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1. Introduction

Humans have long exploited the special properties of polymer chains to

manufacture materials used in their everyday life. Polymers are very large

molecules existing in a wide variety of topological types, both singly or in

collections. While they exhibit substantial structural regularity, e.g. DNA

Figure 1, their large scale topology can be linear or circular in nature (the

cases of principal interest here) or resemble quite complex graphs, for ex-

ample star or wheel graphs. They can be natural, e.g. silk, cotton, shellac,

rubber, amber, and the shells of crabs and lobsters or synthetic, e.g. bake-

lite, nylon, neoprene, polystyrene, and polypropylene to name just a few.

They are found everywhere, including in the DNA, proteins, and other

molecular structures that make up our bodies.

A common mathematical model for polymers is a polygonal chain, i.e
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a collection of vertices and connecting edges. The polygons can be open,

i.e. topologically equivalent to a closed interval, or closed, i.e. topologically

equivalent to a circle. They are studied individually or in large collections.

From the topological perspective, a polygonal ring in 3-space defines a knot

while a collection determines a link. The key feature that distinguishes phys-

ical knot theory from the classical knot theory is that there are constraints

on the chains arising from the physical properties of the polymers being

studied. For example, the heterogeneity of the polymer may lead one to

study equilateral polygons. The material properties may impose constraints

on the bending or twisting of the polygon. The thickness of the material

may impose a requirement that the collection of small tubular neighbor-

hoods of the polygons consist of mutually disjoint tori. The imposition of

these constraints gives birth to a whole new class of mathematical problems

that are not simply of a topological nature but include geometric features

in fundamental ways.

Fig. 1. Electron micrograph of a RecA protein coated DNA trefoil knot generated by E.
coli DNA topoisomerase acting on nicked circular DNA. Micrograph courtesy of Andrzej
Stasiak, University of Lausanne

What is the relationship between knotting and linking, the average topo-

logical structure or geometric structure of configurations, and the biologi-

cal or physical properties or the functionality of the polymers they model?

What sorts of measures does one employ to characterize the shape of poly-
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mers? We will discuss a few of these questions, beginning with those more

frequently studied: the identification of the knot type, the radius of gyra-

tion, and the average crossing number. The identification of knotting in ring

polymers and the extension to knotting in open chains due to applications

to protein structures is central. In addition to the specific type of knotting,

we will be interested in the average scale of the knotting and the average

shape of the knots. Furthermore, we will look at slipknots, i.e. knotted seg-

ments of a polymer chain which are contained in a larger unknotted chain,

and their properties.

While there are some key results for which we have rigorous proofs,

much of the information comes from the random sampling of the space of

all possible configurations. As a consequence, we will describe two standard

strategies, the polygonal fold method and the crankshaft rotation method,

and the rigorous proofs that they properly sample the set of configurations.

Implementations of these methods have provided a rich set of data whose

analysis provides estimates of the shape parameters discussed earlier. A

discussion of the consequences of this information and their implications

for future research will complete this introduction to physical knot theory.

2. Models of biological and physical polymers

In this section, we will focus attention on structures that are locally lin-

ear such as found in models for DNA and proteins, see Figure 1, where

we replace the sugar-phosphate backbone or related structures by a linear

chain of vertices and edges. We will require that there is no ”branching” or

”crosslinking” in the structure.

2.1. Intrinsic structure

The molecular chains can be modeled as unions of linear segments (polyg-

onal arcs) whose lengths, vertex angles, and torsion statistically reflect

the structural properties of the polymer, e.g. Kuhn length. We will as-

sume that the polymers are homogeneous so that, in our polygonal mod-

els, the edge lengths will be equal to unity. The individual chains can

be either open, i.e. topologically equivalent to closed intervals, or closed,

i.e. topologically equivalent to circles. A chain, K, is described by its

vertex set {v1, v2, ... , vn} with edges connecting a vertex with it suc-

cessor and, if the chain is closed, the last vertex with the first. Thus,

if {v1, v2, v3, ... , vn} are vertices, the edge vectors of a closed chain

{e1 = v2 − v1, e2 = v3 − v2, ... , en = v1 − vn}. Note that an open chain of



March 20, 2010 10:56 WSPC - Proceedings Trim Size: 9in x 6in TriestePaperv7.0

4

n edges has one more vertex than a closed chain of n edges. Examples of

50 edge open and closed chains with initial vertex at {0, 0, 0} are shown in

Figure 2.

Fig. 2. Linear and circular 50 edge chains

2.2. Extrinsic structure of closed chains

The conformations of closed polygonal chains in 3-space can be different

in many distinct ways. Indeed, this is also the case for open chains if one

focuses on individual “frozen” conformations rather than allowing defor-

mations without self intersections. By allowing for changes in lengths and

bending of edges, one arrives at the topological notion of knotting and

linking.

A closed (circular) chain is knotted if it can not be deformed, in a

structure preserving manner, to the standard planar equilateral polygon

of that number of edges, Figure 3. Two closed chains represent the same

knot type if one chain can be deformed to the other in a structure preserving

manner. If it is the topological structure that is to be respected, one studies

the notion of topological knotting. If, however, one must preserve the length

of the edges, a geometric stucture has been imposed and the result is the

distinctly different concept of geometric knotting. A particularly elusive
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example was the 819 eight edge equilateral polygonal knot, Figure 8, whose

existence I proved via numerical methods. Note that, in these figures, care is

paid to insure that the 2-dimensional images of the knot accurately capture

the structure of the 3-dimensional polygonal chain by insuring that image

is unchanged under small changes of perspective and that the under/over

crossing structure is clearly discernible, see Figure 3. Such images are called

knot presentations.

Fig. 3. Standard regular polygons, right, and the six edge equilateral trefoil and the
seven edge equilateral figure-eight knots

Fig. 4. An octagonal equilateral 819, Image provided by Peterson Tretheway
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2.3. Extrinsic structure of open chains

In our study of the spatial structure of open chains, we emphasize that this

concerns the extrinsic properties of the “frozen” configuration. Knotting

or linking of open chains is not invariant under topological deformations.

For chains in which the edges are of unequal length, there are examples of

knotting and linking,1–6 under deformations that respect the linear struc-

ture and perserve lengths of edges. Whether or not this is true for open

equilateral chains is unknown.

Problem 2.1. Are there knotted open equilateral chains?

Thus, our open equilateral chains will be frozen in position unless ex-

plicitly stated otherwise. To detect knotting in such open chains, I prefer to

consider the statistics of closures of the chain to the “sphere-at-infinity”.7–9

There are many other strategies that have been employed.10–19 These in-

clude some which “shorten” the open chain by means of an algorithm that

often includes choices that lead to some level of indeterminacy as to the

final result. Such uncertainty leads to concerns that must be addressed in

applications of these methods. One such example is shown in Figure 5.

Here, if one applies a popular shortening method,14 the outcome depends

upon the end at which one starts. Another strategy is to simply connect

the end vertices to a fixed point, directly to each other, or to “infinity”.

Another looks for solid balls capturing the “knotted” portion in its inte-

rior. These methods can lead to an indentification of knotting that is not

consistent with what might expect considering the large scale structure of

the conformation or are of such limited application that they are difficult to

use in these contexts. While it is possible that the extent of indeterminacy

that arises in some of these methods is insufficiently large as to undermine

the analysis, this is difficult to assess. As a consequence, I prefer the sta-

tistically robust method connecting the ends of the chain to points on the

“sphere-at-infinity.” For all practical purposes, one may consider this to be

a sphere of very large radius, compared to the diameter of the conforma-

tion, centered at the centroid of the chain, see Figure 5. By applying this

method to subchains of closed chains, one can identify the site and scale of

knotting in a large chain.

Thus, to identify knotting in open chains, one collects a random sam-

ple of closures of appropriate size, computes a knot invariant such as the

HOMFLYPT polynomial,20 Figure 6, to identify the topological knot type

of each closure, and analyzes the resulting collection of knot types (actually

their polynomial surrogates). These statistics give the spectrum of knotting
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Fig. 5. Curve shortening example and a “sphere-at-infinity” closure example7

of the chain. The selection an appropriate threshold to establish the knot

type of the open chain, for example 0.6, results in the identification of a

trefoil knot for the spectrum shown in Figure 7.

Fig. 6. In Berkeley, summer 1985, Vaughan Jones with James Hoste, Adrian Oceanu,
Kenneth Millett, Peter Freyd, W. B. Raymond Lickorish, and David Yetter (HOM-
FLY) Absent were J. Przytycki and P. Traczyk

3. Elements of physical knot theory

In applications of polygonal models, both open and closed chains, to the

study of physical or biological polymers, many aspects of the topological
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Fig. 7. A sample spectrum of the knotting of an open chain.8 The trivial knot and
trefoil account for more than 90% of the sample with the remainder being, principally,
five and six crossing knots.

and geometrical structures have been employed. Some of these arose in the

topological study of knots while others have developed in response to the

goal of modelling physical and biological properties.

3.1. Average crossing number

The ACN(K) is understood as the average of the crossing number of

a configuration over all orthogonal planar projections. These planes are

parametrized by their normal unit vectors, i.e. points on the unit sphere.

ACN(K) =
1

4π

∫
S2

cr(v)dA (1)

If the curve is parameterized by γ(t), the ACN is given by the following

integral:

ACN(K) =
1

2π

∫
S1

∫
S1

|(γ′(t), γ′(s), γ(t) − γ(s))| dt ds

‖γ(t) − γ(s)‖3
(2)

in which |(γ′(t), γ′(s), γ(t) − γ(s))| denotes the absolute value of the

triple vector product and ‖ ‖ denotes the vector norm in R3.

3.2. Curvature and torsion

If γ(s) is an arc length parameterization of a curve,21,22 T (s) = dγ(s)
ds

. The

curvature is defined by κ(s) = ‖ dT (s)
ds

‖. The nomal vector is N(s) =
dT(s)

ds

‖ dT(s)
ds

‖
.
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Fig. 8. An 819 knot with ACN 11.2271

The binormal vector is B(s) = T (s) × N(s). The torsion is defined by

τ(s) = −‖ dB(s)
ds

‖.

3.3. Total curvature and total torsion

For spatial curves we define the total curvature and the total torsion to be

the integrals of the curvature and torsion as follows:

TCU(K) =

∫
S1

κ(s)ds (3)

TTO(K) =

∫
S1

τ(s)ds (4)

A closed curve must have total curvature at least 2π. The total cur-

vature and total torsion of the knot in Figure 8 are 26.4085 and 118.602,

respectively.

Theorem 3.1 (Fary-Milnor23). If K is a smooth non-trivial knot, its

total curvature is greater than 4π.

As our models are based on polygonal chains, we translate these con-

cepts to the polygonal setting. The {v1, v2, ... , vn+1} are the n+1 vertices

of an n edge polygonal chain. These give the edge vectors {e1 = v2−v1, e2 =

v2 − v2, , en = vn+1 − vn} for an open chain. If the chain is closed, we set v1
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equal to vn+1. The angle, in radians, between ei and ei+1 defines the local

curvature at vi+1. The total curvature is defined to be the sum of these

angles (measured in radians). Adjacent vectors, ei and ei+1, determine a

plane. The angle between adjacent planes defines the torsion at each edge.

The total torsion is the sum of these angles.

3.4. Radius of gyration

The center of mass and squared radius of gyration of a chain, K are defined

by:

CM(K) =
Σvi

n
(5)

RGN(K)2 =
Σ‖vi − CM(K)‖2

n
(6)

The RGN is one of the most frequently employed measures of the spatial

extent of a configuration. The radius of gyration of the 819 knot in Figure

8 is 3.165.

Fig. 9. The center of mass and the radius of gyration sphere associated to a polygonal
trefoil
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3.5. Injectivity radius of a knot in 3-space

The injectivity radius of a smooth knot is 3-space is the upperbound of

the radii of embedded normal tubes centered on the knot.24 This radius is

determined by limits imposed by the curvature and by contact points of

distance portions of the normal tube 11. Gonzalez and Maddocks25 give

a very general definition as follows: For any triple of distinct points in 3-

space, let r(x, y, z) be the radius of the unique circle they determine. If

T (x) is a line tangent to the curve at x, let r(T (x), y) be the radius of the

unique circle tangent to T (x) at x and containing y. ρx(L) is the infimum

of r(x, y, z) over distinct points x, y, z with x fixed. For a smooth link, the

function ρx(L) is continuous and 0 < ρx(L) < 1
κ(s(x)) = ρ(s(x)), where s(x)

is the arc length parameter of the point x and ρ(s(x)) is defined to be the

radius of curvature of L at x. The thickness, ρ(L), is the infimum of ρx(L)

over all xǫL.

The images of thick knots often do not display the maximal tubes due

to the difficulty of distinguishing features of the structure, see Figure 10.

Fig. 10. Two images of thick 86 knots. Images provided, respectively, by Cantarella and
Scharein

For polygonal knots, Eric Rawdon,26–28 has defined a polygonal injectiv-

ity radius reminiscent of the smooth category in terms of the vertex angles

and the minimal distal distances.

4. Theoretical results on the random sampling of

equilateral open and closed chains

Due to biological, physical, geometric, and topological interest, the collec-

tions of open or closed (or ring) equilateral polygons have attracted much
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Fig. 11. Injectivity radius constraints26

attention. The results of Randell,29,30 Calvo,31–35 among others, tell us ex-

actly which knots can be represented by closed chains with eight or fewer

edges. Beyond eight edges, however, there are only estimates for the number

of knots representable with exactly n edges. The frequency of a specific knot

type, for a fixed number of edges, is another quantity that has not been

determined rigorously. It has only been estimated via numerical studies.

Generating and analyzing large random samples is, therefore, a fundamen-

tal component of the modeling of macromolecules. The theoretical results

presented here should be considered as a first step toward models that take

curvature, torsion, and injective radius into consideration.

The space of open embedded equilateral chains is the same as the space

of embedded random walks. In the following, we will first consider open

chains and then those which are closed, i.e. in which the final vertex equals

the first vertex.

4.1. Open chains (or random walks)

An open chain, based at the origin, is determined by a set of n vertices, v0 =

0, v1, ...., vn. The associated edge vectors are determined by ei = vi − vi−1

and, in turn, determine the vertices. The edge vectors have unit length and,

thereby, correspond to points on the unit radius 2-dimensional sphere.

v0 = 0,

v1 = e1,

v2 = e1 + e2,

...

vn = e1 + e2 + e3 + . . . + en.

Thus, an n-edge equilateral chain can be considered as a point in the

product of n 2-dimensional spheres, i.e.
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(e1, e2, . . . , en) ∈ S2 × S2 × . . . × S2

The requirement that the edges meet only at common vertices imposes

a collection of constraints that insures that embedded chains define an open

subset, Cn, of S2 × S2 × . . . × S2. An example of such a chain is shown

in Figure 12. The meaning of “random” is determined by the natural mea-

sure on the space of configurations. We will use the product measure on

S2 × S2 × . . . × S2. A random edge vector e is determined as follows:

Random Chain Generation Method

(1) With respect to the uniform measure on [0, 1],

select two numbers, a and b.

(2) Define α = 2πa and β = ArcCos[2b − 1]

(3) Define e = (Cos[α]Sin[β], Sin[α]Sin[β], Cos[β]).

(4) Check that the addition of e does not introduce any intersections in the

chain defined to that point. If so, reject the vector and try again.

Fig. 12. A “random” 50 edge chain in 3-space

4.2. Closed chains (or polygons) in 3-space

Closed chains are determined by a list of unit vectors ei, (e1, e2, . . . , en) ∈

S2 × S2 × . . . × S2. The requirement that vn = 0 is equivalent to

e1+e2+e3+ . . .+en = 0 = (0, 0, 0). This imposes three relations on the set

of edges thereby decreasing the dimension to 2n− 3. The requirement that

the edges meet only at common vertices imposes a collection of constraints
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that insures that the set of embedded closed chains defines an open subset,

Pn, of the 2n− 3 dimensional subset of S2 × S2 × . . .× S2. An example of

a “random” twenty-edge equilateral polygon is show in Figure 13.

Fig. 13. A “random” 20 edge equilateral polygon in 3-space

4.3. An important property of these spaces

These spaces can be considered as subsets of the product of n copies of R3.

As sampling occurs via numerical procedures which are not exact, small nu-

merical “errors” naturally arise. Such “errors” represent “approximations”

of the coordinates of the vertices of the polygonal chain. They can also be

considered as corresponding to perturbations of exact data. These errors

can impact the conclusions that one may wish to infer from an analysis of

the data. Thus, a fundamental question that one must ask is “How close to

having an equilateral polygon with specified properties must one be in order

to insure the mathematical existence of a nearby equilateral polygon with

exactly these topological or geometric properties?” Suppose that P is an n

vertex polygon, v0, v1, ...., vn and P ′ is another with vertices v′0, v
′
1, ...., v

′
n.

We measure the distance between P and P ′ by d(P, P ′) = max{‖vi − v′i‖},

This metric on R3n gives a measure of how close two polygons are. Simi-

larly max{|‖ei‖− 1|} is a measure of how close P is to being an equilateral

polygon with unit length edges. Answering our question requires the con-

junction of several considerations that we shall discuss next.

4.3.1. Chains and tubes

We look closely at the injective radius, see Sec. 3.5, to develop a reply

for polygonal models.27 Let {v1,v2, . . . ,vn} be the vertices of a 3-space
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polygon, P . Let ‖e‖ denote the norm of the edge vector e. Given a vertex

vj , let angle(vj) be the turning angle from prior edge, ej−1, to the next

edge, ej . Define

Rad(vj) =
min{‖ej−1‖, ‖ej‖}

2 Tan(
angle(vj)

2 )
(7)

and

MinRad(P ) = min{Rad(vj)}. (8)

For x ∈ P , let dx : P → R be defined by dx(y) = ‖x − y‖. A point, y,

is a turning point if dx changes from increasing to decreasing or vice-versa

at y. Let DC ∈ P × P denote the collection of points, (x,y) with x 6= y,

that are turning points of dy and dx, respectively. Let

dscd(P ) = min{‖x− y‖ : (x, y) ∈ DC}. (9)

Rawdon26 defines the polygonal injective radius as

R(P ) = min{MinRad(P ),
dscd(P )

2
}. (10)

The following theorem provides a way to analyze the effect of pertruba-

tions or numerical approximations on the structure of a closed equilateral

polygonal chain. The analogous result for open chains easily follows by the

same methods.

Theorem 4.1 (The Closed Chain Tube Theorem27). If r < R(P ),

the union of solid balls of radius r centered at points on the closed poly-

gon P is an embedded solid torus.

Theorem 4.2 (The Open Chain Tube Theorem). If r < R(C), the

union of solid balls of radius r centered at points on the open polygonal

chain C is an embedded ball.

These theorems help provide one step in answering our question.
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Theorem 4.3 (The Perturbation Theorem27). If P is equilateral

polygonal chain (open or closed) of constant edge length, E, and the scale

of a perturbation, r = d(P, P ′), is smaller than minimum of the polygo-

nal injective radius of R(P ) and 12ER(P )2−E3

8R(P )2+2E2 , then all perturbed polygonal

chains, P ′, are geometrically equivalent P .

One application of the theorem in response to our questions concerns

the existence of an equilateral eight edge 819 knot. Random searches or

perturbations of examples, without requiring equal length edges, lead to

the impression that this might be an example of a knot whose polygonal

stick number was different from its equilateral stick number, i.e. it could be

represented as an eight edge polygon but not an equilateral one. An early

example was discovered to fail to satisfy the conditions of the Perturbation

Theorem, i.e. the edges lengths were not quite equal and, simultaneously,

the edges almost crossed so that its injective radius was to small to insure

that it could be approximated by an equilateral polygon of the same topo-

logical knot type. Later, in an unrelated effort, I developed a new random

search strategy to test the existence of this knot. It appeared to be success-

ful and, this time, the Perturbation Theorem confirmed the existence of the

configuration shown in Figure 4, whose coordinates are (approximately) the

following:

v1 = (0.0, 0.0, 0.0)

v2 = (4.244988698233,−5.29806224161222, 4.23209255993696)

v3 = (1.621389440625,−2.446558361029,−2.76688254749867)

v4 = (6.9553834171687,−3.1449123567692, 3.1543343844196)

v5 = (−0.58394895866445,−5.81008379802231, 2.919114241909)

v6 = (3.9278286450686,−2.446558361029,−2.76688254749867)

v7 = (2.0591187707439,−5.1915142515365, 4.5113823944207)

v8 = (5.3795054883023,−5.2350054125733,−2.76688254749867)

4.4. Markov Chain Monte Carlo (MCMC) sampling of the

space of closed equilateral chains

A discrete stochastic process (or random process) is a sequence of random

states, Ki. Markov Chain Monte Carlo sampling refers to discrete methods

of sampling a probability distribution, a sample space with a specific unit

measure, using a discrete stochastic process whose equilibrium distribution

gives the measure on the space. This means that, given any measurable
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subset, the limiting ratio of the number of samples in the subset and the

total number of samples approaches the proportional measure of the subset

as the number of samples goes to infinity. A Markov chain is a stochas-

tic process for which future samples depend only on the present case or,

perhaps, a finite number of previous states within a time interval. The fun-

damental property of MCMC sampling is that, independent of the initial

state, this ratio converges to the measure. A key problem is to determine

how many samples are required in order to estimate the desired measure

within a predetermined error bound. A good MCMC will require a smaller

number of samples, independent of the initial state. Balanced against this

is the time required to achieve statistical independence of sample choices.

Thus we have The Random Sampling Objective: Provide a MCMC

algorithm whose sampling of Pn converges to the measure rapidly and with

a high degree of accuracy. We will describe several of the most commonly

used algorithms for sampling the space of closed equilateral chains.

Algorithm 4.1 (The Basic Algorithm).

(i) Select an initial configuration, e.g. the standard planar regular polygon.

(ii) Perform a sequence of successive random modification steps giving

closed equilateral chains until the sampling criteria are met. Add the

configuration to the sampling sequence.

(iii) Replace the configuration with this one and return to the previous step

until the desired number of samples is achieved.

Variation: An initial configuration is randomly generated to determine

the sample.

The two principal methods differ in the specific choice of the modifi-

cation step:

Algorithm 4.2 (The Polygonal Fold Modification (PFM) Step).

(i) Randomly select a pair of non-adjacent vertices of the polygon and

select one of the segments they bound.

(ii) Using these vertices to define an axis, randomly rotate the selected

segment to define a new polygon.

(iii) Verify that the polygon is embedded to complete the polygonal fold con-

struction.

Algorithm 4.3 (The Crankshaft Rotation Modification (CRM) Step).

(i) Randomly select a pair of edge vectors, ei and ej.
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(ii) The random rotation of ei about axis defined by 0 and ei + ej de-

fines a new pair of edge vectors, e‘i and e‘j, that replace ei and ej,

respectively, to define a new polygon.

(iii) Verify that the polygon is embedded to complete the crankshaft rotation

step.

Fundamental Properties.

• The PFM and CRM steps preserve the lengths of the edges.

• The inverse of a PFM, resp CRM, step is a PFM, resp CRM, step.

• The PFM and CRM algorithms are aperiodic, i.e. the probability that a

configuration occurs a second time is zero.

• The PFM and CRM algorithms are positive recurrent, i.e. given any two

configuration, there is a finite number of CRM (or PFM) modifications

taking the initial configuration to the second. This implies that, given any

neighborhood of the second, there is a positive probability of starting at

the first and ending in the neighborhood in a finite number of steps.

Fig. 14. CRM moves (above) versus PFM moves (below) demonstrating their funda-
mentally different nature

Figure 14 compares the effects of a crankshaft rotation with those

of the polygonal fold. In each vertical pair of frames of this figure, the

dashed lines indicate the original position of the polygon. In addition, a

pair of dotted lines is drawn joining the endpoints of the two edges se-

lected for the rotation. An animated version of this figure can be viewed at

www.avemaria.edu/calvopubs. The modifications of a polygon produced

by each method are quite distinct geometric operations. The PFM requires,

on average, n
4 times as many calculations as CRM.36 Each of these methods

will asymptotically produce the required sample of the space of equilateral
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polygons as a consequence the following two theorems.

Theorem 4.4. (Millett,37 Kapovic & Milson,38 Toussaint39) Every con-

figuration can be reached from every other configuration by a finite sequence

of PFM steps.

Theorem 4.5. (Alvarado, Calvo & Millett36) Every configuration can be

reached from every other configuration by a finite sequence of CRM steps.

5. Applications of sampling spaces of open and closed

equilateral chains

We next focus on the application of these random sampling strategies to

the acquisition of data illuminating the questions and quantities described

earlier, in Section 3. All the methods we have discussed have been employed

during one or more of these studies. In particular, the regular polygon, the

hedgehog and random triangles, see Figure 15, have been used as starting

configurations.

Problem 5.1. How many randomization steps are required before sam-

pling?

We observe that, on average, the PFM requires more calculations per

step than the CRM. In our implementation, both PFM and CRM use cur-

rent sample as the initial polygon for each step and, as a consequence,

require some number of modifications before sampling again.

Fig. 15. Initial hedgehog (left) and triangle (right) sets of 60 unit vectors. Although ap-
pearing quite similar, the antipodal symmetry of the initial hedgehog data distinguishes
the left from the right sets of unit vectors.



March 20, 2010 10:56 WSPC - Proceedings Trim Size: 9in x 6in TriestePaperv7.0

20

5.1. Measures of randomness

One measure of the extent to which an algorithm is random is given by using

the maximum Pearson Correlation Index, PCI, to analyze the collection

of edge vectors that is generated. We can, thereby, estimate the number

of steps needed to achieve a PCI close to that of a completely random

process. The PCI (also known as the Pearson Product-Moment Correlation)

provides a measure of the degree to which two sets of data are linearly

related.40 It is defined as the covariance between the two sets of data divided

by their standard deviations and, therefore, takes on values in the closed

interval [−1, 1]. PCI values near ±1 indicate a strong linear relationship

between the data sets, while values near 0 indicate a weak relationship.

In our case, we determine the correlation between two n-sided polygons

by comparing the sequences of 3n coordinates obtained from the n edge

vectors. We calculate the PCI for these sequences n times, once for each

choice of starting vertex, taking as our final result the maximum absolute

value observed. We use the absolute value of the Pearson Correlation in

order to estimate its average value over a large populations of pairs of

configurations. As the standard of comparison, we report the average value

for a collection of random vectors equalling the number of edges in the

polygons.

Table 1. Edge vector correlations (PCI) for the Crankshaft Rotation Method using
various sampling rates.36

edges crankshaft rotations random

n = 12k n 2n 3n 4n 5n mean std dev

12 0.3457 0.3371 0.3354 0.3377 0.3330 0.3280 0.0828

24 0.2737 0.2665 0.2648 0.2673 0.2679 0.2695 0.0605

36 0.2326 0.2346 0.2339 0.2307 0.2302 0.2352 0.0484

48 0.2106 0.2086 0.2106 0.2089 0.2093 0.2127 0.0413

60 0.1946 0.1931 0.1919 0.1932 0.1928 0.1972 0.0360

72 0.1811 0.1808 0.1786 0.1797 0.1808 0.1836 0.0319

84 0.1696 0.1692 0.1692 0.1699 0.1694 0.1732 0.0289

96 0.1623 0.1614 0.1628 0.1609 0.1612 0.1650 0.0269

108 0.1546 0.1542 0.1554 0.1535 0.1550 0.1574 0.0247

120 0.1498 0.1459 0.1480 0.1490 0.1497 0.1510 0.0236

Alvarado et. al.36 have shown that a conservative sampling rate of 4n

crankshaft rotationsis adequate for polygons through 120 edges. In fact,

a sampling rate of n crankshaft rotations is sufficient to achieve PCI val-

ues within one standard deviation of the random distribution without the

closure condition.
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5.2. Estimation of knot populations

One of the more challenging problems of statistical knot theory is the es-

timation of the population of knots that can be realized as an equilateral

n-gon. As important, for physical knot theory, is the determination of the

probability distribution function, PDF , of the knot types that are realized

for a fixed number of edges and, for a fixed knot type, as a function of the

number of edges. To estimate the PDF , we first use one of the random

knot generation methods. Next we employ topological invariants which are

sufficiently effective discriminators of knots and that can be calculated suffi-

ciently easily within the target population. With Bruce Ewing, I developed

a computer code in 1985 to calculate the HOMFLYPT polynomial,20,41–44

see Figure 6. This continues to be a very effective tool. A very clear picture

has emerged from an analysis of the resulting data, see Figure 16.

Fig. 16. The probability of a knot type (distinct HOMFLYPT polynomials) as a func-
tion of the number of edges: 01, 31, and 41. Sample size: 2.51× 109

Problem 5.2. As a function of the number of edges, how many distinct

knot types are represented by equilateral polygons of length n?

The estimation of the number of distinct knot types and their rela-

tive probability is also difficult.45,46 Although we know that there are only

finitely many knot types, there is no useful estimate of the number of topo-

logical knot types as a function of the number of edges. Analysis of knot

populations, see Figure 17, shows that even with a relatively large sample
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size, here 2.51 × 109, there are many knot types (or HOMFLYPT polyno-

mials) that are observed only once. Despite knowing that this number is

bounded, an analysis of the number of knots as a function of the sample

size, shown in Figure 18, does not yet suggest asymptotic convergence to a

finite population much less provide the means to estimate the size of the

population.

Problem 5.3. What is the probability distribution of the knot types occur-

ing in equilateral n-gons?

Another objective is the estimation of the probability of a fixed knot

type as a function of the number of edges. One can prove that the prob-

ability of each fixed knot type goes to zero exponentially as the number

of edges goes to infinity. There are numerical estimates of the exponential

constant for some models and for some of the more likely knot types, e.g.

01, 31, and 41. Although one might conjecture that there is an elementary

functional model for the probability distribution, Figure 16, this is appar-

ently not the case due to differences in behaviour between the finite range

and the asymptotic range.47

Fig. 17. The observed probability distribution function for distinct HOMFLYPT poly-
nomials of polygons with 32 edges. Total knots 16, 497 Sample size 2.51 × 109

5.2.1. The probability of knotting in 3-space random walks.

We may also use the HOMFLY PT invariant, as indicated earlier, study

knots and slipknots in random walks through the knot spectrum. Just as

in the case of random polygons, we know that the probability that random

walk contains a knot (slipknot) goes to one as its length goes to infin-

ity.9,10,48,49
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Fig. 18. The number of observed knots as a function of the sample size. Total
knots 16, 457 Sample size 2.51 × 109

Problem 5.4. How does knotting in random walks compare to that in ran-

dom polygons?

Fig. 19. Knotting in random walks7,8

5.3. Knot and slipknot localization

Problem 5.5. What is the average size of the knotted (or slipknotted)

segments of a random chain or polygon?

One can also employ the HOMFLYPT polynomial to identify which

specific segments in an open or closed chain support a knot and to specify
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the knot type by systematically checking all subsegments of increasing size

until knotted segments are identified. By analyzing larger segments contain-

ing the knotted segment, we can also determine if it is a slipknot, i.e. is it

contained in a larger unknotted segment. This provides a method by which

we may determine the average lengths of knots and slipknots of specific

types that occur. This allows us to determine the extent to which knotting

is a local or a global matter. We will say that the average knotting is global

if the average length of knots is proportional to length of the chain, An, for

large n. The average knotting will be said to be weakly local if its extent is

bounded by Anσ, with σ < 1, for large n. And, finally, we will say that the

average knotting is strongly local if its extent is bounded by a constant A.

Conjecture 5.1. On average, knotting and slipknotting is strongly local in

random walks.

Recent simulation data, see Figure 20, suggests that this conjecture is

true with the average length of knots bounded by 25 and the average length

of slipknots bounded by 50. This is likely to be a challenging theoretical

problem as we know that both local and global knots occur with probability

one as the length of the walk goes to infinity.10,13,48,49

For random polygons in the simple cubic lattice, there is strong evidence

that the knot size scales as the 3
4 power15,18,50 and is, therefore, weakly local.

Problem 5.6. How do knots and slipknots in equilateral 3-space polygons

scale?

5.3.1. Implications of knot and slipknot localization on the average

shape

If knot localization in equilateral polygons is sufficiently strong, the char-

acteristics of the random unknotted polygon would determine the aver-

age asymptotic spatial properties for any fixed knot type. On the other

hand,when one considers the entire populaltion of n-gons, the contributions

from the exponential growth in numbers of increasingly complex compact

knots appears to have a measurable influence on the average properties.

For example, this accounts for the existence of equilibrium lengths of poly-

gons having fixed knot types.51–54 These powerful phenemona appear to

account for the principle influences of knotting on the polygonal models of

macromolecules.
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Fig. 20. Average knot localization in random walks

Conjecture 5.2. As the length of a walk or polygon of a fixed knot type

increases, the average spatial properties converge to those of the unknot.

5.3.2. Influence of knotting on physical properties: squared radius of

gyration

The squared radius of gyration, the average squared distance from the cen-

ter of mass, is the principal physical measure of the size of a polymer. In

the case of polygonal models, the mass is concentrated at the vertices and

the squared radius of gyration is the average of the squared distance of

the vertices from the center of mass. Polymers at thermodynamic equilib-

rium are modeled by random walks of two types. In good solvents, they are

modeled by self-avoiding random walks as segments do not approach each

other due to the repulsive forces between non-adjacent segments. Polymers

chains under the θ condition (where segments neither repel nor attract) and

for polymers in the dense melt phase (where individual chains are entan-

gled with many others) are modeled by ideal random walks. For non-self-

avoiding random walks, e.g. those in 3-space, < RG
2 >, is proportional to

N2ν , where N is the number of steps or segments, with ν ≈ 0.500. For self-

avoiding random walks, < RG
2 >, is proportional to N2ν , with ν ≈ 0.588.

A. Grosberg55 argued that, in the long chain regime, polymers with effec-

tive diameter zero of a fixed knot type should have scaling exponent ν of

0.588 and that the length required for this behavior should increase with the

complexity of the knot. Dobay et. al.51 showed that random walks, without
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excluded volume, have radius of gyration that scales at 0.500 but individual

knot types (including the unknot) have radius of gyration scaling at 0.588.

Fig. 21. Closed polygons: average squared radius of gyration for all types and specified
knot types showing the difference in scaling.51

The equilibrium length is the number of edges at which the average

property, e.g. the radius of gyration, equals the average of the entire pop-

ulation. In Figure 21, the crossing behaviour that defines the radius of

gyration equilibrium lengths for the simplest knot types are shown.

One can make the same analysis of for random walks in which the knot

types are identified using the MDS method.7 The scaling of the squared ra-

dius of gyration is determined for knotted random walks and the associated

equilibrium length is defined, see Figure 22.

5.3.3. Influence of knotting on physical properties: average crossing

number

The average crossing number, ACN, is one of the most frequently used

measures of entanglement, an intuitive but informal concept that plays a

fundamental role in understanding the physical properties of many sys-

tems. For random polygons, Diao et al51 show the scaling of the ACN is
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Fig. 22. Open polygons: average squared radius of gyration for all types and specified
knot types in random walks, showing the difference in scaling.7

3
16 n ln(n) + O(n). Here, again, the increasing presence of more and more

complex knots causes the existence of equilibrium lengths for individual

knot types, see Figure 23.

5.3.4. Influence of knotting on geometric properties: total curvature

and total torsion

The Fary-Milnor Theorem 3.1 states that the total curvature of a polygonal

knot is bounded below by 2πBr(K), where Br(K) is the bridge number

of the knot type, a measure of complexity of the knot type. When one

considers the family of equilateral polygons realizing the knot type, what is

the average total curvature and, for that matter, the average total torsion?

These give geometric measures of the complexity of the knotted polymer

models.56 To better understand the geometry and topology of ring polymer

chains under θ conditions or in the melt phase, we consider the statistics

of the total curvature and total torsion as the number of edges increases.

A little reflection leads to the realization that the dominant term is π
2 n,

where n is the number of edges. Subtracting this dominant term allows one

to analyze the second order terms, shown in Figure 24. There is visibly

sufficient sensitivity to the presence of knotting to show again the existence
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Fig. 23. The ACN and associated equilibrium lengths51

of equilibrium lengths for the total curvature.

We noted that the average second order effect for total curvature and

total torsion over all configurations appeared to be constant, only differing

in sign. Indeed, this is the case as was proved by Grosberg57 who showed

that this value was exactly 3π
8 . Specifically, he showed that the average total

curvature of phantom polygons is asymptotically equal to nπ
2 + 3π

8 + O( 1
n
).

If we let et {ei}i=1,...,n denote the set of edge vectors of a random polygon,

then
∑

ei = 0. Taking the average of the inner product give 〈ei · ej〉 = −1
n−1

which leads to 〈curv〉 = nπ
2 + 3π

8 .

Figure 25 shows a comparision of these equilibrium lengths to experi-

mentally observed gel separation of knotted DNA, a traditional means to

compare the degree to which these quantities might correlate to physically

observed behavior.

Problem 5.7. How does the shape of macromolecules depend upon knot-

ting?

6. Concluding remarks

In this report, I have described just a few of the more interesting features of

the mathematical theory of knotting and linking that are deeply connected
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Fig. 24. The normalized total torsion and total curvature of random poygons.56

Fig. 25. Total curvature equilibrium lengths versus gel separation.56

with natural phenomena. Some of these are truly geometric in nature, oth-

ers are topological, and many of the concepts and problems arise due to

the interest in biological and physical polymers, especially the structure

of DNA and proteins. As rigorous mathematical analysis is often beyond

present reach, much of the effort to forge and understand these relationships

and their implications has been numerical in nature whereby one wishes to

randomly sample the population of configurations associated to an appro-

priate mathematical model. As a consequence, we have employed two key

procedures, the crankshaft rotations and the polygonal folds, each provid-

ing a method taking any equilateral polygon in 3-space to any other in a
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finite sequence of steps. These procedures can then be used to randomly

sample the space of polygons and generate sets of data which are then used

to illuminate a number of these questions. Finally, we have looked at sev-

eral applications to questions concerning the influence of knotting on the

spatial structure of macromolecules. In the course of discussing these re-

sults, we have cited outstanding problems and conjectures. Some are quite

accesible while others, I believe, are very challenging and may well require

the development of new mathematical methods.

I hope these lecture notes have provided an introduction to a few of the

more interesting facets of physical knot theory and their connections with

a topological and geometric knot theory, as well as some newer research ar-

eas which one might better describe as statistical and computational knot

theory. The interactions with the students and my fellow particiants in the

ICTP Advanced School and Conference on Knot Theory and its Applica-

tions to Physics and Biology was a truly memorable experience. I wish to

express my appreciation to Le Dung Trang and his staff and especially to

the organizers, Slavik Jablan, Louis Kauffman, Sofia Lambropoulou and

Jozef Przytycki for their outstanding leadership in organizing this oppor-

tunity to share our passion for research with the most diverse group of

students and researchers that I have even encountered.
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3. G. Toussaint, Beiträge Algebra Geom. 42, 301 (2001).
4. E. D. Demaine, S. Langerman, J. O’Rourke and J. Snoeyink, Comput.

Geom. 26, 37 (2003), Thirteenth Canadian Conference on Computational
Geometry—CCCG’01 (Waterloo, ON).

5. G. Aloupis, G. Ewald and G. Toussaint, Beiträge Algebra Geom. 45, 429
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