61 → 01, 83 → −61 → 41 → 01, 83 → +61 → 01, and341

83 → +61 → 41 → 01. Due to a two-fold symmetry, there are actually two342
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Figure 15: h(83) = 2.00 and h(944) = 1.86

examples of each of these knotting pathways, resulting in a total of 8, the EVR.343

Another complex knot is 944 (see Figure 15), an unknotting number one knot344

whose Cheeger constant is 1.86 and EVR is 7. As 944 is not a rational knot,345

TopoICE does not list the knot, but we know that it has unknotting number346

one, giving the minimal path. There are, however, seven independent paths,347

again providing a substantial measure of complexity. We note that 944 contains348

a composite sub knot, −31#41, that has unknotting number two.349

6 Conclusions350

In this paper we have presented the knotting fingerprint of a polygonal approx-351

imation of an ideal knot, or tight knot, showing the structure of the knotting352

of subsegments of the knot. The associated subknot types define regions of353

the knotting fingerprint, i.e. a planar map, to which one can associate a pla-354

nar graph with two distinguished vertices corresponding to the unknot and the355

global knot. We propose that the complexity of the knotting fingerprint and the356

associated knotting graph provides a measure of the intrinsic complexity of the357

knot. Interested in the ways in which knots can be unknotted or, inversely, con-358

structed from unknotted segments, we have proposed two strategies by which359

one can quantitatively measure this complexity. The first strategy is analogous360

to the Cheeger constant, h(K), of the graph whereby we partition the vertices361

of the graph (requiring the unknot to be a member of one subset and the global362

knot to be a member of the other subset) and take the minimum ratio of the363

number of edges connecting the two subsets and the number of vertices in the364

small subset over all such partitions. The second method, EVR(K), is defined365

to be the number of edge and vertex independent paths in the graph connecting366

the unknot vertex to the global knot vertex.367

Our analysis of prime knots through 9 crossings and a sampling of 10 crossing368

knots and composite knots demonstrates that these measures are effective tools369

for assessing the complexity of an ideal knot. The analysis further identifies370
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Table 1: Analysis of Ideal Prime Knots (through 7 Crossings)
Knot h(K) ER(K) EV R(K)
31

1

1
= 1.00 1 1

41
1

1
= 1.00 1 1

51
1

2
= 0.50 1 1

52
3

2
= 1.50 3 3

61
3

2
= 1.50 3 3

62
5

3
= 1.67 5 5

63
5

3
= 1.67 5 5

71
1

3
= 0.33 1 1

72
4

3
= 1.33 3 3

73
8

5
= 1.60 6 6

74
7

4
= 1.75 4 4

75
6

5
= 1.20 6 5

76
7

4
= 1.75 7 7

77
7

5
= 1.40 7 7

Table 2: Analysis of Ideal Knots (8 Crossing Knots)
Knot h(K) ER(K) EV R(K)
81

4

3
= 1.33 3 3

82
8

5
= 1.60 7 5

83
10

5
= 2.00 8 8

84
11

6
= 1.83 9 9

85
8

5
= 1.60 6 4

86
9

6
= 1.50 8 8

87
8

6
= 1.33 7 5

88
11

6
= 1.83 10 10

89
11

7
= 1.57 10 9

810
10

6
= 1.67 7 7

811
10

7
= 1.43 10 10

812
7

5
= 1.40 6 6

813
9

7
= 1.29 9 9

814
1

1
= 1.00 1 1

815
9

6
= 1.40 4 4

816
13

8
= 1.63 13 13

817
9

6
= 1.50 8 8

818
9

6
= 1.50 9 9

819
1

1
= 1.00 1 1

820
6

4
= 1.50 5 5

821
6

4
= 1.50 4 4
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Table 3: Analysis of Ideal Knots (9 Crossing Knots)
Knot h(K) ER(K) EV R(K)

91
1

1
= 1.00 1 1

92
5

4
= 1.25 3 3

93
11

7
= 1.57 6 6

94
10

8
= 1.25 8 8

95
12

9
= 1.33 10 10

96
8

6
= 1.33 6 4

97
11

7
= 1.57 7 7

98
11

6
= 1.83 9 9

99
9

7
= 1.29 5 4

910
11

10
= 1.10 8 7

911
12

8
= 1.50 11 7

912
11

8
= 1.38 10 10

913
12

9
= 1.33 8 6

914
10

7
= 1.43 8 8

915
11

7
= 1.57 10 9

916
11

6
= 1.10 2 2

917
12

9
= 1.33 10 10

918
12

8
= 1.50 9 7

919
9

6
= 1.50 9 8

920
12

9
= 1.33 11 10

921
15

10
= 1.50 12 11

922
14

8
= 1.75 12 12

923
13

8
= 1.63 9 8

924
10

8
= 1.25 9 8

925
11

7
= 1.57 7 7

926
14

9
= 1.56 12 10

927
14

9
= 1.56 13 12

928
10

7
= 1.43 8 7

929
16

11
= 1.45 14 14

930
12

8
= 1.50 11 9

931
10

7
= 1.43 7 6

932
14

11
= 1.27 14 14

933
14

9
= 1.56 14 14

934
11

8
= 1.38 11 11

935
1

1
= 1.00 1 1

936
9

89
= 1.13 6 5

937
12

10
= 1.20 12 10

938
13

10
= 1.30 4 4

939
14

10
= 1.40 13 11

940
8

8
= 1.00 8 8

941
14

10
= 1.40 13 12

942
6

4
= 1.50 5 5

943
9

6
= 1.50 6 6

944
6

7
= 01.86 5 5

945
9

6
= 1.50 6 5

946
7

6
= 1.17 7 7

947
11

8
= 1.38 10 10

948
12

10
= 1.20 11 10

949
12

8
= 1.50 7 6
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Table 4: Analysis of Ideal Knots (Selected 10 Crossing Knots)
Knot h(K) ER(K) EV R(K)
103

11

9
= 1.22 8 7

105
11

9
= 1.22 8 6

1010
13

10
= 1.50 10 10

1011
14

10
= 1.40 10 10

1020
12

8
= 1.50 9 9

1035
12

8
= 1.50 11 9

1036
12

9
= 1.33 12 10

1058
3

2
= 1.50 2 2

1060
11

9
= 1.22 9 9

1070
13

9
= 1.44 11 10

1076
12

8
= 1.50 6 4

10125
9

7
= 1.29 5 5

10126
12

8
= 1.50 7 6

10127
9

6
= 1.50 6 5

10128
11

8
= 1.38 2 2

10130
11

7
= 1.57 9 7

10131
11

9
= 1.22 11 8

10134
9

6
= 1.50 3 3

10135
10

7
= 1.43 5 5

10137
12

7
= 1.71 11 11

10140
10

9
= 1.11 10 9

10141
10

8
= 1.25 8 8

10146
8

8
= 1.00 8 6

10147
10

7
= 1.43 10 9

10151
12

8
= 1.50 6 5

Table 5: Analysis of Ideal Knots (Composite Knots)
Knot h(K) ER(K) EV R(K)
31#31

1

2
= 0.50 1 1

31#41
3

2
= 1.50 2 2

31#51
4

3
= 1.33 3 2

31#52
5

3
= 1.67 2 2

31#− 31
3

2
= 1.50 3 3

31#− 51
3

3
= 1.00 3 2

31#− 52
6

4
= 1.50 4 4
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instances of complex evolutionary structure, such as contiguous knotting regions371

representing knot types separated by more than one crossing change (as reflected372

in their unknotting numbers). While the (2, n) torus knots are clearly those of373

simplest structure, our analysis calls attention to the apparently simple structure374

of some other knots, e.g. 944, 814, 819, and 935 from the knots with fewer than375

10 crossings. Furthermore, we have provided a small sample of examples that376

demonstrates that the knotting pathways that arise within ideal knots come377

from a quite specific set of options when compared with the shortest knotting378

pathways available, without being constrained to be supported within the ideal379

knot structure.380
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