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Writhe and mutual entanglement combine to give the entanglement length
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We propose a method to estimate Ne, the entanglement length, that incorporates both local and global
topological characteristics of chains in a melt under equilibrium conditions. This estimate uses the writhe
of the chains, the writhe of the primitive paths, and the number of kinks in the chains in a melt. An advantage of
this method is that it works for both linear and ring chains, works under all periodic boundary conditions, does
not require knowing the contour length of the primitive paths, and does not rely on a smooth set of data. We apply
this method to linear finitely extendable nonlinear elastic chains and we observe that our estimates are consistent
with those from other studies.
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I. INTRODUCTION

The rheological properties of polymer melts are determined
primarily by the random-walk-like structure of the constituent
chains and the fact that the chains cannot cross [1]. The
motion of sufficiently long chains is limited by the presence
of the other chains which create persistent obstacles, called
entanglements [2]. As the degree of polymerization becomes
larger than the entanglement length, Ne, the entanglements
become important and dramatically change many melt proper-
ties such as diffusivity and viscosity. In entangled polymer
melts and solutions, Ne is arguably the most fundamental
material parameter which can be measured experimentally by
the plateau modulus [3].

Edwards suggested that entanglements effectively restrict
individual chain conformations to a curvilinear tubelike region
enclosing each chain [1]. For very short time scales, chain
segments are allowed to freely fluctuate in all directions
until their displacements become commensurate with the
tube diameter, a, which is related to entanglement length
by a2 = Neb, where b is the bond length [4–6]. Thus,
Ne characterizes the crossover between the Rouse and the
reptation regime and it is commonly interpreted as the number
of monomers between entanglements. The axis of the tube
is a coarse-grained representation of the chain, called the
primitive path (PP). Edwards defined the PP as the shortest
path a chain, fixed at its ends, can follow without crossing
any other chains. Based on this definition, Rubinstein and
Helfand [2] realized that the entanglements in a system could
be obtained by reducing all chains to their PPs simultaneously,
creating a PP network. Since then several methods have
been developed for extracting the PP network [7–13]. Two
geometrical methods capable of efficiently reducing computer
generated polymer models to entanglement networks are the
Z1 code [8,9,14,15] and the CReTA algorithm [10]. All
the methods work in discontinuous coordinate space; i.e.,
they use finite displacements during which disentanglement
events must be avoided. Despite differences in their specific
implementation, these methods are reported to yield similar
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results for the average properties of the PP network [9]. These
algorithms extract the PP network estimate of Ne either from
the chain statistics of the PPs or from direct enumeration
of entanglements, defined as contacts between PPs. The
different approaches produce somewhat different results for Ne

for the same atomistic configurations [6,9,10,16,17]. Indeed,
the resulting PP network is not unique and several of its
features, such as the role of self-entanglement, the difference
between energy minimization and length minimization, and
the location of entanglement points along a PP, have been
examined [8–10,18–22]. Notice that the process of drawing
the strands tight destroys the detailed geometry of the melt
and these methods may lead one to think of entanglements as
local binary contacts between two chains. To better capture
the geometry, other methods to extract the PP such as the time
isoconfigurational average [23–25] have been proposed.

Despite these advances, our understanding of entanglement
is incomplete. The reason is the difficulty to connect the
entanglement properties of the chains at two different scales.
In the rest of this paper we shall call the local obstacles to the
motion of the chains local entanglement, and we shall call
the conformational complexity of the entire conformations of
the chains in the melt global entanglement (see Fig. 1 for
an illustrative example). Edwards first pointed out that in the
case of ring polymers, the global entanglement of the chains
can be studied by using tools from mathematical topology,
such as the Gauss linking number [26,27]. First, notice that
the uncrossability of the chains allows them to attain only
isotopic configurations, that is, configurations that are related
by continuous deformations that do not allow intersections.
This notion of isotopy is a basic concept in topology. Under
certain conditions, we can model the polymer chains as simple
mathematical curves in space. A knot (respectively, link) is
one (or more, respectively) simple closed curve(s) in space
without intersections. The complexity (or topological state) of
these knots or links is related to their global entanglement
and it can be measured by using topological invariants
such as knot or link polynomials [28–31]. The topological
invariants are properties of knots or links, which are the
same for isotopic configurations. Since Edwards, many studies
have been devoted to the topology of polymer rings and its
relation to physical properties [7,32–35]. The study of global
entanglement has been very useful, especially in the study of
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FIG. 1. (Color online) Example of two conformations with the
same number of kinks, Z = 6, but with different writhe, W = 0.007
(left) and W = 2.78 (right). We notice that the conformation of
the former chain is simple, while the latter is more complex. A
direct end-to-end closure of the first chain will produce the unknot
(the trivial knot type), while the direct end-to-end closure of the
second results in the trefoil knot (a nontrivial knot type). Notice
that the disentanglement of the second conformation may be difficult
[69].

biopolymers [36,37]. In Ref. [34] a direct relation between
distinct topological states and Ne has been revealed. Therein,
Ne was estimated for a system of ring polymers in one or two
PBC, using purely topological tools, i.e., the Jones and the
HOMFLY polynomials [28,30,34]. One of the reasons why this
has not been explored as much in the case of polymer melts
is because of the problem of dealing with linear polymers.
In the case of linear polymers, the notion of topological
invariant does not apply since topological open curves can
be continuously deformed to attain any configuration. Efforts
have been made to characterize the knotting of an open chain
[33,38–40]. For example, one can use the methods described
in Refs. [39,40] to determine the spectrum of knotting arising
from the distribution of knot types created by closure of
the open chain to the “sphere at infinity.” In this study we
will measure the global entanglement of open chains directly
without employing any closure. Our goal is to provide a method
to estimate Ne for a melt of both linear or ring polymers in any
PBC model by combining the local and global entanglement
characteristics of the chains in a melt.

A measure of global entanglement, that is meaningful both
for closed or open chains, is the Gauss linking integral.
For two closed chains (ring polymers) the Gauss linking
integral is a topological invariant that measures the algebraic
number of times one chain turns around the other. For two
open chains (linear polymers), it is a real number that is
a continuous function of the chain coordinates. The Gauss
linking integral can be also applied to one chain in order to
provide a measure of global self-entanglement of a chain,
called the writhe [41–46]. The writhe is a real number that
changes continuously under continuous deformations of a
chain. The writhe is very clearly not a topological invariant,
even for closed chains, because it is a quantity that depends on

the specific geometry of the chain, and it is very sensitive
to the specific conformations that are analyzed. Computer
experiments indicate that the linking number and the writhe
are effective indirect measures of global entanglement in
systems of random filaments [26,32,35,47–55]. Analytical and
numerical results have shown that the writhe of random walks
and polygons depends on their length and that it follows
a different scaling for random walks in a lattice or under
confinement [42,53,56–67]. Kholodenko and Vilgis [68] have
proved that the writhe of semiflexible rings follows a scaling
that depends both on the stiffness parameter and on the length
of the chains.

The information provided by the writhe is very useful but
it is not clear how to put it into the context of current tube
and slip-link model methods [69]. In this paper we show
that the writhe in combination with the Z1 algorithm can
provide information that is relevant to the physical notions of
entanglement, such as Ne estimators, denoted Ne(N ), that aim
at estimating Ne = limN→∞ Ne(N ) from information derived
from a finite number of monomers per chain, N .

The paper is organized as follows: In Sec. II we describe
the measures of entanglement that are used in this paper. In
Sec. II B1 we numerically study the mean absolute writhe of
semiflexible linear chains in order to extend the analytical
result of Kholodenko and Vilgis [68] to open chains. We will
use this in the following section in order to estimate Ne for
linear chains in a melt. In Sec. III an Ne estimator is introduced
based on the writhe of the original chains, the writhe of their
PPs, and the number of kinks. In Sec. IV we compute the
proposed Ne estimator for linear, finitely extendible nonlinear
elastic (FENE) chains in a melt and compare it with the
results of previous estimators for the same system. Next, in
Sec. V, we discuss some results stemming from the earlier
analysis concerning the number of kinks, the writhe of the
original chains, the writhe of their PPs, and the writhe of
the entanglement strands. These provide further insight to the
global and local entanglement of the system.

II. MEASURES OF ENTANGLEMENT OF A LINEAR
POLYMER CHAIN IN A MELT

To measure the entanglement of polymer chains in a melt
we measure their writhe and use the Z1 algorithm to determine
their PP. This section is devoted to their description.

A. Z1 algorithm

The Z1 algorithm [14] is a state-of-the-art geometric
algorithm which proceeds by transforming the physical picture
of topological interchain constraints (as conceived by Doi-
Edwards [1]) into a pure mathematical problem of identifying
the shortest multiple disconnected (primitive) path subject
to geometrical constraints arising from the configuration of
the corresponding atomistic system. More precisely, given a
fixed polymer melt configuration, the algorithm minimizes the
contour length of the chains by moving the beads sequentially
in space, maintaining the noncrossability of the chains. In this
way the chains become rectilinear strands coming together
at kinks where the entanglements occur. Disentanglement
is prevented by constraining moves of kinks to lie in the
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plane of their adjacent segments. The Z1 code provides the
option to respect or neglect self-entanglements, that is, kinks
between arcs of the same chain. Computational effort is,
in both cases, very comparable. For a system of M chains
of N monomers each, the computational effort of the Z1
algorithm is of the order M N , i.e., almost linear in the total
number of monomers [8]. In previous studies it has been
shown that self-entanglements between distant chain sections
in polymer melts are rare [18]. In this study, to allow for a direct
comparison with previous works [17], we use the version of
Z1 that does not capture self-entanglements. We stress that,
even if there are no kinks of a chain with itself, this does not
mean that a chain is not entangled with itself at a global level.
This global self-entanglement is imposed to a chain due to
the presence of the other chains (see Fig. 1 for an illustrative
example). Thus, even if self-crossings are allowed, on average
the global self-entanglement remains due to the uncrossability
with other chains.

A direct consequence of the specific mathematical formu-
lation is that the Z1 algorithm provides as output the average
contour length of a primitive path, 〈Lpp〉. Here and in the
following, 〈 〉 denotes averaging over all chains of a given
configuration. In addition, by mapping the extracted interior
nodes of each primitive path into kinks, the average number
of interior kinks (entanglements), 〈Z〉, per chain is returned.
The probability distribution of 〈Z〉 has been approximated
by a Poissonean [19,70] (Appendix D). We will use the
following notation for the average values of these quantities
over all chains: Z = 〈Z〉 and Lpp = 〈Lpp〉. Finally, from the
output of Z1 one can recover Ne values in accordance with
experiments [17] (Sec. IV A).

B. The writhe of a curve

Consider a frozen configuration of polymer chains repre-
sented by a collection of polygonal curves in three-dimensional
space. A simple measure of global self-entanglement for
individual chains is given by counting the crossings in a
random projection of one or two chains. Indeed, notice that
in all generic orthogonal projections of a planar curve one
would not see any crossings. Similarly, for two unlinked planar
curves, almost all projections would give no crossings between
them. Without loss of generality, we can assign an orientation
to the chains. By assigning a sign to each crossing (Fig. 2),
one can recover information concerning which arc passes over
and under the other. To appreciate the character of the writhe

FIG. 2. (a) +1 crossing and (b) −1 crossing. By assigning a sign
to each crossing, one recovers information concerning which arc
comes over and under.

of a chain we first introduce a linking number. We follow the
presentation in Ref. [66].

For a generic projection of two oriented curves l1, l2 to
a plane defined by a vector ξ ∈ S2 the linking number of a
diagram, denoted lkξ (l1,l2), is equal to one half the algebraic
sum of crossings between the projected curves. The linking
number of two oriented curves is then equal to the average
linking number of a diagram over all possible projection
directions, i.e., L(l1,l2) = (4π )−1

∫
ξ∈S2 lkξ (l1,l2)dS. This can

also be expressed by the Gauss linking integral for two oriented
curves. The Gauss linking number of two oriented curves
l1 and l2, whose arc-length parametrization is γ1(t),γ2(s),
respectively, is defined as a double integral over l1 and l2 [71]
as follows:

L(l1,l2) = 1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t),γ̇2(s),γ1(t) − γ2(s))

|γ1(t) − γ2(s)|3 dtds,

(1)

where the nominator of the integrand is the triple product of
γ̇1(t),γ̇2(s), and γ1(t) − γ2(s).

Similarly, for the generic orthogonal projection of one
oriented curve l to a plane defined by a vector ξ ∈ S2 we
define the writhe of a diagram, denoted wξ (l), to be equal to
the algebraic sum of crossings of the projection of the curve
with itself. Then the writhe of a curve is defined as the average
writhe of a diagram of the curve over all possible projections,
i.e., W (l) = (4π )−1

∫
ξ∈S2 wξ (l)dS. Analogously, this can be

expressed as the Gauss linking integral over one curve. The
writhe of an oriented curve l with arc-length parametrization
γ (t) is thus alternatively and more conveniently defined by the
Gauss linking integral over a curve,

W (l) = 1

2π

∫
[0,1]∗

∫
[0,1]∗

(γ̇ (t),γ̇ (s),γ (t) − γ (s))

|γ (t) − γ (s)|3 dtds, (2)

where [0,1]∗ × [0,1]∗ = {(x,y) ∈ [0,1] × [0,1]|x �= y}.
We observe that the geometrical meaning of the writhe and

the linking number is the same for open or closed curves, and it
is the average over all projection directions of the algebraic sum
of crossings, or intercrossings, respectively, in the projection
of the curve, or curves, respectively. When applied to open
chains both measures are continuous functions in the space of
configurations. Furthermore, as the end points of the curves
move towards coincidence, the linking number or writhe tends
to the values of those measures for the resulting closed knots
or links. In the case of closed chains the linking number is a
topological invariant.

For a polygonal curve the Gauss linking integral can
be easily computed following the algorithm described in
Ref. [43]. More precisely, for a system of M chains of N

monomers each, the computation of the writhe for all chains
is of the order M N (N − 1)/2. It has been shown numerically
that the writhe follows a normal distribution [65], centered
around zero. For a system of many chains in a simulation
box, and a large sample, the statistics of the writhe could be
estimated from a subset of the chains in each polymer melt
configuration. If only a fraction ∼1/N of all chains (requiring
M 
 N ) is sufficient to estimate the writhe, the computational
effort is of the order of the Z1 code M N .

062604-3
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In the following we will take averages of the writhe of
polymer chains in melts simulated with the use of a periodic
box. The periodic box is replicated in space to form a large
bulk system. As it has been pointed out in previous studies
[34,72,73], the periodicity of the chains induces special
features in the global entanglement of the melt. For a system
with M chains in a periodic box, there are only M different
conformations in the periodic system that the box generates
and infinitely many copies of these conformations. In this study
we will use the writhe to measure the global self-entanglement
characteristics per chain in the periodic system. Thus, for a
system of M chains in a periodic box it suffices to measure the
writhe of the M different unfoldings in order to measure the
average writhe per chain in the periodic system.

Notice that the average writhe over the space of possible
configurations is zero since it can take positive or negative
values with the same probability. This is why we choose
to study the mean absolute or the mean-squared writhe in
the space of configurations. The growth rate of the mean
absolute writhe of (open) self-avoiding random lattice walks is
equal to that of (closed) self-avoiding random lattice polygons
[64,65]. Both writhes scale as ∼√

N with chain length N . The
mean-squared writhe of (closed) equilateral random polygons
in three dimensions scales as ∼N [67]. In this paper we
will be interested in the scaling of the mean absolute and
the mean-squared writhe of linear FENE chains in a melt,
for which reference results do not exist. Chains in melts are
expected to behave like ideal chains due to screening, and
as N → ∞, the known random-walk models are expected
to give similar qualitative results for the mean absolute and
the mean-squared writhe. We are, however, interested in the
precise determination of the involved constants and prefactors
of these scalings.

1. The writhe of semiflexible linear chains

Individual polymer chains in a melt are essentially semi-
flexible, that is, they assume conformations similar to those of
wormlike chains with a bending angle constraint imposed (see
Appendix A). The main source of semiflexibility are the ex-
cluded volume interactions between adjacent monomers. Thus,
the writhe of semiflexible chains may provide useful informa-
tion for the writhe of polymer chains in a melt. Kholodenko and
Vilgis [68] provided an analytic expression for the behavior
of the mean-squared writhe of linear semiflexible rings as a
function of their stiffness parameter. Based on our numerical
results, presented below, we will extend their result to linear
semiflexible chains and, at the same time, to linear polymer
chains in a melt. To compare these results with those for ran-
dom walks we will also numerically study the mean absolute
and the mean-squared writhe of equilateral random walks.

Consider a wormlike chain (WLC), a connected linear string
of N − 1 segment unit vectors with dimensionless stiffness
parameter κ (Appendix A). Kholodenko and Vilgis [68]
proved that, for semiflexible rings, the mean absolute writhe
behaves as

〈|W |〉 =
√

π

2

[(
N

κ

)1/2

+ const

(
N

κ

)−1/2]
, (3)

with an unspecified constant.
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FIG. 3. (Color online) (a) Numerical results for the mean absolute
writhe vs N for various stiffness parameters κ . We include the result
for an equilateral random walk, Eq. (6). (b) The same data vs N/κ

falls onto a master curve, our Eq. (4).

By generating linear semiflexible chains of varying κ for a
range of molecular weights (Appendix A), we find that 〈|W |〉 is
a universal function of N/κ (Fig. 3). A best fit for linear chains
turns out to be of a form very similar to the one proposed for
semiflexible rings, Eq. (3). We find

〈|W |〉 ≈ 1

5

√
π

2

[(
N

κ

)1/2

+
(

N

κ

)−1/2

− 2

]
. (4)

The difference, compared with the result for rings, is that
we have a constant offset and a different prefactor. Our
expression implies 〈|W |〉 = 0 for κ = N . The first term in
Eq. (4) dominates the typical case of N 
 κ . Notice that
1/5

√
π/2 ≈ 1/4. For any N , the mean absolute writhe of the

linear semiflexible chains is smaller than that of rings. Indeed,
previous studies on the average crossing number of equilateral
random walks and polygons [42,74], on the writhe, on the
self-linking number of uniform random walks and polygons
in confined space [66,75], and on the writhe of self-avoiding
walks or polygons on a lattice [64,65], indicate that the growth
rate of these quantities is the same for open and closed chains
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FIG. 4. (Color online) Numerical results for the squared writhe
vs N/κ for various N and stiffness parameters κ . The data fall onto
a master curve, see our Eq. (5).

but with different constants and prefactors. Similarly, shape
descriptors such as the radius of gyration, the asphericity, or
prolateness also differ for open and closed chains of the same
length [76,77].

Similarly, we find that 〈W 2〉 (Fig. 4) is very well approxi-
mated by

〈W 2〉 ≈ 0.03

(
N

κ

)1.18

. (5)

Semiflexible chains are ideal in the sense that they behave
like random walks of a different step size than that of the
bond length. This quantity is called the Kuhn length. It is
therefore natural to compare our data with that of random
walks that exhibit a fixed edge length and no bond angle
correlation. Numerical and analytical arguments show that the
mean-squared writhe of closed equilateral random polygons is
well described by 0.1334 N − 0.7554 [67]. Here, we extend
this analysis to open chains. To generate equilateral random
walks, each edge vector was drawn from a uniform distribution
on S2. Each data point is an average of 5000 random walks. Our
numerical results on the mean absolute and the mean-squared
writhe, respectively, of equilateral random walks are well
described by the following expressions:

〈|WRW|〉 ≈ 0.29 N1/2 − 0.43,
(6)〈

W 2
RW

〉 ≈ 0.11 N − 0.95,

which can be derived from Eq. (4) for κ ≈ 1/2.
We remind the reader that Eqs. (4)–(6) are not analytical

results. However, the best fit of Eq. (4) is based on the
analytic formula of Eq. (3) for semiflexible rings [68], and
Eq. (6) is also based on semianalytical arguments for random
walks [64,65,67]. The exponent in Eq. (4) is only an apparent
exponent. If analytical arguments provide exact estimates of
those functions in the future, these could be substituted in the
following analysis to provide more accurate numerical results.
The current estimates are sufficient for testing the proposed
methods in this study.

III. A METHOD TO COMPUTE Ne ESTIMATORS
VIA WRITHE AND Z

In this section we study the number of monomers in an
entanglement strand and suggest an Ne estimator for polymer
chains in a melt. To do this, we will combine the local
entanglement information, provided by the Z1 algorithm, on
the number of kinks per chain with the global entanglement
information given by the writhe of a chain and its primitive
path.

A. Ne via writhe and Z

Let us consider a polymer chain, I , in a melt formed by
Z + 1 entanglement strands denoted as e1, e2,..., eZ+1. The
writhe of I can be expressed as (Appendix B)

W (I ) =
Z+1∑
i=1

W (ei) + 2
Z∑

i=1

Z+1∑
j=i+1

L(ei,ej ), (7)

where W (ei) denotes the writhe of the entanglement strand ei

and L(ei,ej ) denotes the Gauss linking number for entangle-
ment strands i and j . We now focus on the second summation
in the right side of Eq. (7). Each term in that summation
is a linking number between two entanglement strands of I .
The linking number of two polymer chains before and after
the application of a reduction algorithm is approximately the
same [72]. Notice that the entanglement strands are polymer
chains themselves. So, letting r(ei) denote the strand ei after
the reduction, we use the following approximation (see the
examples in Fig. 5),

L(ei,ej ) ≈ L(r(ei),r(ej )). (8)

Notice that this approximation is valid even if the self-
entanglements within an entanglement strand are neglected.
Notice next that, by definition, r(ei) must be a straight rod,
and it is an edge of the primitive path that corresponds to I ,
PP(I ). Further, by definition, the writhe of PP(I ) is given by

W (PP(I )) = 2
Z∑

i=1

Z+1∑
j=i+1

L(r(ei),r(ej )). (9)

FIG. 5. (Color online) (a) Let e1,e2 be two entanglement strands
[the black and gray (cyan) curves respectively]. Their Gauss linking
integral is L(e1,e2) = −0.166 667. (b) Let r(e1),r(e2) denote the
corresponding reduced chains. Notice that these are the edges of
the PP. Their Gauss linking integral then is L(e1,e2) = −0.165 372.
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Based on these observations, by Eqs. (8) and (9), we use
the following approximation in the rest of this paper:

W (PP(I )) ≈ 2
∑
i<j

L(ei,ej ). (10)

Substituting Eq. (10) into Eq. (7) gives

Z+1∑
i=1

W (ei) = W (I ) − W (PP(I )). (11)

Notice now that(
Z+1∑
i=1

W (ei)

)2

=
Z+1∑
i=1

W (ei)
2 + 2

Z+1∑
i<j

W (ei)W (ej )

= (Z + 1)

∑Z+1
i=1 W (ei)2

Z + 1
+ 2

Z+1∑
i<j

W (ei)W (ej )

= (Z + 1)〈W (e)2〉I + 2
Z+1∑
i<j

W (ei)W (ej ), (12)

where 〈W (e)2〉I denotes the mean-squared writhe of an
entanglement strand in the chain I . In the following we
will use the notation W 2

e for the mean-squared writhe of
an entanglement strand in a fixed chain, say I , and W2

e for
the same quantity, averaged over all chains. Using Eqs. (11)
and (12), we have

[W (I ) − W (PP(I ))]2

= (Z + 1)W 2
e + 2

Z+1∑
i<j

W (ei)W (ej ). (13)

Thus the mean-squared writhe of an entanglement strand in
a given chain can be expressed as

W 2
e = [W (I ) − W (PP(I ))]2 − 2

∑Z+1
i<j W (ei)W (ej )

Z + 1
.

(14)

Taking the average over all chains then yields

W2
e =

〈
[W (I ) − W (PP(I ))]2

Z + 1

〉
− 2

∑
i<j

〈
W (ei)W (ej )

Z + 1

〉
.

(15)

In this expression, W (I ), W (PP(I )), and Z are known, but
the W (ei),i = 1, . . . ,Z + 1 are unknown. However, one can
see that the second term in the right-hand side of Eq. (15)
vanishes (Appendix C), thus W2

e is given by

W2
e ≈

〈
[W (I ) − W (PP(I ))]2

Z + 1

〉
. (16)

Let us now approximate the length of all the entanglement
strands of chains of length N by Ne(N ). Then W2

e is the
mean-squared writhe of polymer chains of length Ne. For
polymer chains in a melt, there is a stiffness parameter κ ,
which can be used to represent them as semiflexible chains.

Thus, the entanglement strands in the melt are also semiflexible
chains with the same stiffness parameter κ . We propose to
identify the mean-squared writhe of an entanglement strand per
chain, averaged over all chains, W2

e [Eq. (16)], with the mean-
squared writhe of semiflexible chains of lengthNe. Thus, using
Eq. (5), an Ne estimator is given by the solution of the following
equation:

W2
e ≈ 0.03

(Ne

κ

)1.18

(17)

for some stiffness parameter κ that depends on the system
under study. This estimator has the property that it is equal
to zero for unentangled chains, that is, for chains with
Z = 0.

B. Advantages of the estimator based on writhe and Z

The proposed estimator is based only on the writhe of the
original and reduced chains and on Z. An innnovation of the
proposed estimator is that a classical measure of topological
self-entanglement of a chain, the writhe, is combined with
a geometric algorithm, Z1, in order to provide physically
relevant information.

Compared to the pure topological approach introduced in
Ref. [34], an important advantage of this estimator is that it
can be applied to systems of both linear or ring polymers
(or even mixed systems), in contrast to the topological
method described therein that is restricted to ring polymers.
Moreover, our method can be applied to chains in any PBC
model.

Compared to the pure network-based approach [17], an
innovation of this estimator is that it does not require knowing
the locations of the kinks in the original chains nor does it
require knowing Lpp. This is indeed important, since recent
studies have pointed out the effect of contour length fluctuation
(CLF) and constraint release (CR) [3,19,20,78,79] on the tube
model. CLF accounts for the dynamical variation of the PP
contour length of the chain with time and CR accounts for
the dynamical variation of the topological constraints and the
effective tube diameter with time. These effects point out the
elusive definition of an entanglement and where it applies.
The proposed Ne estimator does not rely directly on the
criticized definition of an entanglement as a local object and
may be less sensitive on CR and CLF effects. Also, in contrast
to Lpp or the exact positions of the kinks in the original chains,
the number of kinks per chain is captured similarly by all
reduction algorithms [9]. One might expect that the writhe of
the PPs which is determined by the global structure of the PP
network is captured similarly by all reduction algorithms as
well. Finally, this estimator does not require a smooth set of
data for its computation, as it is the case for other estimators.

Another advantage of the proposed Ne estimator is that,
from the analysis required for its computation, one can measure
the mean and the mean-squared writhe of an entanglement
strand [Eqs. (34) and (16), respectively], which can provide
information about the self-entanglement and the conforma-
tional complexity of the polymer chains at the length scale of
entanglement strands for systems in equilibrium or not.
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IV. Ne ESTIMATORS APPLIED TO FENE CHAINS

We apply the proposed Ne estimator to a melt of multibead
linear chains interacting via a repulsive Lennard-Jones (LJ)
potential by molecular dynamics (MD) and compare our
results to those obtained by other Ne estimators for the same
system. This is a classical multibead FENE chain system
with a dimensionless number density 0.84 at temperature
T = 1 [80]. We use a time step �t = 0.005 within a velocity
Verlet algorithm with temperature control. All samples were
pre-equilibrated using a hybrid algorithm [81]. We apply
the Z1 algorithm and compute the writhe of the chains for
various molecular weights N . For short chains N < 150,
configurations were recorded each 500 iterations (2.5 LJ time
units). For N � 50, configurations were sampled each 40 000
iterations (200 LJ time units). The relaxation time for FENE
chains in such a melt had been estimated in Ref. [6] as
τ ≈ 0.39 N2 + 0.005 N3, thus the recorded configurations are
not uncorrelated. The MD was run a time span of the order 2τ

or larger and the data were only sampled after τ to equilibrate
the pre-equilibrated system.

A. Known Ne estimators

Before computing the Ne estimator based on writhe and Z,
we review the existing Ne estimators and their values for the
system under study.

By the application of the Z1 algorithm one obtains the kinks
and the positions (beads) where they are located and from
that one can estimate the average number of monomers in
an entanglement strand, Ne(N ). Notice that Ne can mean two
different averages; it can be interpreted either asN (1)

e = 〈Ne〉e,
where 〈 〉e denotes the average over all entanglement strands
in a melt, or as N (2)

e = 〈〈Ne〉I 〉, that is, the mean length of
an entanglement strand per chain averaged over all chains.
Figure 6 shows the scaling of N (1)

e and N (2)
e as they are
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FIG. 6. (Color online) Ne(N ) obtained by counting beads,

N (1)
e ,N (2)

e and via writhe, NW2
e

e . We observe that N (1)
e (N ) :=

〈〈Ne〉I 〉 ≈ 〈Ne〉 + 5 := N (2)
e (N ) + 5. Also we observe that NW2

e
e (N )

gives a larger estimate. The data for NW2
e

e (N ) is compatible with a
limiting value of Ne ≈ 80 obtained by the M-coil estimator [17].
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FIG. 7. (a) Average number of kinks per chain. We observe a
linear scaling with the length of the chains for N > 40, cf. Eq. (25).
(b) Average contour length (Lpp) of the PP vs chain length N .

computed by counting beads between kinks. The two averages
differ, with N (2)

e � N (1)
e . However, their difference is small,

about five monomers. Thus, we will refer to both averages as
Ne. Our data for N � 70 with the smallest error bars indicate
a decreasing rate of growth, but the rate of convergence is slow
suggesting the need to acquire more data.

The Z1 code returns values for Z , Lpp, and Ree, by which
various estimators Ne(N ) can be computed [17]. Figure 7
shows the results for Z and Lpp obtained for these systems.
There are estimators derived from Lpp, Ree based on a
consideration of the PP as a random coil. These are the
classical S-coil estimator,

Ne(N ) = (N − 1)

〈
R2

ee

〉
〈Lpp〉2

, (18)

the modified S-coil estimator,

Ne(N ) = (N − 1)

(〈
L2

pp

〉
〈
R2

ee

〉 − 1

)−1

, (19)
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FIG. 8. Estimators Ne(N ) from coil properties of the PP. Both
coil estimators show a convergence to a value of Ne ≈ 60. Note
that for N = 200 we obtain N S-coil

e (200) ≈ 60 and Nmod. S-coil
e (200) ≈

90, to be compared with N S-coil
e (200) ≈ 68 and Nmod. S-coil

e (200) ≈
86.1 [17].

and the M-coil estimator,

C(x)

x

∣∣∣∣
x=Ne(N)

= d

dN

(〈
L2

pp

〉
R2

RW

)
, (20)

where R2
RW ≡ (N − 1)l2

0 , and C(x) is the characteristic ratio
for a chain with x monomers. There are also estimators based
on Z , such as the classical S-kink estimator,

Ne(N ) = N (N − 1)

N + (N − 1)Z , (21)

the modified S-kink estimator,

Ne(N ) = N

Z , (22)

and the M-kink estimator,

1

Ne(N )
= dZ

dN
. (23)

The nomenclature had been overtaken from Ref. [17].
Our data for chains of length N > 100 is not smooth enough

to use the M-coil and M-kink estimators, as these use the slopes
of Z against N . These had been estimated for the same type
of systems in Ref. [17]. The authors reported Ne ≈ 46 and
Ne ≈ 85 from the M-kink and M-coil estimators, respectively.
The simpler S-coil and S-kink estimators are shown in Figs. 8
and 9 and lead to Ne ≈ 60 and Ne ≈ 50, respectively. The
value of Ne from rheological studies for the same systems is
Ne ≈ 75 [16].

The challenge that remains is to find an estimator that better
approximates the Ne values determined in experiments. As
was pointed out in Ref. [17], the classical estimators tend to
underestimate Ne. On the other hand, the modified estimators
tend to overestimate Ne for weakly entangled systems. An
ideal estimatorNe(N ) is one that correctly predicts Ne for N �
Ne and approaches Ne as N → Ne. Thus, the S estimators are
not ideal. On the other hand, the M estimators are nearly ideal,
since they converge faster than the S estimators.
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FIG. 9. Estimator Ne(N ) based on the average number of kinks
per chain, Z . Both kink estimators show a convergence to a value
of Ne ≈ 50, well in accord with Ne ≈ 48.9 [17]. Note that for N =
200 we obtain N S-kink

e (200) ≈ 35 and Nmod. S-kink
e (200) ≈ 45 to be

compared with N S-kink
e (200) ≈ 40 and Nmod. S-kink

e (200) ≈ 45 [17].

We note that the M estimators, based on kinks, give an
Ne value almost half the one obtained from the estimators
based on coils (Ne ≈ 46 and Ne ≈ 85, respectively). Similar
discrepancies have been encountered before [10,82–84], and
this difference has been explained by suggesting that there exist
directional correlations between entanglement strands along
the same PP which decay exponentially with distance. That is,
PP conformations are not RWs at the length scale defined by
the distance between kinks, a fact that is also supported by our
numerical results in Sec. V C.

B. The Ne estimator using Z1 and writhe

The Ne estimator will be computed by the general formula,
Eq. (17). For linear FENE chains in a melt, one has 〈R2

ee〉 ≈
Nb2 = Nlpb0 with b = 1.34b0, where b0 ≈ 0.97 is the bond
length. Thus the persistence length is lp ≈ 1.85b0 ≈ 1.90 and
the Kuhn length is lK ≈ 2lp ≈ 3.80, while it is worthwhile
mentioning that the operational definition of persistence length
has come into question in view of long-range bond-bond cor-
relations in dense polymer solutions [85]. The corresponding
stiffness parameter is κ ≈ 2.34 as obtained from the exact
relationship coth(κ) − κ−1 = exp(−l−1

p ) (see Appendix A).
Thus, using Eq. (17), an Ne estimator for linear FENE chains
in a melt is given by the solution of the following equation:

W2
e (N ) = 0.01N 1.18

e (N ). (24)

From the values of the writhe of the original and reduced
chains (shown in Fig. 12), and byZ , we can compute the mean-
squared writhe of an entanglement strand, W2

e [Eq. (16)].
Figure 10 shows the values of W2

e for our data.
Using the data of W2

e for linear FENE chains of various
molecular weights shown in Fig. 10, we obtain the values
of Ne(N ) shown in Fig. 6. Let us denote this estimator by

NW2
e

e . The data suggest a limiting value of Ne ≈ 80. This
limiting value agrees with the known Ne value reported in
experiments [16,18].
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FIG. 10. The average mean-squared writhe of an entanglement
strand in a chain over all chains, W2

e = 〈W 2
e 〉, computed by Eq. (16).

This is the average variance of the writhe of an entanglement strand
in a chain over all chains. The data suggest that W2

e approaches an
asymptotic value of approximately 2.

We observe that for N � 40, the values of NW2
e

e are close
to those obtained by counting beads between entanglements,

but NW2
e

e becomes strictly larger for N > 40. For 100 �
N � 70, N S-kink

e � NW2
e

e � N S-coil
e but for N > 250, NW2

e
e

is larger than all S estimators. As N increases, NW2
e

e (N )
increases as well, reaching values that are consistent with
the Ne values obtained from rheological studies, that is,

Ne(N ) ≈ 70 for N = 350 [18]. We notice that NW2
e

e is not
an ideal estimator, since it converges quite slowly. However,
it approaches the M-coil estimator faster than any of the

other estimators. This indicates that NW2
e

e could be used to
approximate the NM-coil

e estimator for a nonsmooth set of
data.

From the mean absolute writhe of the original chains [see
Fig. 12(a)], we observe that 〈|W |〉 � 1 for N � 80, which
indicates that, on average, these long chains with N � 80
contain knots [67], in the sense that a random closure of the
chains would result in a nontrivial knot type [39,40]. In other

words, the value of Ne predicted by NW2
e

e may be the result
of a change in the topology of the chains. We note that the
estimates of Ne based on counting the number of beads or
the M-kink estimators give an estimate Ne ≈ 45 that is almost
half of the one reported by using topological or geometrical
methods or rheological experiments [10,17,83,84]. The ob-
served crossover in the scaling of Z at N ≈ 45 (see Sec. V A)
indicates the transition to the presence of kinks for chains with
N > 45. These findings suggest that Ne is related to the global
topological entanglement of the chains, while only a fraction of
this value, approximately half, seems to be related to the num-
ber of local obstacles restricting the local motion of the chains.

It is worth noting that the proposed estimator, like the
other estimators already mentioned, does not yield information
about the distribution of the lengths of entanglement strands
(Appendix D). This implies that all the above methods provide
only an approximation of Ne.

V. DISCUSSION: Z1 AND WRITHE ANALYSIS
OF LINEAR FENE CHAINS IN A MELT

In this section we discuss additional results onZ and writhe
that stem from our analysis of Ne for linear FENE chains in a
melt. More precisely, in this section we focus on our system of
linear FENE chains and discuss Z, the writhe of the original
and reduced chains and the mean and mean-squared writhe
of the entanglement strands. All these measures can provide
further insight on the entanglement of linear FENE chains in
a melt.

A. The average number of TCs (kinks) per chain

In Fig. 7(a) the value of Z is shown for various chain
lengths N . Our result is in agreement with previous studies
which predict a linear scaling of Z with N [8,9]. A linear fit
of our N > 40 data yields

Z = 0.02N + 0.68, (25)

compared with Z ≈ 0.02N − 0.14 [17]. We observe that Z ≈
0 for N � 20, indicating that kinks cannot be formed below a
certain threshold length. Also, Z > 1 for N > 30. Since the
variance of Z is of the same order as Z [19,70], the error
mean of Z , erZ , of a sample of C independent polymer melt
configurations is erZ = √

Z/C ≈ 0.1
√

N/C. Thus, for our
systems of N < 400 (C > 100), we obtain erZ < 0.2, which is
small compared with the values of Z . Figure 11 shows the data
of Fig. 7(a) in double logarithmic representation. We clearly
observe a crossover at about N ≈ 45 where Z ≈ 2. This may
indicate that chains of N < 45 are only weakly entangled
and that the value Z = 2 serves to mark the transition to
the asymptotic linear behavior. Figure 7(b) shows the average
contour length Lpp of the PP that increases linearly with N , in
agreement with earlier works [17].

B. The writhe of linear FENE chains in a melt

In Sec. II B1 we show that the mean absolute writhe
of semiflexible chains of length N and stiffness κ can be
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fit to N > 45
log

10
〈 Z 〉

FIG. 11. (Color online) Average number of kinks per chain with
the length of the chains in double-logarithmic representation reveals
a crossover at N ≈ 45 that finds its analog in the writhe of the PPs.
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FIG. 12. (Color online) (a) The average absolute writhe of
(i) linear FENE chains in a melt (squares) and (ii) their PPs (diamonds)
(the inset shows the corresponding double logarithmic plot). The
black curve is the predicted scaling for individual semiflexible chains,
cf. Eq. (26). We notice that for N > 80, 〈|W |〉 > 1. The dotted black
curve is the scaling for equilateral RWs, Eq. (6), which much deviates
from that of the flexible FENE chains and their PPs. (b) Same as above
for the squared writhe. Mean-squared writhe of linear FENE chains
(squares) and their PPs (diamonds). The black line shows the scaling
for semiflexible chains, Eq. (28). The dotted black line shows the
scaling for equilateral RWs, Eq. (6), for comparison.

approximated by Eq. (4). Thus, for an individual linear FENE
chain embedded in a melt, which corresponds to a semiflexible
chain of κ ≈ 2.34, we have (for N > 2)

〈|W |〉 ≈ 0.16N1/2 + 0.38N−1/2 − 0.5. (26)

This is in good agreement with the measured data shown in
Fig. 12(a). In the same figure we show data for the mean
absolute writhe of the corresponding PPs.

It is interesting to notice that the average writhe in a
dense system of flexible chains with excluded volume fits the
general scaling of that of a WLC without excluded volume.
Recall that the writhe is a measure of global self-entanglement
(or complexity) of a fixed configuration of one chain. This
suggests that an individual chain in the melt, on average,
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FIG. 13. The mean absolute writhe of a chain vs the average
number of kinks per PP. Interestingly, the writhe of the individual
chain in a melt seems to be related to the number of kinks in a
multichain system, connecting thus local and global entanglement
properties. Because the relationship is bijective, there is a one-to-one
correspondence, which seems linear at first glance but is expected to
be better described by Eq. (27) for large Z .

assumes a similar configuration as a semiflexible chain in the
vacuum with the stiffness parameter defined by the chain in
the melt. Notice that this does not imply any relation of the
two systems with respect to entanglements (kinks). Indeed,
the FENE chains in a melt are entangled with each other, but
chains in the vacuum are not entangled with others. The effect
of the presence of other chains is intrinsically captured by the
stiffness parameter κ ≈ 2.34, which determines the writhe of
the chains in a melt. Moreover, the lp values suggest that the
FENE chains of length N behave like random walks of length
N/4, also supported by our data shown in Fig. 12(a).

The writhe and the number of kinks in a chain are not related
in general, since a chain (in the original state) with Z = 0 (in
its reduced state) may have the same writhe with a chain with
Z �= 0. However, in a system for which we know that Z �= 0,
it makes sense to examine if there exists a relation between Z
and 〈|W |〉. Figure 13 shows the scaling of the mean absolute
writhe of a chain with respect to the average number of kinks
per chain for the system under study. Combining Eqs. (25)
and (26) we see that, for N > 40, for linear FENE chains in a
melt 〈|W |〉 and Z should be related as follows:

〈|W |〉 ≈ 1.25 (Z − 0.68)0.5

+ 0.05 (Z − 0.68)−0.5 − 0.5. (27)

Notice that Eq. (27) is based on the linear scaling of Z (for
N > 40) and on Eq. (26). The linear scaling of Z has been
confirmed by many studies [17,19,70] and Eq. (26) follows
the form derived analytically by Kholodenko and Vilgis. This
implies that, for this system, local and global entanglement
properties of the chains may be related. We note that a
relationship between the number of kinks in a system of freely
jointed chains of tangent hard spheres and the probability of
knotting has been proposed. Specifically, it is conjectured that
the population of entanglements and knots follow the same
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scaling laws at all volume fractions [33,38]. Using Eq. (27)
we can estimate Z from writhe or the inverse. Thus, for
this system, we can compute Ne estimators involving Z by
computing the writhe of only a subcollection of chains.

For the mean-squared writhe, following the previous dis-
cussion (Sec. II B1), for a FENE melt we have

〈W 2〉 ≈ 0.01N1.18. (28)

This is captured by the data shown in Fig. 12(b) for the
mean-squared writhe of a polymer chain. In the same figure
we show data for the mean-squared writhe of the corresponding
PPs. Notice that 〈W 2〉 = Var(W ), since 〈W 〉 = 0. The black
curve shows the scaling of the mean-squared withe of FENE
chains from Eq. (28) and the dotted black line shows the
scaling of the corresponding equilateral random walks. Again,
the values of the polymer chains are much smaller than those
of random walks, as is now expected. From the variance of
W , we can compute the error of its sample mean, erW . For a
sample size of C melt configurations of M chains each, erW =√

〈W 2〉/CM = 0.1 N0.59/
√

CM . Upon analyzing C = 100
independent configurations with M = 100 chains of length
N < 400, the error erW < 0.004 is small compared to the
reported values of W .

C. The writhe of the primitive path

For a melt of ring polymers, if two chains are linked, the
same must be true for the two corresponding PPs, if self-
crossings are not allowed. Even the link type of the PPs must
be the same as that of the closed chains and consequently,
their linking number is the same. Similarly, the knot type of
both chains is the same as the knot types of their PP. But, the
conformation differs significantly between a chain with N − 1
steps and its PP. The PP, as it is obtained by the Z1 algorithm,
also is a polygonal chain, but with a reduced number of steps,
Z + 1, and an increased average edge length. Even in the case
of ring polymers, the writhe of each chain changes. In the case
of linear polymers, both the linking number and the writhe of
the chains will change continuously under the deformation of
the chains. We note, however, that the effect of the reduction
may differ for each measure. More precisely, the reduction
respects the entanglements (kinks), which have an important
impact on the linking integral of the two chains, but each chain
becomes locally linear, which may have an important impact
on the writhe of each chain. Numerical results [72] show that
the linking integral of two chains is almost the same before
and after the reduction.

The writhe of the PP is a quantity that characterizes the
global geometrical and topological complexity of the PP. It
is therefore of particular interest to compare it to that of
the original chain and to that of a random coil. Moreover,
the writhe of the PP in addition to Z could provide further
information on the nature of the kinks in a chain. For example,
let us consider a configuration of a reduced chain with Z �= 0
but whose kinks correspond to small bending angles. Its writhe
will be approximately zero. If the bending angles of the kinks
are large, as is usually the case for knotted arcs, then its writhe
will be larger (see Fig. 1 for an illustrative example). Thus, the
writhe of the PP could provide information about the nature of
the kinks and the so-called persistent entanglements [69].
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FIG. 14. (Color online) Double-logarithmic plot of the mean
absolute writhe and of the mean-squared writhe of the PPs. The
different scaling with respect to N appears as a crossover (doubling
slope) at about N ≈ 45.

Figure 12 shows the scaling of the mean absolute and
the mean-squared writhe of a PP as a function of N and
Fig. 14 shows the corresponding double logarithmic plots.
Both quantities show a crossover at N ≈ 45. A crossover at
N ≈ 45 appeared also for the scaling of Z . Thus, one should
expect that this would also affect the writhe of the PPs. For
N � 45, the data are fitted to the function

〈|WPP|〉 = 0.006N0.8 − 0.13,
(29)〈W 2

PP〉 = 0.00007N1.56 − 0.02.

We observe that the writhe of the PP is smaller than the
writhe of the original chains. The normalized mean absolute
difference between the writhe of the original and reduced
chains, |�W| = (|W − WPP|)/|W | is shown in Fig. 15(a).
Figure 15(b) shows the corresponding double logarithmic plot.
There might be a crossover at N ≈ 45 that is related to the
previously mentioned crossover of 〈|WPP|〉 at the same N .
Clearly, there is a crossover at N ≈ 80, where the relative
difference decreases at a faster rate. Note that for N � 80,
〈|W |〉 � 1 which suggests that the chains of that length on
average contain knots. Moreover, our estimate of Ne ≈ 80
provides further support for the entanglement of the chains.
This crossover indicates that once the chains are entangled,
there is a larger portion of the writhe of the original chains
that remains in the PP. This transition could also be related to
a change in the nature of the kinks with an increased presence
of those with larger bending angles and thus to the presence
of persistent entanglements.

Edwards proposed that the PP behaves as a random coil
[1]. From this viewpoint, the PP is also characterized by
some persistence length that we may evaluate. One possible
approach to estimating lp for the PP is to inspect the squared
end-to-end 〈R2

ee〉 values and compare these values with the
formula for the WLC with L = Z + 1 segments of identical
length (Appendix A). This yields a dimensionless lp for the
PP and dimensionless κ via Eq. (A3). Using this method, we
evaluate κ at each length. Indeed, for N = 10 and N = 20, the
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FIG. 15. (Color online) (a) The normalized mean absolute dif-
ference of the writhe between the original and reduced chains,
|�W| = |W − WPP|/|W |. (b) Double logarithmic representation of
the same data reveals moderate changes in slope at about N = 45 and
N = 80.

reduced chains are in general straight rods, since there are no
entanglements, and lp → ∞, as expected for very stiff chains.
For N > 20 the values of lp result, via Eq. (A3), in values
of κ that clearly indicate that the PPs are not random walks.
However, as N increases, κ decreases, thus we cannot exclude
the possibility that the PPs are well described by WLC’s with
κ → 0 (random walks) as N → ∞.

For all molecular weights observed in this study, the values
of the writhe of the PP are small, consistent with what one
would expect for a random coil of that length, i.e., with Z + 1
edges. In order to compare the behavior of the PPs with that
of semiflexible chains, we will compare their writhes. To do
this, we make the following approximations: first, we fix the
stiffness parameter equal to its average value over all molecular
weights; second, we let the number of steps of the PPs equal to
Z + 1 for all PPs that correspond to original chains of length
N ; and, third, we let the edge length of a PP to be equal to Ne for
all PPs. For our data, the average stiffness of the PPs is κ ≈ 6.9.
This is clearly a value that differs from that of the FENE chains
or that of random walks. It indicates that the PP is much stiffer

in terms of the length scale over which orientation correlations
are lost. Note that the bending angles might be actually larger
than those of a FENE chain with excluded volume. Then, for
this average κ , and for N = Z + 2, Eq. (26) gives different
values for 〈|WPP|〉. The data for the PP are best fitted to a
function of the form

〈|WPP|〉 ≈ 0.05 (Z + 2)1.26 − 0.36. (30)

Similarly, for κ ≈ 6.9, the data of the mean-squared writhe
are best fitted to the function

〈
W 2

PP

〉 ≈ 0.16

(Z + 2

κ

)3.21

− 0.07. (31)

From this analysis of 〈|WPP|〉 and 〈W 2
PP〉, we see that the

PP cannot be modeled by semiflexible chains. A reason why
one might expect a different scaling for the PP is because, at
least for the data under consideration, the number of steps in a
PP, as defined by Z is very small and may not be comparable
to the data presented in Sec. II B1 which concern chains of
length N � 10. In fact, for N � 400, we get Z + 2 � 10. By
generating equilateral random walks of length N � 10, the
best fits of the mean absolute writhe and the mean-squared
writhe are

〈|WRW|〉 ≈ 0.2N0.62 − 0.31, (32)〈
W 2

RW

〉 ≈ 0.01N1.79 − 0.04, (33)

respectively, differing from those for N � 10. These are shown
with the dotted black curve in Figs. 16 and 17, respectively. We
note that the writhe of the PPs becomes larger than the writhe
of the RWs for Z + 2 > 5, which corresponds to the original
chains of length N > 150. This suggests that the writhe of
the PPs may be better compared to that of RWs of more than
Z + 1 steps. The green lines in Figs. 16 and 17 show the mean
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FIG. 16. (Color online) The mean absolute writhe of the primitive
path as a function of the number of segments in a PP. The black curve
shows the best fit for the mean absolute writhe of the PP, Eq. (30), and
the dotted black curve shows the writhe of RWs of the same number
of steps [Eq. (32)], i.e., Z + 1. We notice that the mean absolute
writhe of the PPs is not that of RWs of Z + 1 edges. The inset shows
the same data in double logarithmic plot.
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FIG. 17. (Color online) The mean-squared writhe of the primitive
path as a function of the number of segments in a PP. The black curve
shows the best fit for the mean-squared writhe of the PP [Eq. (31)]
and the dotted black curve shows the mean-squared writhe of RWs of
the same number of steps [Eq. (33)], i.e., Z + 1. We notice that the
mean-squared writhe of the PPs is not that of RWs of Z + 1 edges.
The inset shows the same data in double logarithmic plot.

absolute and the mean-squared writhe of equilateral random
walks of (Z − 1)1.2 vertices for comparison.

D. The writhe of an entanglement strand

The entanglement strand, a part of the polymer chain of Ne

monomers, is essential in the tube model. It determines a length
scale at which a crossover from Rouse to reptation dynamics
occurs. Therefore, it is of particular interest to examine the
conformational properties of the chains at the length scale of
the entanglement strands. In this section, based on the method
presented in Sec. III to estimate Ne, we derive semianalytic
formulas for the mean absolute and the mean-squared writhe of
an entanglement strand. These quantities are measured for the
first time and are expected to provide information about
the self-entanglement and the conformational complexity of
the polymer chains at the length scale of entanglement strands.

1. The mean writhe of an entanglement strand in a chain

The analysis in Sec. III allows us to compute the mean
writhe of an entanglement strand in a chain from Eq. (11) as

We =
∑Z+1

i=1 W (ei)

Z + 1

= W − W (PP)

Z + 1
, (34)

where W denotes the writhe of the original chain and
W (PP) denotes the writhe of its PP. This formula for We is
semianalytic. For its derivation the only approximation used
is the one described by Eq. (10). Thus, by Eq. (34) we can
compute We, using only the writhe of the original and reduced
chains and the number of kinks, without having to define
directly the exact locations of the entanglement strands in
a chain. The entanglement strands are defined only indirectly
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FIG. 18. The average absolute mean writhe of an entanglement
strand in a chain over all chains in a melt, We = 〈|We|〉. It approaches
an asymptotic value different than zero, as expected for an average
over a sample of random coils of the same length. This may be related
to the variance of the length of the entanglement strands in a chain.

by using the Z1 reduced chain as the PP of a chain in a melt
and from that computing the writhe of the PP.

Note that the writhe of an entanglement strand in a chain
can take positive or negative values with the same probability.
Thus, taking its average over all entanglement strands in
the same chain, i.e., We will be approximately zero for
a sufficiently long chain. For moderate molecular weights,
which are the most common in numerical studies, We may
be nonzero because the number of entanglement strands in
the chain, i.e., Z + 1, may be small. Also, We will take both
positive and negative values with the same probability, thus the
mean writhe of an entanglement strand in a chain, averaged
over all chains, is zero. For this reason, we will be interested
in the value of the absolute value of the mean writhe of an
entanglement strand in a chain, averaged over all chains,
〈|We|〉, that can be derived from Eq. (34). In the following
we will denote 〈|We|〉 by We.

Figure 18 shows the values of We for our systems of linear
FENE chains in a melt. The data suggest that We reaches an
asymptotic value of approximately 0.4. It is interesting to note
that even though the longer chains contain more entanglement
strands, their mean writhe does not vanish.

2. The mean-squared writhe of an entanglement strand in a chain

Since the mean writhe of an entanglement strand in a chain
is approximately equal to zero for very long chains, one would
prefer to study the mean absolute writhe of an entanglement
strand in a chain, averaged over all chains. Unfortunately,
this is very difficult to accomplish. Following the analysis
presented in Sec. III, we can measure the average, over all
chains, of the mean-squared writhe of an entanglement strand
in a chain by using Eq. (16). Since 〈We〉 ≈ 0, W2

e is the
average variance of the writhe of an entanglement strand in a
chain over all chains, that is, W2

e ≈ 〈Var(W (e))〉. We note that
Eq. (16) gives a semianalytic formula for W2

e ≈ 〈Var(W (e))〉.
So, again, we can compute the average variance of the writhe
of an entanglement strand without defining the locations of
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the entanglement strands in a chain by using only Z and the
writhe of the original and reduced chains.

Figure 10 shows the values of W2
e for our data. We

observe that W2
e seems to converge to an asymptotic value

of approximately 2, which is consistent with the value of
〈W 2

e 〉 = 1.88 for chains of length N = 80, as expected by
our estimate of Ne ≈ 80, computed in Sec. IV B for this
system. We observe thatW2

e > 1 for N > 95. This suggests the
existence of entanglement strands with absolute writhe larger
than one for long chains. Note that the chains of length N > 95
contain on average one entanglement strand of length Ne ≈ 80.
This suggests that once entanglement strands are formed, there
are probably some, on average, that contain knots. Note that
knotted arcs at the length scale of Ne suggest the presence of
self-entanglements in the reduced chains, since there is a large
probability that no other chain interpenetrates. Interestingly,
we arrive at the same result that was pointed out in Ref. [18]:
Self-entanglement concerns local knotting or, more precisely,
knotted arcs that are likely to occur at the length scale of the
entanglement strands.

VI. CONCLUSIONS

In this study, the writhe, a global measure of self-
entanglement of a chain, and Z , the number of kinks in the
PP network for a multichain polymer melt configuration, are
used to define an estimator of Ne, the number of monomers
in an entanglement strand, via Eq. (24). An advantage of this
estimator is that it is valid for both open and closed chains
in any PBC model. Moreover, it does not depend directly on
the exact locations where the kinks occur, nor on the value
of Lpp. We have applied our method to linear FENE chains
in a melt in equilibrium conditions. Our estimate Ne ≈ 80
is in good agreement with values reported from experiments.
This provides strong evidence that the combination of local
and global entanglement measures can provide information
that is relevant to the study of entanglement in polymers. By
comparing our estimator with previous estimators, we observe
that it converges faster than the S estimators. Another strength
of this estimator is that it does not rely on a smooth set of
data for various molecular weights as required by the M-kink
estimator to unambiguously calculate numerical derivatives.

In the course of developing the estimator we numerically
studied the mean absolute and the mean-squared writhe of
linear semiflexible chains. Our numerical results suggest a
scaling similar to the analytical prediction of Kholodenko and
Vilgis for semiflexible ring polymers, Eq. (4). Focusing on
linear FENE chains in a melt in equilibrium conditions, our
results suggest a relation of the form described by Eq. (26)
for the mean absolute writhe. This result confirms that the
polymer chains in a melt have characteristics similar to those
of semiflexible chains in the vacuum with a stiffness parameter
determined by the system. For our systems of linear FENE
chains in a melt, we observe that Z and the writhe of the
chains are related by Eq. (27). Although this is not a general
result, it is of interest since, at first glance, one might expect
these quantities to be unrelated because they capture different
entanglement information. Also, the average number of kinks
per chain, Z , is computed from the Z1 reduced chains, while

the writhe of a chain concerns a frozen initial configuration of
a chain in a melt.

Our numerical results show that the writhe of the Z1 reduced
chains is significantly altered and that it is not comparable to
that of semiflexible chains or random walks, indicating that
the bending angles of the PPs are larger. From the analysis of
Z and the difference of the writhe of the original and reduced
chains, we observe two different crossovers in their scalings, at
N ≈ 45, which indicates the presence of kinks, and at N ≈ 80,
respectively, which indicates that the system is topologically
entangled. This finding suggests a possible explanation for the
discrepancies between the different Ne estimators.

Finally, we provide a semianalytical expression for the
mean and the mean-squared writhe of an entanglement
strand, Eqs. (16) and (34). This measures the conformational
complexity at the length scale of entanglement strands. Our
numerical results on linear FENE chains in a melt suggest that
for long chains the entanglement strands may contain knots.
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APPENDIX A: WORMLIKE CHAINS

Consider a wormlike chain (WLC), a connected linear string
of N − 1 segment unit vectors ui = ri+1 − ri that connect
N 
 1 nodes located at ri . With cos θi = ui · ui+1 we may
call θi ∈ [0,π ] a bending angle between segments i and i + 1.
The Hamiltonian of the discrete WLC is

H = −κkBT

N−2∑
i=1

cos θi, (A1)

with dimensionless bending stiffness κ . Within the canonical
ensemble the dimensionless persistence length, lp, character-
izing the orientational correlation of bonds,

〈ui · uj 〉 = exp

(
−|i − j |

lp

)
, (A2)

can be calculated analytically in terms of κ ,

lp = − 1

ln[coth(κ) − 1/κ]
. (A3)

At κ 
 1 this rapidly approaches lp ≈ κ − 1/2 and lp =
1 for κ ≈ 1.21. The Kuhn length can be derived from the
persistence length as lk ≈ 2lp. The mean-squared end-to-end
distance of the WLC is analytically obtained from Eq. (A2),

〈R2〉 = 2lpL

[
1 − lp

L
(1 − e−L/lp )

]
, (A4)

where L ≡ N − 1. The equilateral random walk exhibiting
〈R2〉 = L is recovered from Eq. (A4) for L 
 lp = 1/2 (or
κ ≈ 0.4106). The opposite extreme, a stiff chain exhibiting
〈R2〉 = L2 is recovered for L � lp → ∞ (i.e., large κ 
 1).

WLCs with the correct statistics of the canonical ensemble
can be grown segmentwise via Monte Carlo using random
numbers x equally distributed over the interval [0,1] as
follows cos θi = κ−1 ln(2x sinh κ). These bending angles give
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rise to the probability distribution p(θ ) ∼ exp(κ cos θ ) sin θ .
Employing

∫ π

0 p(θ )dθ = 1 one arrives at

p(θ ) = κ exp(κ cos θ ) sin(θ )

2 sinh(κ)
. (A5)

APPENDIX B: THE WRITHE OF A CHAIN WITH RESPECT
TO ITS ENTANGLEMENT STRANDS

Let us consider a polymer chain, I , with parametrization γ ,
formed by Z + 1 entanglement strands, say ei,i = 1, . . . ,Z +
1, with parametrizations γi,i = 1, . . . ,Z + 1 respectively.
Then the writhe of I can be expressed as

W (I ) = 1

2π

∫
[0,1]∗

∫
[0,1]∗

(γ̇ (t),γ̇ (s),γ (t) − γ (s))
|γ (t) − γ (s)|3 dtds

= 1

2π

Z+1∑
i=1

∫
[0,1]∗

∫
[0,1]∗

(γ̇i(t),γ̇i(s),γi(t) − γi(s))

|γi(t) − γi(s)|3 dtds

+ 1

2π

Z∑
i=1

Z+1∑
j=i+1

∫
[0,1]

∫
[0,1]

× (γ̇i(t),γ̇j (s),γi(t) − γj (s))
|γi(t) − γj (s)|3 dtds

=
Z+1∑
i=1

W (ei) + 2
Z∑

i=1

Z+1∑
j=i+1

L(ei,ej ), (B1)

where W (ei) denotes the writhe of the entanglement strand
ei and L(ei,ej ) denotes the Gauss linking number of the
entanglement strands i and j .

APPENDIX C: THE MEAN-SQUARED WRITHE
OF AN ENTANGLEMENT STRAND

The mean-squared writhe of an entanglement strand in a
chain averaged over all chains in a melt is given by Eq. (15),
namely

W2
e =

〈
(W (I ) − W (PP(I )))2

Z + 1

〉
− 2

∑
i<j

〈
W (ei)W (ej )

Z + 1

〉
.

(C1)

Consider the second term in the right-hand side of (C1).
First, recall that W (ei),W (ej ) are the writhe of the i-th and j -th
entanglement strands of a chain, respectively. As N → ∞, Ne

is expected to approach an asymptotic value [17]. Thus, for
large-enough N , Z, and Ne are independent random variables.
The writhe of an entanglement strand depends only on Ne,
and thus for large N , it is also independent of Z. So, in the
following we make the approximation〈

W (ei)W (ej )

Z + 1

〉
≈ 〈W (ei)W (ej )〉

〈
1

Z + 1

〉
. (C2)

Next we notice that each entanglement strand is a random
polymer chain, independent of the other entanglement strands,
so the terms W (ei) and W (ej ) are independent random
variables, and, thus, 〈W (ei)W (ej )〉 = 〈W (ei)〉〈W (ej )〉. But
〈W (ei)〉 is independent of the index i, thus 〈W (ei)〉 =
〈W (ej )〉 = 〈W (e)〉. Since each entanglement strand in the
space of configurations can have positive or negative writhe
with the same probability, 〈W (ei)〉 = 〈W (ej )〉 = 〈W (e)〉 = 0.
Thus, the second term in the right-hand side of (C1) vanishes,
and Eq. (C1) becomes

W2
e ≈

〈
[W (I ) − W (PP(I ))]2

Z + 1

〉
. (C3)

APPENDIX D: DISTRIBUTION OF Ne

In Ref. [19], the probability distribution of the number of
kinks, Z, per chain is given by a Poissonean,

p(Z) = μZ−1e−μ

(Z − 1)!
,

∞∑
Z=0

p(Z) = 1, (D1)

where 1 + μ = Z = ∑∞
Z=0 Zp(Z). The probability distribu-

tion of Ne = N/Z values for single chains, P (Ne), is obtained
from p(Z) via P (Ne)dNe = p(Z)dZ, more precisely,

P (Ne) =
∣∣∣∣ dZ

dNe

∣∣∣∣ p(Z) = N

N 2
e

p

(
N

Ne

)

= NμN/Ne−1e−μ

N 2
e �(N/Ne)

. (D2)

where � is the Gamma function.
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(2002).

[12] P. S. Stephanou, C. Baig, G. Tsolou, V. G. Mavrantzas, and
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