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Abstract

In the 1980’s, knotting in DNA became a fundamental research dimension in the
study of the mechanisms by which enzymes act on it. Later, the first compelling
identification of knotting in proteins, in 2000, launched the study of knotting
in protein structures and linear macromolecules more generally following on
theoretical efforts of the 1960’s. While the linking occurring in structures such
as DNA, with the articulation of the relationship between linking, twisting,
and writhe, and, more directly, linking in Olympic gels has been of interest to
geometers, molecular biologists and, polymer physicists since the 1960’s, a new
mathematical analysis of both global and local facets of knotting and linking
is again providing new promising discoveries. Following a discussion of the
two topological structures of knotting and linking, we will consider some of
their applications, and close with a consideration of new questions that suggest
attractive directions for future research.

Keywords: DNA, protein, macromolecule, polymer, knots, slipknots, links,
lassos, entanglement, knotting fingerprint, local linking fingerprint, Gauss
linking number

1. Introduction

In the 1960’s, Edwards [24] undertook a theoretical study of the effects on
knotting on the properties of polymer gels, but is was not until 1981 that Liu
and David [38] demonstrated the presence of a knot in DNA in the lab. This
discovery launched an ongoing theoretical and experimental research effort to
understand the occurance and character of these DNA knots and to employ
them to discover the mechanisms through which enzymes act on DNA in vivo
[34, 74, 75, 25, 66]. Buck [7] gives a very helpful introduction to this direction
of research. It was not until 2000 that Taylor [69] identified the first deep knots
in protein structures thereby launching another thread in the application of
topology to biology. Assessing the presence of knotting and linking in proteins
has provided an ongoing stream of theoretical and experimental research into the
functional role such structures might play in living organisms. The objective
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Figure 1: One of Gauss’ 1797 knot drawings [61].

of this report is to describe key facets of knotting and linking in polymeric
systems and in protein structures. As these are usually linear macromolecules,
we describe one approach to identifying knotting in such structures [50] as well
as applications of refinements of this method [51, 65, 67, 64, 30].

Historically, the first published consideration of knots appears to be due to
Vandermonde [61] but Gauss is recognized for initiating the mathematical study
of knots in his notes, figure 1. In the 1870’s [26], he gave an integral, equation 1,
that captures the integer linking between two oriented rings. This integral can
be employed to define a real number quantifying the extent of linking between
two oriented spatial arcs, such as those in figure 1, or the self-linking of a
single arc, for example the open chains in models of proteins or of filamental
systems that employ periodic boundary conditions (PBC) such as polymer melts
[5, 62, 53, 58, 56]. These enable one to define periodic linking and periodic self-
linking numbers that quantify the linking between pairs of filaments, either open
or closed, and, thereby, define the periodic linking matrix. Here, we will describe
an application to Olympic gels [16, 4, 29], see Figure 2, an application to the
local linking in mathematical knots, and its extension to proteins. Finally, we
will also briefly discuss the analysis of linking in proteins when cystene bridges
are added to the structure.

In the next section we describe give an introduction to knots [1] and the
study of knots and slipknots in open polymers such as proteins by employing
the knotting fingerprint [67, 65, 64, 30, 28]. Next, we discuss the Gauss link-
ing [26] and self-linking numbers, one-dimensional periodic boundary condition
models, the extension to periodic linking and self linking, and the definition of
the periodic linking matrix whose eigenvalues quantify the extent of entangle-
ment in the systems to which they are applied [58, 56]. These are applied to
the analysis of Olympic gels [16, 4, 29]. In another direction, the local linking
number and linking fingerprint is described and applied to classical knots, to
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Figure 2: Olympic gels are collections of simply linked ring polymers [16]

illustrate its implications, and to proteins. In the third section, we will briefly
describe the application of linking to lassos and their extensions occuring in
proteins when cystene bridges enrich the structural analysis.

2. Knots, Slipknots, and Knotting Fingerprints

2.1. Mathematical Knots

While, since thousands of years, humans have employed knotting and entan-
glement of materials and, later, in their artistic representations, it is not until
the time of Gauss and, later, Kelvin that the mathematical study of knots was
systematically undertaken in the context of electromagnetism and as proposed
models of atoms. Knots are closed rings in space with two knots being equiva-
lent if one can be deformed to the other without breaks or singularities in the
evolution. Although Gauss provided a method to symbolically codify knots, i.e.
the Gauss code, it was the later purpose that gave rise to the first efforts by
William Thomson (Lord Kelvin) classify knots and links by formulating a study
of indivisible, or prime, knots and links [70], see figure 3. The mathematical
study of knots developed steadily as a subfield of topology with connections to
geometry, the two areas most relevant to their later application to polymer gels,
DNA, and other macromolecules. Important features of this knot theory, for
our purposes, are the decomposition of a knot into indecomposable subknots via
the ”connected sum,” as illustrated in figure 3 where the two upper left knots
are prime, a right trefoil and a seven crossing knot, while the upper right knot
is the composition of two three crossing knots, a left and a right trefoil. Note
that, below them, are a two component link and a three component link, the
later being known as the Borromean rings. The indecomposible, i.e. prime,
knots through sixteen crossings have been classified [27], there are 1, 701, 936,
only the simpler ones are most often encountered. They are currently identified
using ”knot polynomials” such as Alexander, Jones, or HOMFLYPT or their
convenient evaluations [2, 31, 35]. We note that there are more powerful and
more complex methods now available.
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Figure 3: Knots and links from Kelvin’s ”On vortex montion” [70].

Figure 4: Knotting in open arcs: one closure of an open arc and distribution of knot types
[23].

2.2. Knots and slipknots in arcs

The fundamental challenge in defining the knot type associated to an open
arc in 3-space is to translate the question into the case of an associated 3-space
closed curve. One approach, see [23], is to define a closure using points on a
very large sphere containing the finite chain and add segments from the two
endpoints of the arc to the chosen point on the sphere. This defines a knot
type for almost all points, the exceptions being a set of measure zero on the
sphere. The designation is locally constant allowing to estimate the area of
the regions on the sphere associated to each knot type using, for example, the
HOMFLYPT polynomial. Since there are only finitely many possible types,
one is able to determine the proportion of the sphere associated to each knot
type, the knotting spectrum of the arc, and to associate the dominate knot type
to arc. This provides a powerful method in that it almost always successfully
identifies a specific knot type, even for random walks, [52]. One may modify
this method to improve the computational speed, for example [71].
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Figure 5: A trefoil slipknot: solid arc forms an ephemeral trefoil which becomes unknotted
when the dashed segment is added [51].

Empowered with the ability to determine the knot type of an open arc, one
is now in position to identify slipknots and their associated ephemeral knots
as follows: an unknotted segment in an arc containing a knotted segment, the
associated ephemeral knot, is called a slipknot, figure 5. Mathematicians have
proved that the probability that a random arc or ring is knotted or contains a
slipknot goes to one as the length of the arc or ring goes to infinity, [68, 59, 22,
21, 51].

3. Gauss Linking, Periodic Boundary Condition (PBC) Models, Pe-
riodic Linking, and the Periodic Linking Matrix

3.1. Gauss Linking and Self-linking

The linking number between two oriented chains, l1 and l2, is defined using
parameterizations of the chains, γ1(t) and γ2(s), via the Gauss linking integral:

Definition 3.1. The Gauss linking number of two disjoint (closed or open)
oriented curves l1 and l2, whose arc-length parametrizations are γ1(t), γ2(s)
respectively, is defined as a double integral over l1 and l2 [26]:

L(l1, l2) =
1

4π

∫
[0,1]

∫
[0,1]

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

||γ1(t)− γ2(s)||3
dtds, (1)

where (γ̇1(t), γ̇2(s), γ1(t) − γ2(s)) is the triple product of the derivatives, γ̇1(t)
and γ̇2(s), and of the difference γ1(t)− γ2(s).

Note that the Gauss linking number definition applies, with a choice of
orientation of the two strands, to the two arc in figure 1 to give a real number
quantifying the extent to whch they are linked. The rings in the Olympic rings,
figure 2, have linking ±1 is they are adjacent and 0 if not. The two links at the

5



Figure 6: A 1-dimensional PBC model [56].

bottom in figure 3 have linking ±1 for the Hopf link, on the bottom left, while
the Borromean rings have pairwise linking 0 for any choice of orientations.

Definition 3.2 (Self-linking number). Let l denote a chain, parameterized by
γ(t), then the self-linking number of l is defined as:

Sl (l) = 1
4π

∫
[0,1]∗

∫
[0,1]∗

(γ̇(t),γ̇(s),γ(t)−γ(s))
||γ(t)−γ(s)||3 dtds

+ 1
2π

∫
[0,1]

(γ̇(t),γ̈(t),
...
γ (t))

||γ̇(t)×γ̈(t)||2 dt. (2)

where γ̇(t), γ̈(t), and
...
γ (t) are the first, second, and third derivatives of γ(t),

respectively, and (γ̇(t), γ̈(t),
...
γ (t)) is their triple product.

The self-linking number consists of two terms, the first being the Gauss
integral and the second being the total torsion of the curve. As above, this can
be applied to indivitual arcs as well as rings such as those at the top of figure
3. Note that the standard round planar circle has zero selflinking.

3.2. Periodic Boundary Condition (PBC) models

The underlying structure of the Periodic Boundary Condition, PBC, model
consists of a unit cube in 3-space. The three-dimensional cube contains a col-
lection of arcs whose endpoints either lie in the interior or intersect the x = 0
or x = 1 faces under the constraint that the pattern on both faces is identical,
see figure 6. The latter condition allows one to create and infinite structure by
taking the union of integer translates of the cells and taking the unions of the
resulting one-chains to define a collection of one dimensional chains. In general,
these chains may be open or closed or even non-compact. One can also require
that y = 0 and y = 1 give analogous additional boundary conditions to create
a structure using the translation in the two dimensional lattice, Z2, to fill out
a thick planar structure. Similarly, add the requirement that there are z = 0
and z = 1 give a final boundary condition so that one fills 3-space using the
translation in the three dimensional lattice, Z3, to fill out a 3-dimensional struc-
ture. While a knot theory for such structures is quite exotic, one can extend
the Gauss linking to these structures.
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3.3. Periodic Linking and Self-linking

In a PBC model, each chain is translated to give an infinite collection copies
of itself. As a consequence, one is faced with quantifying the linking of one chain,
l0 with infinitely many translation copies of itself, lv = l0 + ~v, or with infinitely
many copies of another chain, Jv = J0 + ~v. This is achieved by employing
Panagiotou’s periodic linking and self-linkings numbers described next. In the
periodic system we define linking at the level of free chains (i.e. the collection
of translation copies of a chain, l0; see [56] for a discussion of the motivation for
this definition). The underlying idea is to calculate the linking between a chain
in one free chain with all the chains in the other free chain.

Definition 3.3 (Periodic linking number). Let I and J denote two (closed,
open or infinite) free chains in a periodic system. Suppose that I0 is an image
of the free chain I in the periodic system. The periodic linking number, LKP ,
between two free chains I and J is defined as:

LKP (I, J) =
∑
~v 6=~0

L(I0, J0 + ~v), (3)

where the sum is taken over all the images of the free chain J in the periodic
system.

The periodic linking number has the following properties with respect to the
structure of the cell, see [56], which follow directly by its definition:
(i) The infinite sum defining LKP converges, i.e. LKP makes sense mathemat-
ically.
(ii) LKP captures all the linking that all the images of a free chain impose to
an image of the other.
(iii) LKP is independent of the choice of the image I0 of the free chain I in the
periodic system.
(iv) LKP is independent of the choice, the size and the shape of the generating
cell.
(v) LKP is symmetric.

The quantification of the linking of a free chain with itself is a bit special
and requires a bit more care as there are two contributing cases, the linking of
a chain with itself and the linking of a chain with translations of itself. As a
consequence, one is led to the following definition [56]:

Definition 3.4 (Periodic self-linking number). Let I denote a free chain in a
periodic system and let I0 be an image of I, then the periodic self-linking number
of I is defined as:

SLP (I) = Sl(I0) +
∑
v 6=u

L(I0, Iv), (4)

where the index v runs over all the images of I, except I0, in the periodic system.

As with the periodic linking number, the mathematical proof of the existence
of this quantity and its properties are proved in [56].
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3.4. Periodic Linking Matrix

In order to analyze the linking entanglement present in a PBC system, L,
consisting of a finite number of free chains, l1, l2, ..., ln, one employs an n x n
real symmetric matrix, LMC , whose i, jth entry is defined by equation

LMCi,i
= SLP (li)

LMCi,j
= LKP (li, lj)

(5)

In the case of a single generating chain, l, the periodic linking matrix consists
of a single entry, the periodic self-linkng number, Sl(l). From the definitiion,
there are two contributing factors, the self-linking given by the equation 2 and
the linking between distinct copies, reflecting distinct features of periodic self-
linking.

For systems with two independent chain types, see figure 6, the periodic
linking matrix adds entanglement information due to the linking between the
two distinct chains. Associated to the periodic linking matrix are two real
eigenvalues, e1(L) and e2(L), given in decreasing order. The larger of these,
e1(L) is proposed as the dominant characterization of the linking entanglement
of the PBC system. The set of eigenvalues is the periodic linking spectrum of
the system.

Similarly, for systems with n independent chain types, one defines the pe-
riodic linking matrix, LMC . The associated ordered collection of eigenvalues,
e1(L), ..., en(L) define the spectrum of the PBC system.

4. Some applications of knotting and linking to macromolecules

We first discuss the appliction of the ability to identify knotting in linear
chains to polymers in θ conditions, in mathematical models of spatial rings and
diagrams, and in proteins employing the knotting fingerprint.

4.1. Knotting in polymeric systems

Under θ conditions, individual linear polymer chains can be modeled as
random walks providing the basis for many numerical studies estimating the
average spatial properties such as the growth of the radius of gyration as a
function of the length of the chain. With theorems proving that the probability
that a random walk is knotted is asymptotically one, random walks have been
studied to characterize the proportion of unknots and other specific knot types as
length increases. Using the methods described in section 2.2, one can estimate
the size of the knots, ephemeral knots, and slipknots in random walks [47],
see figure 7 in which comparison is made with another subknot scaling [41, 42].
Here, one finds that the average size of subknots, ephemeral knots, and slipknots
appear to be bounded as the length of the random walk increases.

Empowered by the ability to characterize the presence of knotting in open
arcs, it is possible to study the presence and position of knots in rings to as-
sess the complexity and character of the knotting that may be present in ideal
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Figure 7: The average size of knots, ephemeral knots, and slipknots in random walks [47].

knots and random knots [64]. The key assessment vehicle is the knotting fin-
gerprint, see figure 8, in which the colors of the cells in a disk represent the
knotting present in the subsegment indicated by coordinates of the cell. The
planar graph defined by this knotting fingerprint can be analyzed by translating
the relationships into the knotting fingerprint graph to which graph theoretic
methods can then be applied to quantify the characteristics of the complexity of
the knot [28]. For example, one can calculate the associated Cheeger constant,
a measure the constraints placed on the indipendent unknotting pathways or,
by inversion, the knotting pathways.

These considerations naturally lead to the analysis of subknots of minimal
crossing knot diagrams, i.e. the presentations employed in knot and link ta-
bles, [1], and often employed to test theories. They are essentially unique for
knots with minimal crossing alternating diagrams but the story is rather more
complicated for non-alternating knots, i.e. those without alternating crossing di-
agrams [1]. Careful analysis of subknots in the classical minimal crossing prime
knot diagrams through 15 crossings [48, 49] supports the conjecture that Every
minimal crossing prime knot diagram contains either a trefoil or a figure-eight
knot. Indeed, 99.83% of the 313, 258 minimal prime knot diagrams contain a
trefoil subknot. This fact shows that the simplest knot, the trefoil, is a critical
component in the formation of most knots. While there are infinite families of
minimal crossing prime knot presentations, with rapidly increasing number of
crossings, it may still be the case that, as the number of crossings increases, the
probability of containing a trefoil knot asymptotically goes to 1.

4.2. Knots and slipknots in proteins

The first instance of a knot present deep inside a protein was identified by
Taylor, [69], in 2000 and the first slipknot was identified in a protein by King
et. al., [32] in 2007. Since then, new knotting in proteins has been identified
provoking speculation as to the evolutionary purpose of the systematic presense
of these knots in certain families of protiens [67, 12]. A form of the knotting
fingerprint, adapted to the circumstance of the open macromolecule structure
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Figure 8: The knotting fingerprint of an ideal 810 knot from [64]. The distance from the
center corresponds to the length of the segment and the angular coordunate corresponds to
the position of the center of the segment in the circular parameterization of the knot. The
information in the fingerprint can be expressed in the form of a graph to which powerful
graph methods can be applied to extract new quantitative expressions of the complexity of
the knotting, for example a Cheeger constant [28].

of the protein, provides the foundation of the identification and localization of
knots and slipknots in protein structures, see figure 9. A website, KnotProt:
http://knotprot.cent.uw.edu.pl [30], has been created that provides a regularly
updated analysis of protein structures appearing in the Protein Data Bank
including the knotting fingerprint and links to associated structures:

The knotting fingerprint provides a highly effective method to study knot
localization in proteins [65] and can be applied to any linear macromolecule
spatial structure.

4.3. Linking in polymeric systems

In [57], Panagiotou et. al. show that the average squared linking number, the
averages squared writhe, and the average squared selflinking number of uniform
random walks or polygons of length n is a convex confined space grow on the
order of n2. These theoretical results are confirmed by number simulations and
provide rigorous confirmation of the average values one encounters for polymer
models in θ conditions. If one wishes to remove possible boundary effects due
to confinement, a periodic boundary condition model provides a method to
acquire simulation data. In [58], Panagiotou et. al. employ the periodic linking
number and the associated periodic linking matrix to formulate a new measure
the entanglement of a collection of open or closed chains and demonstrate,
using numerical simulations, that these provide effective tools to measure the
homogeniety of entanglement as a function of the chain length. These methods
have been shown to give information consistent that that achieved by more
traditional methods defining entanglement in polymer melts [55], see figure 11.

Another important application of linking in PBC models is provided by
the study of Olympic systems. Olympic systems are collections of small ring
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Figure 9: The knotting fingerprint in ubiquitin C-terminal hydrolase in H. sapiens from [67].
The fingerprint is annoted to show the location of specific knot and slipknots within the
structure as well as a cartoon representation from the Protein Data Bank [6]

Figure 10: A representative atomistic polyethylene sample, (a) and its correspoinding reduced
network (b) in which bends in the piecewise linear paths denote the presence of local linking
[55].
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Figure 11: Graph (a) shows the normalized probability distribution of the periodic linking
number for the original and the corresponding reduced chains in a polyethylene model. In (b)
the distribution of the differences between these two shows that the periodic linking number
captures information that is statistically equivalent to that provided by the traditional chain
shortening method, [55]

polymers whose aggregate properties are largely characterized by the extent
(or absence) of topological linking in contrast with the topological entangle-
ment arising from physical movement constraints associated with excluded vol-
ume contacts or arising from chemical bonds. These were first discussed by de
Gennes [17] and have been of interest ever since due to their particular prop-
erties and their occurrence in natural organisms, for example as intermediates
in the replication of circular DNA in the mitochondria of malignant cells or in
the kinetoplast DNA networks of trypanosomes [11, 39, 45, 18, 19, 4, 20]. In
Igram et. al. [29], simulations of Olympic systems with one, two, and three-
dimensional boundary conditions are studied using the periodic linking number
and associated linking matrix. In these, there are observed critical densities at
which the dimensional character of the entangled subsystems change. For ex-
ample, in the three dimensional case, one first observes a one dimensional linked
subsystem, then a two dimensional one and, finally, the entangling of the entire
three dimensional system, see figure 12.

4.4. Linking in proteins

When disulfide bridges are added to the structure of a protein a loop is
formed, a lasso [54], through which both the C and N termini of the backbone
can link, see figure 13. The extent of linking can be measured, for example, using
the Gauss linking integral, equation 3.1, or by counting the oriented intersection
of these tails with an auxiliary oriented surface whose boundary is the covalent
loop as illustrated in the figure. Lassoprot [14] has been created to enable
research on the structure of lassos created by these disulfide bridges in proteins.
We note that none of these structures contain knots, as described in our earlier
discussion of proteins, so that the lasso structures provide a new dimension
through which the spatial structure of the protein may be connected to its
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Figure 12: In 3-dimensional PBC models of Olympic systems, one observes the onset of one
dimensional entangled subsystems, then two dimensional entangled subsystems, before finally
achieving full percolation, [29].

function.
When two or more disulfide bridges are present in a protein, even more

complex structures, modeled by three valent mathematical graphs, are encoun-
tered. In [15] the simplest of such structures, those forming topological links,
are analyzed, see figure 14.

4.5. Thick polymers

Except under θ conditions, the effective thickness of a polymer gives rise to
excluded volume constraints that play an important in characterizing the spatial
structure of the physical polymer. Randomly sampling such physical polymers
over over a physically important range of effective thicknesses has been an im-
portant problem. Recently, however, fundamental progress has occurred. First,
for open chains, using Rawdon’s determination of thickness of open polygonal
chains [63], Plunkett and Chapman [60] define a new sampling algorithm for
the space of random walks with any specifiec thickness and prove that this algo-
rithm is ergodic, i.e. faithfully samples the continuous space of conformations.
The sampling algorithm is inspired by the reflections employed in lattice struc-
tures but is applied to off lattice, or 3-space, conformations and requires a new
continuous structure argument to prove that it is ergodic. One is not able to
study the consequence of thickness on such spatial meansures as the squared
radius of gyration, see figure 15.

Chapman [10] has formulated a new ergodic algorithm, also employing 3-
space reflections, that faithfully samples the space of equilateral rings with any
specified thickness. Employing these new algorithms, one is now able to study
the relationship between polymer length and thickness and, for example, the
scaling of the radius of gyration, the presence of knots and slipknots and their
average radii of gyration or other spatial properties.
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Figure 13: When a disulfide bridge is added to the protein structure, a lasso can be formed
with which the C and N termini can link, [54]. The orange segments represent the disulfide
bridges.

Figure 14: When two or more disulfide bridges are added to the protein structure, mathemat-
ical links can be formed, [15]. The orange segments represent the disulfide bridges.
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Figure 15: The growth of average squared radius of gyration as a function of thickness, [60].

Deguchi and Uehara [72, 73], using an off-lattice algorithm employing re-
flections and folds, have also studied the knotting under excluded volume con-
straints. While the ergodicity of this algorithm is unknown, one expects that
the results will be consistent with those achieved using an ergodic algorithm.
Among many other interesting matters, they consider the equilibrium length
of an equilateral polygonal knot type, defined as the number of segments at
which the average squared radius of gyration of the knot type equals the aver-
age squared radius of gyration of all configurations of that length. From their
data, it appears that the equilibrium length may be additive, at least for trefoil
knots, as this relationship seems to hold for the trefoil, 31, the sum of two tre-
foils, 31#31 and, even, for three trefoils, 31#31#31. Perhaps this is a reflection
of knot localization and the average character of the connected sum.

5. A few attractive research directions

5.1. Knot localization

One question that arises is ”How to define the locus of a knot?” in an open
or closed polygon. For open or closed polygons containing a prime knot, one
can determine the knotting fingerprint and select the shortest subsegment rep-
resenting the given knot type. This is method employed, for example, in the
study of knotted proteins [67]. To render this question accessible to an initial
exploration, one can begin by a study of minimal crossing planar presentations
of the knot type. For the sum of two trefoils in a closed polygon, this method
provides the ”correct” answer even though there are three distinct presenta-
tions of the connected sum, see figure 16. One observes that they are distinct
by virtue of the number of edges bounding the exterior unbounded region of the
presentation. In the first case, one has a hexagon, in the second case one has a
tetragon, while in the third case one has a pentagon region.
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Figure 16: The closed connected sum of two trefoils has three different presentations in R2.
The upper two have hexagonal and tetragonal unbounded complementary regions whereas
the middle one has a pentagonal unbounded complementary region. This last sum is an
alternating crossing connected sum of a left (negative crossing) and a right (positive crossing)
trefoil. The corresponding minimal crossing presentation of two right trefoils, bottom right,
is not alternating but is minimal.

The classification of S2- equivalent connected sums of three trefoils is much
more complex with a much larger number of options for configuring a minimal
crossing planar presentation of the connected sum. A critical component in the
analysis is Menasco’s theorem [43] stating that a reduced alternating knot or
link projection is irreducible if and only if there is no planar circle meeting the
presentation in exactly two transverse points with crossings in each of the two
complementary regions. In fact, for composite knots or links, such circles are
very easily recognized and allow one to factor the presentation into a non-trivial
presentations within each of the complementary regions. One can then continue
the analysis with simpler non-trivial presentations until achieving an irreducible
factorization of the presentation. It is the combinatorics of these separating cir-
cles and the eventual prime two string tangles that is the principal source of the
complexity of the classification of the presentations. Observe that there arises
an additional complication demonstrated by the fact that the connected sum
of the two different presentations of the right (positive) trefoil, see figure 16,
might be not an alternating presentation. The analogous alternating presen-
tation must be the connected sum of a right and a left trefoil. In as much as
matters of chirality are of, at least, biological importance, this is an important
complication to be addressed.

Inspired by this example, one approach to the identification problem might
be via tangle theory [13, 36, 37], see figure 17. As a first test case, one should
analyze the alternating crossing diagrams of connected sums of, say, the positive
trefoil. Unlike the classical case of alternating diagrams of prime knots and the
flype-conjecture, proved by Menasco and Thistlethwaite [44], there does not

16



Figure 17: At the top are two distinct one string tangles representing the trefoil knot. In the
middle are two two string tangles representing the trefoil. And at the bottom, a three string
tangle also representing the trefoil knot.

appear to be a classification of alternating composite knots or links, a rather
more complex problem even for closed connected sums of trefoils, see figures 18
and 19.

With respect to the question of classification of the spatial configurations, the
specific spatial geometries occur with different probabilities and have distinct
spatial properties, such as the radius of gyration, that depend not only upon
the number of summands but also the way in which they are organized in space,
as illustrated in figures 18 and 19.

In addition to the above sources of complexity, for the open polygonal con-
nected sum, the character and classification is rendered even more complex as
it depends on the location of ends of the arc. For a hint as to what one faces,
see figure 20, in which we consider two of the simplest cases and the problem
that arises in identifying the size of the trefoils that form the connected sum.
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Figure 18: Connected sums of three trefoils. On the top is a representation of the ”standard”
connected sum. Below are two different connected sum representations having a two string
tangle in the center, analogous to the two string structures for tangles in figure 17. Note that
the second of these is minimal but not alternating.

Figure 19: Connected sum of four trefoils having a three string tangle in the center, analogous
to the third structure for tangles in figure 17.
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Figure 20: Two distinct open connected sums of two trefoils. The standard open sum, on left,
gives the usual size supports for the trefoils while the current algorithm, applied to the sum
on the right would not recognize the presence, of the second trefoil subknot, only the entire
connected sum.

5.2. Physical knots and links

One of the enduring challenges in the simulation of three-space, off lattice,
random walks and polygons has been the absence of a proof that, until now,
any of the popular sampling algorithms is ergodic, i.e. faithfully samples the
continuous space of configurations. While such proofs for lattice sampling have
been available for some time, [40], rigorous off lattice methods are only now
available. Unfortunately, neither the very useful crankshaft [33, 3] or the polyg-
onal fold [46, 3] are known to be ergodic. Employing the symplectic geometry
of the configuration space, Cantarella et. al. [9, 8] now provide one powerful
ergodic method. In the study of physical knots and in an entirely independent
approach inspired by the lattice methods, Chapman and Plunkett [60, 10], have
described algorithms that they can rigourously prove ergodically sample the
spaces of thick walks and polygons using Rawdon’s definition of thickness for
polygonal structures.

For applications to physical polymeric structures, the question as to whether,
as popularly believed, the chrankshaft and the polygonal fold algorithms are er-
godic in the continuous space of closed polygons continues to be an important
theoretical problem. Furthermore, in the study of physical polymers, the bend-
ing contribution to Rawdon’s thickness is not employed but, rather, a tube or
cylinder constraint is used to insure an excluded volume. As a consequence, one
is lead to ask whether the methods of Chapman and Plunkett ergodically sample
the spaces of ”thick” structures where one uses only the cylinder definition of
thickness. If so, their methods would be more widely applicable. Deguchi and
Uehara [72, 73] employ a sampling method that uses both reflections, similar
to Chapman and Plunkett, and polygonal folds in the context of the cylinder
thickness but, here too, one lacks a rigorous proof that this method is ergodic.
It seems, from a mathematical physics or polymer science perspective, there
remain some fundamental foundational matters to be rigorously resolved.

The increasing progress in the synthesis of complex polymeric structures
leads one to revist the implications of the presence of knotting and linking. In
the context of this discussion, it is apparent that the spatial structure and conse-
quences of spatially distinct connected sum structures of the simplest formations
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Figure 21: The average equilibrium length as a function of the number of trefoil summands

such as trefoil knots merits careful analysis, especially as these structures will
depend upon the thickness of the macromolecules. Deguchi and Uehara have
considered the average properties of trefoil knots and have noted that the av-
erage equlibruim length grows roughly linearly with the number of summands,
see figure 21. This is consistent with the localization of the trefoil summands
but, as we have seen above, the precise spatial structure of the connected sum
could be complex. As a consequence, one may wonder about the proportion
of the structures occurring and how one might go about selecting those whose
physical properties are desired.

6. Conclusion

Although somewhat selective, we have seen that there is a rather broad spec-
trum of ways in which knotting and linking are fundamental to charactizing the
spatial structure of macromolecules. From experimental methods to discern the
mechanisms by which enzymes act upon DNA to knotting and linking existing
with in protein structures and other polymeric materials, one sees a variety of
physical manifestations that include consequences for their radius of gyration,
topological swelling, and the variety of distinct structures one may encounter in
connected sums of even the simplest of knots. While there has been important
progress recently, there remain some fundamental problems and important new
research opportunities across polymer chemistry, biology, and physics as well as
within pure and applied mathematics. We have tried to provide an introduction
and some insight into all of these in this short reflection of the state of the art.
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[62] P. Rõgen and H. Bohr. A new family of global shape descriptors. Math.
Biosci., 182(2):167–187, 2003.

[63] E. J. Rawdon. Approximating the thickness of a knot. In Ideal Knots,
volume 19, pages 143–150. World Sci. Publ., River Edge, NJ, 1998.

[64] Eric J. Rawdon, Kenneth C. Millett, and Andrzej Stasiak. Subknots in
ideal knots, random knots, and knotted proteins. Sci. Rep., 5:8928, 2015.

[65] Eric J. Rawdon, Kenneth C. Millett, Joanna I. Sulkowska, and Andrzej
Stasiak. Knot localization in proteins. Biochem. Soc. Trans., 41(2):538–
541, 2013.

[66] R. Stoltz, M. Yoshida, R. Brasher, M. Flanner, M. Ishihara, D. J. Sherratt,
K. Shimokawa, and M. Vazquez. Pathways of dna unlinking: A story of
stepwise simplification. Scientific Reports, 7:12420, 2017.

[67] Joanna I. Su lkowska, Eric J. Rawdon, Kenneth C. Millett, Jose N. Onuchic,
and Andrzej Stasiak. Conservation of complex knotting and slipknotting
patterns in proteins. Proc. Natl. Acad. Sci. USA, 109(26):E1715–E1723,
2012.

[68] D. W. Sumners and S. G. Whittington. Knots in self-avoiding walks. J.
Phys. A, 21(7):1689–1694, 1988.

[69] William R. Taylor. A deeply knotted protein and how it might fold. Nature,
406:916–919, 2000.

[70] W. H. Thomson. On vortex motion. Trans. R. Soc. Edin., 25:217–260,
1867.

25



[71] L. Tubiana, Orlandini E., and C. Micheletti. Probing the entanglement
and locating knots in ring polymers: a comparative study of different arc
closure schemes. Prog. of Theo. Physics Sup., 191:192 – 204, 2011.

[72] Erica Uehara and Tetsuo Deguchi. Knotting probability and the scaling
behavior of self-avoiding polygons under a topological constraint. 147, 04
2017.

[73] Erica Uehara and Tetsuo Deguchi. Scaling behavior of knotted random
polygons and self-avoiding polygons: Topological swelling with enhanced
exponent. 07 2017.

[74] S. A. Wasserman and N. R. Cozzarelli. Biochemical topology: applications
to DNA recombination and replication. Science, 232(4753):951–960, May
1986.

[75] J. H. White, K. C. Millett, and N. R. Cozzarelli. Description of the topo-
logical entanglement of dna catenanes and knots by a powerful method
involving strand passage and recombination. Journal of molecular biology,
197(3):585–603, 1987.

26


