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Abstract

Equilateral spatial polygons provide useful models of spatial knots and the spaces of
such knots. Associated to these configurations are energies, ropelength or thickness,
crossing number, writhe, and other measures reflecting the spatial structure such as
the volume and surface area on the convex hull. The optimization of the energy and
the ropelength and physical and spatial characteristics of optimized configurations
are the subject of this paper. Data from computer explorations of these facets of
physical knot theory is presented and discussed.
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1 Introduction

The goal of this research is the exploration of spatial parameters, including
“energy” and “ropelength”, by which polygonal and equilateral knots are eval-
uated in the search for optimal conformations or which provide information
about the spatial aspects of their situations. The optimal conformations are
geometrically equivalent polygons in which the relevant quantity has achieved
an extreme or optimum value. Such conformations are commonly proposed as
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models for the most likely or average positions observed for macromolecules
arising in physics and molecular biology [1-4]. Their properties are thought
to be related to critical physical characteristics arising from simulations and
from experiments, e.g. time-averaged shapes of DNA molecules in solution,
the speed of migration in gel electrophoresis of DNA knots, and sedimenta-
tion coefficients of DNA. We will also consider properties of the knot spaces
and their relationship with several of the quantitative descriptors associated
with the optimal configurations. We will look at how they are related to the
specific knot type as well as the specific optimizing quantity.

By a polygonal knot we will mean the spatial polygon determined by a spec-
ified finite number of points in three-space that are connected to each other
in a given cyclical fashion. Such knots, with the additional specification of a
distinguished vertex and an orientation, are naturally identified with points in
a subset of the Euclidean space of dimension three times the number of points.
It is a proper subset since singularities such as self-intersections of edges are
not allowed. If the lengths of the segments connecting the successive vertices
of the polygon have unit length, the result is an equilateral knot. Such knots
are constrained to a subspace of dimension twice the number of vertices. Two
conformations are equivalent if one can move from one to the other by a path
within the respective “knot space.” The structure of these knot spaces allows
one to ask for the proportion of the space consisting of knots of a specific
topological type. That is, “For a given specific number of randomly selected
vertices, what is the probability the knot they determine is of a specific topo-
logical type?” For a fixed number of vertices, this imposes a natural order on
the topological knot types determined by decreasing probability of occurrence.

Following a technical introduction to the fundamental concepts with which we
will be concerned, we will discuss the topology of the associated knot spaces.
We will then present the results of computer experiments seeking the optimiza-
tion of both energy and ropelength of equilateral polygonal knots as well as the
calculation of such secondary quantities for these “optimal” configurations as
the average crossing number and average writhe. These secondary quantities
are those thought to connect the natural instances of the knot conformations
to observed behavior.

We will also explore the degree to which optimal conformations are spatially
similar. In simulations of optimization procedures, one can arrive at appar-
ent local optima whose graphical representations look very different. To what
extent are these visual differences reflective of truly distinct conformations
and to what extent are the seeming differences merely manifestations of dif-
ferent perspectives on the same or similar conformations? The choice of knot
thickness shown in the figures was determined by the desire to provide a clear
illustration of the phenomena in question. These are not, in general, the thick-
ness of the configuration. We will consider several fundamental ways in which



to associate characteristic quantities to the conformation that will facilitate
comparison and which promise to quantify the degree to which these conforma-
tions are different. One example is the dimensions of the smallest rectangular
box containing the conformation. Others include the surface area and volume
of the convex hull of the knot.

All of these quantities lie within the domain of physical knot theory. From
this perspective, the goal is the determination of “natural” quantitative spa-
tial characteristics that provide a quantitative linear order of knotting that
strongly correlates with the observed physical behaviors, in terms of both or-
der and relative magnitude of the observed quantities. Using the physical knot
characteristics considered in this paper we compare the degree to which they
are consistent with experimental observations from the study of DNA.

2 Knot Spaces

In this section we will briefly review some of the basic definitions and concepts
so as to give a concrete foundation to our later discussion. Fuller treatments
of this topic can be found in papers of Calvo, Millett, and Randell [5-11].
By a geometric or polygonal knot we mean an embedding in Euclidean three-
dimensional space of an oriented regular polygon which is linear on its edges.
Singular knots are those maps which do not give embeddings of the polygon.
The polygon has a specified number of vertices, one of which has been selected
to serve as a starting point or first vertex of the polygon. The identification
of a second vertex is equivalent to the determination of an orientation of
the polygon. Each such embedding is determined uniquely by the image of
the associated vertices, starting at the first and proceeding in the direction
determined by the orientation. This choice of initial vertex and orientation,
therefore, allows one to uniquely associate to each embedding a point in a
Euclidean space of dimension equal to three times the number of vertices. By
fixing the number of vertices, n, we determine an open subset of this Euclidean
space, Geo(n), corresponding to these embeddings. The complement is a closed
set, of codimension one corresponding to maps with self-intersections or other
failures of the embedding property. If we require the embeddings to be length-
preserving, we define the subset of equilateral knots, Equ(n). This latter knot
space is a manifold of dimension equal to twice the number of vertices. The
path components of Geo(n) or Equ(n), i.e. the sets of those knots that can be
connected to each other by paths or deformations within the respective knot
space, define the geometric or equilateral knot types. Thus, if two geometric
knots lie in the same component, we say that they are geometrically equivalent.
Similarly, two equilateral knots are equilaterally equivalent if they lie within
the same component of Fqu(n). Note that, in the case of equilateral knots,
we do not allow the length of the edges to change. While allowing the length



of edges to change, while still preserving the equality of the lengths, gives an
equivalent theory on knotting, we have chosen to require the edge lengths to
be fixed as seems more appropriate in terms of applications to the natural
sciences. Recall that a classical theorem of Whitney [12] guarantees that there
are only finitely many geometric or equilateral knot types for each n.

In general, these knot types are finer than the topological knot type, even when
one has removed the specification of orientation and base vertex. Calvo [5,6]
has shown that the first example of this phenomena occurs with the heptag-
onal figure-8 knots. Topologically, the figure-8 knot is equivalent to its mirror
reflection but, for heptagons, there are two distinct classes of figure-8 knots
interchanged by mirror reflection. Although, in this project, we are principally
concerned with the topological type of the knot, we will restrict ourselves to
deformations within the various geometric knot types when considering ques-
tions of optimization of spatial knot parameters. Therefore, it is important to
realize that there may be more than one equilateral knot type corresponding
to a given topological knot type. Consequently, it is possible that there are
fundamentally different optimal geometric realizations of a topological knot

type.

This is a potentially serious problem deriving from the difference between
topological knotting and geometric knotting. In the cases discovered by Calvo,
[5,6], the action of the dihedral group implies that optimal configurations are
equivalent. But, in general, we do not have such knowledge and it may well
be the case that different geometric knot components will have fundamentally
distinct optimal configurations for a specific optimizing quantity. As changes
in orientation or base point can be accomplished by isometries of the knot
space, i.e. homeomorphisms or equivalences preserving the distance structure,
this restriction to based oriented configurations does not result in any loss of
generality. In addition, there are locally optimal configurations having quite
different parameters and spatial characteristics. As a consequence, proposed
optimal configurations are, in fact, conjectures due to the absence of sharp
estimates of the optimal parameter values.

For a fixed number of vertices, all planar embeddings of polygons determine
equivalent knots, equivalent to the standard regular polygon. This class is
called the unknot or the trivial knot, independent of the number of vertices.
The first case of a non-trivial knot occurs with six edges. In Geo(6) and
Equ(6), Calvo has shown that there are precisely five components or knot
types. Topologically, these correspond to one component of unknots and two
each of left-handed and right-handed trefoils, one of which is shown in Figure
1. In Geo(7) and Equ(7) a new topological knot type occurs, the Listing or
figure-8 knot.

Calvo shows that there are exactly five components in Geo(7), one each of



Fig. 1. A hexagonal trefoil knot and a heptagonal figure-8 knot

unknots, right-handed and left-handed trefoils, and two components of figure-
8 knots, an example of which is shown in Figure 1. These components are
preserved under mirror reflection, i.e. the geometric knots are achiral, but are
not preserved under change of orientation, i.e. the heptagonal figure-8 knot is
not reversible. Since the topological figure-8 knot is reversible, this identifies
one difference between geometric knot theory and classical topological, piece-
wise linear, or smooth knot theory. For Geo(8), Calvo and Millett have shown
[13] that the only topological knot types that occur are, using the classical
notation, 0.1, 3.1, 4.1, 5.1, 5.2, 6.1, 6.2, 6.3, 8.19, 8.20, 3.1#3.1, and 3.1#-3.1.
The latter knots are the connect sums of the trefoil with itself (the “granny”
knot) and with its mirror reflection (the “square” knot).

Using Metropolis Monte Carlo methods, Millett [8,13,14], has provided esti-
mates of the topological types of geometric and equilateral knots for larger
numbers of edges by calculation of the HOMFLY polynomials that are ob-
served. These computational experiments have provided examples of nine edge
knots for which the polygonal number of a topological knot type, i.e. the
minimal number of edges required to construct a geometric knot of a given
topological knot type, is thereby determined.

In this paper we will focus on the equilateral knot spaces for 8, 16, and 32
edges. There are 12 topological types for the polygonal octagonal knots, up to
mirror image, giving 20 distinct HOMFLY polynomials. While only 12 of the
20 polynomials have been observed in the Monte Carlo study of equilateral
octagonal knots, all but one of the topological knot types has been constructed
as an equilateral knot. The exception, at the time of this paper, is 8.19. We
have not been able to construct an octagonal equilateral representative of this
topological knot type nor have we been able to show that such an example
is impossible. Thus there are eight polynomials of equilateral octagonal knots
that have not yet been observed, of which seven are known to represent ac-
tual configurations. For 16 edge equilateral knots, some 106 distinct HOMFLY



polynomials have been observed, and for 32 edge edge equilateral knots, 484
distinct polynomials have been observed. In contrast, for geometric knots,
201,736, and 327,433 distinct HOMFLY polynomials have been observed, re-
spectively. While the estimated rate of growth of equilateral knots is less than
that of geometric knots, both populations have an exponential growth. In a
carefully studied 50 edge equilateral knot experiment, 2,952 distinct HOMFLY
polynomials were observed of the predicted total of 3,472 distinct HOMFLY
polynomials [13].

The population base for the computational study of equilateral knots, whose
results are reported in this paper, is those 102 topological knot types, prime
and composite, through 9 crossings. While, as noted above, only 11 of these
have been constructed with 8 edges, all of these knots can be constructed with
16 edges. The 32 edge knots in this study are constructed by subdividing the
16 edge knots. In the 16 edge Monte Carlo exploration, we observed topological
knot types with more than 9 crossings, but did not observe all of the 9 crossing
knots that we were able to construct explicitly. Deformations are allowed to
occur in the respective knot spaces even though the initial embeddings arose
with fewer edges.

The topology and the geometry of knot space plays a critical role in un-
derstanding the conceptual basis of this research. In the case of Geo(n) and
Equ(n), we will use the structure induced from the Euclidean spaces in which
they naturally lie. Thus, Geo(n) is a 3n-dimensional open submanifold of 3n-
dimensional Euclidean space and Fqu(n) is the codimension n quadric sub-
variety of Geo(n) defined by the requirement that all edges have unit length.
Since the point (1,1,....1) is a regular value of the function, f : Geo(n) — R"
that calculates the length of the individual edges (Corollary 1, [11]), Equ(n)
is a smooth 2n-dimensional submanifold of Geo(n).

It is convenient to consider the subspaces defined by requiring that the first
vertex be at {0,0,0}, i.e. we factor out the Euclidean translations. These
spaces are denoted Geog(n) and Equg(n), respectively. The geometric knot
types, i.e. the connected components, in Geo(n) and Geoy(n) are invariant
under homotheties of 3-space. This shows that the structure of these spaces
can be studied by considering their intersection with the unit sphere or unit
ball in 3n-space. Equ(n) and Equg(n) are subsets of the smooth sphere of
knots whose total edge length is equal to one (of course some edges may
be degenerate) and, therefore, have compact closure in this sphere. These
compactifications allow us to estimate the fraction of the space consisting of
knots of a specified topological knot type or, equivalently, the probability that
a randomly selected geometric knot will be of specific topological knot type.

The fact that Fqu(n) and Equg(n) are submanifolds of Euclidean space will
play a significant role in the application of numerical methods to their com-



puter assisted exploration. A knot K is determined by its vertex set, K =
{vo, ... ,Un_1}. We denote the edges of K by e(K) = {eg,...,en_1} with ¢;
denoting the edge connecting v; to v;;; and e, ; connecting v, 1 to vy. Let
§ denote the standard metric on R3. Extend this metric to R3® by taking the
maximum of its values on each of the n three-dimensional subspaces, that is

d({vo,--- s Un_1}, {wo, .- ,wn_1}) = ogr?g%z}ild(vi’ w;).
The induced metric on Equ(n) and Equg(n) is denoted by § (K, K') where K =
{vo, ... ,vp—1} and K' = {wy,... ,w,—1}. This metric will play an important
role in the study of the structure of knot spaces.

Definition 1 For a knot, K, in Geo(n), define u(K) to be the minimum of
the minimum distances between non-adjacent edges of K.

We note that p(K) is no larger than the length of the shortest edge of K.

Definition 2 Let Tube(K,r) to be the union of open balls centered at the
vertices of K and of open cylindrical tubes with the edges of K as axes, both
of radius r.

Proposition 3 For any r < @, Tube(K,r) is an embedded torus whose
center curve is K.

PROOF. The balls of radius r centered at the vertices are pairwise disjoint
as each vertex belongs to a non-adjacent edge. The union of the cylinders
associated to an edge and the ball associated to the vertices of the edge is a
convex region that is, therefore, topologically a ball. Two such balls intersect
only if they are associated to adjacent edges. In this case, their intersection
is a convex ball containing the ball of radius @ centered at their common
vertex. The proposition is proved by taking the union of these balls following
an increasing arc of edges in K. By induction, until the last edge is reached, at
each stage one has the union of a ball, with a convex ball associated with the
next edge. The intersection is a convex ball. The result is, therefore, a ball.
In the case of adding the final edge, the intersection consists of two disjoint
convex balls. The resulting union is the required torus. 0O

Corollary 4 FEwvery knot, K', with §( K, K') < @ lies within Tube(K, @)
and is geometrically equivalent to K by a path of geometric knots lying within
the tube.

PROOF. This isotopy is defined by moving the vertices of K’ to those of
K radially within the ball neighborhoods of the vertices of K and extending
linearly to the associated edges. O



One way in which to interpret this result is to say that all knots, K’, within
the ball centered at K of edge length @ are non-singular and geometrically
equivalent to K. That is to say that the map from the regular polygon to the
vertices of K’ is an embedding and that there is a path connecting K’ to K
consisting of such knots. Note that the “ball” in this metric is actually the
product of n 3-dimensional balls. As such, it might better be imagined as a
“cube” centered at K of edge length twice the radius of the ball. The open
ball centered at K with radius @ is the largest ball centered at K that
does not intersect the singular set, i.e. lying entirely within the component of
knots containing K, since any larger radius would permit the intersection of
non-adjacent edges. If the edge lengths are relatively small compared to the
separation of distant edges, the first singularities that arise with expanding
radius correspond to “type I Reidemeister” singularities that do not create

different geometric knot types.

The radius of the ball neighborhood of K disjoint from other geometric knots
types is related to the radius of the tubular neighborhood of K. It is a measure
of the “thickness” of K, a spatial or physical aspect of the knot reflecting the
degree to which perturbations of K do not change the knot type. Another
physical way to understand the role of K is as an “average” of the knots in
the ball of which it is the center. The study of such physical characteristics of
polygonal knots is a principal objective of this paper and it is the subject of
the next section.

3 Physical Knot Theory

We use the term “physical knot theory” to refer to those aspects of knots
that arise in the study of physical models and which are captured by the
geometry of the polygonal knot configuration. Our first example is that of a
knot energy. This notion is inspired by the desire to create a dynamical method
to realize a family of allowable transformations taking any given manifestation
of a topological unknot to the standard unknot. Minimal energy conformations
have been proposed as “canonical models” of the knot type and these energies
are cited as examples of knot invariants. An initial proposal for an energy
consisted of a uniform charge along the knot which was subjected to an inverse-
square repulsion force. There are many examples of energies that have been
proposed, each with different properties [15-32]. While much has been learned,
the original goal of this project has yet to be accomplished. In this paper we
shall employ a version of the O’Hara [24] and Freedman-He-Wang Md&bius
energy [19], that has been adapted to polygonal knots from their formulation
for smooth knots. This adaption is, in fact, an energy proposed and studied
by Jon Simon [28]. Simon defines an energy to be the sum, over non-adjacent
edges of the polygon, of the product of the lengths of the edges divided by



the square of the minimum distance between the edges. By subtracting an
intrinsic term, the energy of the regular n-gon, one defines a regularized energy,
Eyp(K), that approximates half the value of the integral giving one form of
the Mobius energy. In this normalization, the regular n-gon has energy 0.
By giving an explicit estimation of the error, Rawdon and Simon [33] have
demonstrated the convergence of Enp(K) to half of the Mobius energy as
the number of edges increases and the polygonal knot “approaches” a smooth
conformation.

A second example of a physical knot property is the thickness and ropelength
of the polygonal knot configuration. The injectivity radius, R(K), of a smooth
knot conformation, K, is the supremum of the radii such that normal discs of
that radius at each point of the knot are disjoint. By dividing the injectivity
radius by the arc length of the knot, we obtain a scale-invariant quantity
called the thickness, 7(K), of the knot that measures how thick this knot
could be when tied with a unit length cord. The reciprocal of 7(K) is called
the ropelength, p(K), of the knot [32]. This measures the shortest length of
unit radius cord needed to tie the knot. The injectivity radius is shown to
be the minimum of MinRad(K) and $DSCD(K) where MinRad(K) is the
minimum of the radius of curvature of K and DSCD(K) (doubly-critical
self-distance) is the minimum distance between pairs of distinct points whose
connecting segment is perpendicular to the tangents to the knot at both points.

Rawdon [29-31] has provided an analogous definition of injectivity radius for
polygonal knots and, as above, provides definitions of thickness and rope-
length. The polygonal thickness and ropelength functions have the property
of convergence to the corresponding quantities for smooth knots, for families
of inscribed polygons converging to the smooth knot. Rawdon’s polygonal in-
jectivity radius is the minimum of a polygonal version of the doubly-critical
self-distance function and a minimal radial distance arising from the adjacent
edges due to curvature.

A third example is the average crossing number of the configuration. Here, one
takes the average of the number of crossings, over all generic planar projections
of the configuration. By assigning a sign, +1 or -1, to each of these finitely
many crossings and taking the algebraic sum averaged over all generic pro-
jections, one defines the average writhe of the configuration. Average writhe
is often referred to as just writhe. However, we use the term average writhe
to highlight its relationship with the average crossing number and to stress
that the quantity is measured on a conformation, not a knot type. There is
a wide variety of quantities that can be defined by this averaging procedure,
several of which have provided important information about knots in the past.
Another example is given by the average number of maxima of projections to
lines in three space over all possible line directions. This average is equal to
the total curvature of the configuration, i.e. the sum of the exterior angles at



each of the vertices [34,35].

The large scale “shape of a configuration” is another facet of physical knot
theory. In this paper we will focus on the comparison of the shape of two knots
having the same number of vertices in an optimal configuration with respect
to ropelength or energy. Two knots would have the same “shape” if they are
sufficiently close in knot space or, more generally, if there is an isometry of
knot space taking one sufficiently near the other. Thus our measures of shape
should be continuous functions of the knot, as determined by the vertices, and
should be invariant under isometries of knot space. Among such physical shape
properties of a knot are the volume, surface area, and dimensions of a smallest
standard shape containing the knot. One step in this direction is the shape
of a standard smallest rectangular box containing the knot. The dimensions
of the box give a rough quantitative description of the spatial shape of the
knot. Is the knot “squat and broad,” “bulbous,” or “long and skinny?” These
dimensions can provide a crude indication of such spatial characterizations.
We will call the largest dimension, the box length of the knot. The standard
box for a given polygonal knot is defined as follows: the length of the polygonal
knot, K, is defined to be the maximum distance between the vertices, BL(K).
Consider the projection of K to a plane perpendicular to the line passing
through these extremal vertices (or the set of such projections, if there are
more than one pair) and take the pair of image vertices of maximal distance.
Define this distance to be the width of K, BW(K). Finally, in this plane,
project the image of K to a line perpendicular to the line passing through
these extremal vertices (or the set of such projections, if there are more than
one pair) and take the pair of image vertices of maximal distance. Define this
distance to be the height of the knot, BH(K). The vertices defining the box
length, box width, and box height of K determine a box containing K as well
as the shape of this box.

Proposition 5 Let a non-trivial knot, K, have mazimal thickness (i.e. min-
imal ropelength) in its equilateral knot type. The box length of the knot is
> u(K). The box height of knot K is > p(K).

PROOF. The quadrisecant theorem, [36-39], states “Every non-trivial piece-
wise linear or smooth knot in general position has four collinear points.” The
separation between any pair of the four points must be at least equal to u(K)
if they involve non adjacent edges. At least two of these of these points are not
adjacent on the knot. Their distance is at least p(K) giving this as a strict
lower bound for the box length. The projection of K to the plane perpen-
dicular to the height direction is close to a regular projection. p(K) is the
minimum distance between non adjacent edges. Crossings, therefore, have a
difference in height at least p(K). This height difference is no larger than the
box height of the knot. O

10



In fact, one expects that three p(K) is the lower bound of the box length. This
is the case for minimal edge equilateral knots of maximal thickness because
the triangle determined by any pair of adjacent edges must be pierced by a
distant edge, i.e. one whose distance from each of the adjacent edges is at least
u(K). For equilateral knots with a large number of edges, compared to the
edge number, the collinear points are non adjacent. In this case u(K) is not
controlled by the edge length and the quantity of interest is the thickness of
the knot.

Other interesting physical properties of the knot are the volume and surface
area of the associated box. They reflect the “density of the knot” and the
“accessibility of the knot.” The smaller the volume of the box, the more tightly
or more densely packed the knot. Similarly, the larger the surface area of the
box, the more exposed the knot will be to contact from the exterior. We will
also consider a related approach to assessing the density and accessibility of a
knot by means of the surface area and volume of the convex hull of the knot.

For knots having a spherical or cubical shape, the volume is proportional to
the 3/2’s power of the surface area. If, on the other hand, the knot has a broad
squat cylindrical shape, the volume will be approximately a linear function of
the surface area. Thus one useful measure of the shape of a knot, its density
and accessibility, is the functional relationship between volume and surface
area. The surface area/volume relationship should also be dependent on the
number of vertices in the optimal configuration and the polygon number of
the knot. For example, when the number of vertices is close to the polygon
number, the knot is “difficult to construct” and is quite likely to be flatter
and broader in nature compared to optimal configurations of the same knot
type with more vertices. There are an insufficient number of edges to achieve a
truly thick conformation. While this appears to often be the case, by analysis
of individual knot types, one will see that the data shows a far more complex
relationship between the number of edges and the spatial shape of the con-
formation associated to a given topological knot type as the number of edges
increases.

We will also explore the potential for an elementary relationship between these
physical aspects of an optimal exemplar of an equilateral knot type and the size
of the component of equilateral knots having the same topological knot type.
For example, one might expect that knots whose optimal conformations are
quite thick or whose convex hulls have larger volume would be more likely to
occur than those that are thinner or whose convex hulls have small volume or
which are relatively squat. Thus, we explore the degree of correlation between
these physical quantities and the relative probability of the geometric knot

type.
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4 Estimation of Physical Knot Properties

In this study of physical knot properties we employ Metropolis Monte Carlo
[40] population estimations, weighted random walk optimizations, and other
computer-based calculations involving knots in Equ(n). The very nature of
such numerical calculations, however, takes one out of Equ(n) into Geo(n) by
virtue of the fact that calculations are not exact. The purpose of this section
is to discuss our methods and to explain why the calculations, although not
exact, do provide estimates of quantities actually associated to Equ(n).

One underlying principle is the existence of a tubular neighborhood of EFqu(n)
in Geo(n). This structure provides a retraction of a neighborhood of Equ(n)
that respects the geometric knot type. In other words, if there is an approx-
imately equilateral knot, then there is a geometrically equivalent equilateral
knot nearby. The definition of “approximately equilateral knot” includes a
specific estimate of how close to length one the edges must be in order to
apply the theorem. The result is a condition that is easily verified during the
calculation in computer simulations and implies the existence of an equilateral
knot with the desired properties. A second consequence is a condition on how
close a deformation in Geo(n) of an equilateral knot must remain to Equ(n)
in order to insure that a purely equilateral deformation exists.

These results derive from a study of the regular values of the function, L :
Geo(n) — R™, that calculates the lengths of the edges. Thus, while the opti-
mization algorithms in theory take elements of Equ(n) to elements of Equ(n)
through various geometric movements, the numerical nature of the computer
implementation of the algorithm actually takes one out of F'qu(n) into Geo(n).
The accuracy of the algorithms insure that the result remains near Equ(n) in
a measurable way that insures that nearby elements or paths in Equ(n) exist.
These quantities are continuous functions on Geo(n) so, as a consequence, the
calculated values are close to those of the element of Equ(n) whose existence
has been demonstrated.

Another way in which the calculations are often estimates rather than precise
calculations derives for the fact that the HOMFLY polynomial, [41,42] is used
as a surrogate for the topological knot type. This is not a faithful represen-
tation [43]. Furthermore, we do not identify chiral representatives as is often
customary in knot theory nor is the HOMFLY polynomial successful in always
distinguishing chiral knots. As a consequence our estimates of knot types are
estimates of the chiral knot types, and limited by the lack of faithfulness of
the HOMFLY polynomial as well as the fact that they are statistical estimates
derived from our simulations.

Proposition 6 If a geometric knot is sufficiently close to being equilateral,

12



there is a nearby equilateral knot of the same geometric knot type.

PROOF. Suppose that K is a geometric knot whose edge lengths are within
e of being unit length, i.e. if L; denotes the length of the ith edge, then
|L; — 1| < e. We first describe the construction of an equilateral knot, K’, near
K. Suppose that the vertices of K and K " are denoted by v; and v} respectively.
Let vy = vy and define v} by v+ HZ o7 so that the first edge has unit length.
The key issue is the distance between v; and v] since this will determine the
degree of edge length distortion of the geometric knot.

=
[lor = ol
=|l[or = voll = 1

=|Lo -1
<e.

lor — w1l =

For 1 <i<n —1, we define v, = v;_; + ||ul7 and compute that

i 1”

) I
(=)
Z < o=l

=[llvi = vi4 || = 1]

This follows, by induction, from the fact that

L—e— (i —De<|lvi = vizal| = [[vict — vl
<lvi = vi_4||
<loi = via || + [lvics — v ||
<l+e+(i—1)e

In order to insure that the last two edges have unit length, a slightly more
careful choice of v],_, is required. Note that the v,, o, v, 1, and vy determine an
almost isosceles triangle with almost unit length legs having the vy and v, o
as end points of its base. Except in degenerate situations, the new vertex,
vl _;, can be selected to lie in the plane determined by this triangle such that
the isosceles triangle it determines, with the edge connecting vy and v/,_, as
its base, will have exactly unit length legs. Degenerate cases occur when the

three vertices are collinear or when the distance between the vy and v]_, is
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Fig. 2. Selecting v!,_, and v/,_,

either 0 or is 2 or larger, otherwise the choice is a continuous function of the
coordinates of v;,_, and converges to the isosceles vertex associated to vy and
Un—2 as v},_, tends toward v,_o. Then v],_, is close to v,_1.

These facts can be verified analytically by considering, without loss of gener-
ality, the case in which the first vertex is at the origin, the (n — 2)nd vertex
is a point {0,y,0} and, n — 1st vertex is in the first quadrant of the zy-plane,

close to the point {\/ — %2, 25 0}. The new (n — 2)st vertex is at the point

{r,y + s,t} with the magnitude of the vector {r,s,t} less than (n — 1)e.

The selection of the (n—2)st vertex is a smooth function of its variables except
possibly at y = 0 or y > 2. The case y = 0 represents a singular position that
can be avoided by selecting v;,_, to be on the unit sphere centered at v, ,
close, but not equal, to the singular position determined by the formula. The
situation for y > 2, represents another singular position and care must be
exercised to insure that an impossible configuration is not imposed by the
choice v}, _,. In this case, the distance between vy and v,_ is less than 2 + 2e.
The vertex v!,_, can be chosen to be on the interval connections these vertices
at distance 2 from vy and v,,_; can be chosen to the be the midpoint of the
interval connecting vy and v,,_,. In this case, v;,_, is within 2e of v,_» and
v}, _q is within 2y/e. O

Corollary 7 Every n edge almost equilateral knot, K', with

|Li = 1] < min{p(K)/n, u(K)*/4}
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where L; denotes the length of the ith edge, is equivalent to an equilateral knot
K.

For example, the seven edge “almost equilateral” figure-eight knot shown in
Figure 1 has p ~ 0.0.027727 while the maximal difference of the edge length
from 1 is less than 0.000001 proving the existence of an equilateral figure-eight
knot.

Theorem 8 For each equilateral knot, K, there is an ¢(K) > 0, such that
any equilateral knot, K', within e(K) of K is equivalent to K by a sequence of
pivots, translations, and rotations.

PROOF. Starting at the distinguished vertices, move the first vertex of the
first knot to the first vertex of the second via a translation. By a rotation, move
the second vertex of the first knot to the second vertex of the second knot.
We proceed by induction on the vertices which differ. Suppose the positions
of the vertices, v; and v;- respectively, of the two knots are identical through
the first j vertices.

Suppose j < n—2. In the plane determined by the vertices v;;1, v;42, and vj;3
of the first knot, there is a new vertex, v;-’ 2, such that, in the vertex set of the
first knot, the result of replacing the v;, o with v;-’ o and replacing v;;; with
v;- +1, 1s a new equilateral knot near the second knot and with vertex agreement
through the first (j + 1) vertices. K and this new knot are connected by a
sequence of three small rotations, see Figure 5, as follows. By a small rotation
about the axis determined by the vertices v, and v;;3 of the first knot, move
the v;,o such that its distance from v; and the distance of v, from v; are
equal. Next, by small rotation about the axis determined by the v; and v;;3,
move vj;1 and v;1o until the later coincides with v, ,. The third, and final
rotation in this sequence, is about the axis determined by v}-’ 1o and v;. This
small rotation takes v;,; of the first knot to v .

If j = n— 2, take the rotation using the v, 5 and the vy as the axis to achieve
the final coincidence of the last vertices. O

Corollary 9 If two equilateral knots are of the same geometric knot type by
virtue of a path of geometric knots that are sufficiently close to being equilateral
at each stage, there is an equilateral equivalence of the two knots.

PROOF. Using the compactness of the path, one approximates by small
intervals, the path by almost equilateral knots with a sequence of equilateral
knots that are sufficiently close so as to be connected by a sequence of pivots,
translations, and rotations as provided by Theorem 8. 0O
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Fig. 3. The three step move

Corollary 10 Any path in Equy(n) can be approximated arbitrarily closely
by a path consisting of pivots, rotations, and translations.

Theorem 8 has important implications with respect to computer optimiza-
tion of energy and ropelength for knots in Equ(n). The optimization strategy
employed, with various modifications, has the following structure. First, with
respect to uniform distributions, two knot vertices and a rotation angle are
selected within the relevant tolerance range necessary to preserve the knot
type. A test conformation is constructed by means of a pivot of the chosen
angle about the axis specified by the two vertices applied to the vertices lying
along one of the arcs between the selected vertices. The quantity to be opti-
mized is calculated for the test conformation and the value compared to the
current value. If better, the test case replaces the current case and the pro-
cedure continues. In some of our algorithms, the successful pivot data is used
again, perhaps with modification, until no further improvement is observed.
If there is no improvement, a new choice of angle and vertices is tested. Since
spatial rotations and translations are isometries of 3-space they do not lead
to a change in the physical knot nor an improvement in the quantity under
consideration. Theorem 8, therefore, implies that the pivots of breadth one
and two are infinitesimal generators of the tangent space of Equ(n) for the
generic knot, i.e. one whose vertex set is in “general position.” This implies
that in testing for locally optimal configurations, one need only verify that
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none of these 2n pivots leads to an improvement of the value.

Corollary 11 A locally optimal value of a spatial knot quantity occurs for a
generic knot precisely when none of the 2n pivots leads to an improved value.

The modifications to the above strategy include allowing a random selection
of cases that do not improve the optimizing quantity (the simulated annealing
strategy) and a strategy in which the movement leading to the better value
is amplified and the resulting value tested. The former strategy is designed to
help avoid local optima in a search for global optimal values while the latter
strategy is analogous to the gradient path method in which one follows the
gradient path until a locally optimal value is reached. One recomputes the
gradient at this new point and follows the resulting curve in search of next
local optimum. Because of the structure of polygonal knot space and the lack
of differentiability of the functions being optimized over polygonal knots, we
do not pursue the gradient method in this project but employ these various
modifications of a random walk instead.

5 Presentation and Analysis of Data

For the energy and ropelength calculations, we focus our attention on equilat-
eral knots composed of 8, 16, and 32 edges. Only 11 knots have been realized
as equilateral knots with 8 edges, namely 0.1, 3.1, 4.1, 5.1, 5.2, 6.1, 6.2, 6.3,
8.20, 3.1#3.1, and 3.1#-3.1. These knots compose the population of study for
8 edge knots. Many more knots are realizable with 16 and 32 edges. The knot
population for 16 and 32 edge knots includes all knots through 9 crossings. This
includes the prime knots and the composite knots 3.1#3.1, 3.1#-3.1, 3.1#4.1,
3.1#5.1, 3.1#-5.1, 3.145.2, 3.1#-5.2, 3.1#-6.1, 3.1#-6.1, 3.1#6.2, 3.1#-6.2,
3.1#6.3, 4.1#4.1, 4.1#5.1, 4.1#5.2, 3.1#3.1#3.1, 3.1#3.1#-3.1, a total of
102 knots. The initial conformations for the 8 and 16 edge knots were created
by Rob Scharein using KnotPlot [44] and the 32 edge knots were obtained by
subdividing each edge of the 16 edge optimized knot. The tables of data in this
section consists of the 26 knots that that have the lowest calculated ropelength
values for 32 edges. The unknot appears to be a highly anomalous case in that
the data it provides masks the often highly systematic behavior of the other
cases. As a consequence, we have not included the unknot in the data presented
and analyzed here. For consistency, we retain the ordering suggested by the 32
edge minimal ropelength values throughout this section. The complete set of
data, including vertex coordinates and orderings with respect to the different
quantities, are posted at http://www.math.ucsb.edu/~millett /knotdata.html
and http://monkey.chatham.edu/~rawdon/knotdata.html.

In the following subsections, we describe the techniques and exceptional cir-
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Fig. 4. Figure-8 knots shown with a small tube radius then a tube radius equal to
the injectivity radius

cumstances unique to each computation as well as tables and analysis for the
data obtained.

5.1 Ingectivity Radius, Thickness, and Rope Length

In this section, we describe the computations that find the ropelength-minimized
(i.e. thickness-maximized) conformations for the 8, 16, and 32 edge knot pop-
ulations. Table 1 contains the ropelength and thickness values of these con-
formations. The method for computing the ropelength of a polygonal knot is
described in [29-31]. As mentioned in Section 3, the injectivity radius of a
polygonal knot is the minimum of MinRad(K) (minimum radius of curva-
ture) and $ DCSD(K) (doubly-critical self-distance). For an equilateral knot
K, MinRad(K) is the minimum over all vertices v; of the length of an edge
divided by two times the tangent of half the exterior angle at v;. MinRad
measures the minimum over all vertices of the radius of a circular arc that
can be inscribed tangentially at the midpoints of adjacent edges. DC'SD is
the minimum distance between distinct pairs of points that are critical points
for the distance function (x,y) — ||z — y||. The thickness, 7(K), is the injec-
tivity radius divided by the length of the knot and the ropelength, p(K) is
the multiplicative inverse of thickness [29-31]. In Figure 4, we show a 32 edge
ropelength-optimized figure-8 knot drawn once with tubes of a small radius to
show the shape of the knot and drawn a second time with tube whose radius
is the injectivity radius.

Ropelength does not lend itself to a traditional gradient descent. Optimization
of the ropelength value is obtained through simulated annealing on random
crankshaft rotations (RCR, described in steps 1-4). One step of the algorithm
consists of:
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(1) Randomly choose two non-consecutive vertices of the knot K.

(2) Compute a swivel-angle bound, 6,,,., so that the topological knot type
will not change.

(3) Choose a random angle 6 such that —0,,4; < 0 < 0,05.

(4) Rotate one of the arcs between the two vertices through an angle of
about the axis passing through the two selected vertices to create a new
knot K’ of the same knot type.

(5) If the ropelength of K’ is less than the ropelength of K, K’ is selected.

(6) If the ropelength of K’ is greater than or equal to the ropelength of K,

Pold —Pnew
K' is chosen with a probability of e  foa  °.

During the process ¢ begins at 10 and is reduced to 2, .8, and .1. The constants
were chosen through experimentation in an effort to provide appropriate con-
vergence rates. To theoretically insure that we would find the global minimum
of ropelength, a logarithmic reduction in the constant would have to be used
[40]. This, however, implied an impractical amount of processing to compute
the data for this study. As a result, the knots may not be global minima for
the ropelength function.

The knots obtained, however, are local minima up to the maximum reliability
of the computer. Using Corollary 11, we can check to see if a knot is a local
minimum. Fqu(n) is a 2n-dimensional manifold (i.e. there are 2n tangent
directions). A basis of the tangent directions (in the generic case) are the
pivots created by rotating about the axis passing through pairs of vertices
separated by 1 and 2 vertices. If by completing a rotation at the angle at
a low computer tolerance (4.0000000000000001) for each of these tangent
directions, no lower ropelength can be detected, then we can conclude that we
are indeed at a local minimum. Using an algorithm derived from this process,
we can attempt to find local minima near the knots that appear to be near
minima as a result of the simulated annealing process. We begin by selecting
a rotation angle of .1 and cycling through all 1 and 2-step pivots of .1 and
-.1 until none of these rotations result in an improved ropelength. The angle
is then halved and the procedure is repeated until the angle is at the lowest
computer tolerance. At the end of this process, we are guaranteed to be at
a local minimum up to the maximum reliability of the computer. When the
simulated annealing algorithms were completed, this algorithm was applied
and each knot was inspected visually using TOROS [45] to insure that the
knot was in a position consistent with being a global minimum.

We have observed distinct local minima resulting from different initial con-
formations. In Figures 5 and 6, we show the initial and final conformations
of the original ropelength minimization for the 9.39 knot. Notice that in the
original conformation (Figure 5) much of the tangling is concentrated in the
small region on the right side of the knot. The simulated annealing process was
not able to free those edges although the knot shown is a true local minimum.
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Fig. 5. Initial conformation of the 9.39 knot from first optimization attempt,
p(K) = 36491.12

Despite an increase in the constant ¢ and more repetitions, the algorithm was
unable to free this tight region (Figure 6). Notice that in the portion of the
knot that is not tightly bound, the algorithm made no attempt to expand the
knot. This occurs because the ropelength calculation is localized (oftentimes
realized as the radius of curvature at only one vertex or the distance between
only one pair of critical points of the distance map). The free portion of the
knot may or may not change as it need only avoid becoming as tightly bound
as the other part. As long as the free portion avoids such tightness, there is no
advantage in straightening. As a result, the ropelength surface in knot space
will be constant in several of the tangent directions with steep climbs in the
remaining directions. This may explain why it is so difficult for the knot to
escape from this type of valley.

This behavior is also seen for knots with fewer edges. With the exception of
0.1, 3.1, and 4.1, the 8-edge knot population studied here can be made with a
minimum of 8 edges. Thus, the components of Equ(8) corresponding to these
knot types are tight and the knots may become stuck in local minima that
are different from a global optimal position. The research of Calvo [5] suggests
that there may in fact be more than one component of an equilateral knot type
that cannot be attributed to translations, rotations, or dihedral actions on the
edge numbering. If this is true, initial conformations in separate components
will lead to distinct optimal equilateral knots. For 16 and 32 edges, the knots
in this study have more freedom within the components and the additional
edges provide more potential pivots with which to explore the components. In
Figures 7 and 8, we see two different local minima for the 6.3 knot with 8 edges.
While it is difficult to determine whether these are two different conformations
from the figures alone, the 6.3 knot in Figure 7 has a ropelength of 353.59 while
the 6.3 knot from Figure 8 has ropelength of 215.00. This verifies that these
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Fig. 6. Local minimum conformation of the 9.39 knot from first optimization at-
tempt, p(K) = 375.71

Fig. 7. 6.3 knot at a local minimum for ropelength, p(K) = 353.59

are indeed different equilaterally-equivalent local minima with very different
ropelengths.

At the outset of this project, the set of initial conformations were generated
by the Monte Carlo samples of Fqu(n). Many of these conformations were
tightly woven, uneven, and difficult to optimize as seen in Figures 5 and 6. As
a consequence, we decided to use another source of initial conformations. These
were generated by Rob Scharein using his program KnotPlot [44]. The knots
were created by manipulating conformations that minimize a knot energy used
in KnotPlot. The program first reduced the number of vertices from between
30-60 (depending on the knot) to 16 while retaining the knot type. Next, two
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Fig. 8. 6.3 knot at a local minimum for ropelength, p(K) = 215.00

Fig. 9. Scharein’s initial conformation of the 9.39 knot from the reported ropelength
optimization, p(K) = 779.70

forces were applied to the knot: one that favors the length of an edge to be 1
and another that guarantees that no edges pass through each other. The knot
was randomly perturbed and the forces applied until the ratio of the longest
to shortest side was appropriately close to 1. In Figures 9 and 10, we see the
initial and final conformations for the 9.39 knot from which the data in this
paper is derived. The algorithm has little trouble finding a knot that is much
closer to the global minimum from the more regular starting conformation.

We often observe slight differences in the locally minimal values. In Figures 11
and 12, we show the final conformations derived from two different ropelength
minimizations of the 32 edge 5.1 knot. The knots appear identical and both
have been confirmed to be local minima; however, the ropelength values are
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Fig. 10. Ropelength local minimum conformation of the 9.39 knot from the reported
ropelength optimization, p(K) = 160.06

Fig. 11. 32 edge ropelength local minimum 5.1 knot, p(K) = 50.478804

50.478804 and 50.622445, guaranteeing that these two knots are truly distinct
and not the same knot viewed from a different perspective. Other examples
of this behavior are common. A slower cooling in the simulated annealing
algorithm may make this phenomenon more rare, although we conjecture that
the ropelength surface is nearly flat with small dents near a global minimum.
If so, it would be easy for the knot to end in a shallow puddle that is near
the global minimum but difficult to find a true global minimum. The distinct
local minima with similar ropelength values that we have encountered have
always been very similar looking knots. For this population with 16 and 32
edges, we have not observed any distinct local minima that appear to be near
global minima but are very different looking conformations.
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Fig. 12. 32 edge ropelength local minimum 5.1 knot, p(K) = 50.622445

The results of the optimizations mentioned above are contained in Table 1.

5.2  Knot Energy

In this section, we discuss the process of determining the minimum energy of
the equilateral knots. The algorithms for optimizing the polygonal version of
the Mobius Energy are identical to those explained in Section 5.1 for rope-
length and the computation of energy is a straightforward application of dot
products and norms. Recall that in this discretization, we approximate half
the traditional Mobius Energy. Table 2 contains our estimated minimal energy
values for our knot population.

In these energy calculations, we have not been able to achieve global minima.
In fact, with the exception of the unknot, none of the conformations are even
local minima. The algorithm described in Section 5.1 was employed to search
for a local minimum. Slight improvements (on the order of 10~3) were observed
during each application of the algorithm. However, these processes failed to
converge to a local minimum.

The Mobius Energy is a substantially different quantity compared to rope-
length in that it includes interactions between every pair of non adjacent
edges. Therefore, one pivot that successfully reduces the energy affects the
energy calculations for many of the pairs of edges in the sum. On the other
hand, we have observed that the injectivity radius of a knot, is usually realized
as half the distance between one particular doubly critical pair or as the ra-
dius of curvature at one vertex. Still, there may be many other doubly critical
pairs whose distance is close to the injectivity radius or vertices whose radius
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Table 1

Ropelength and Thickness of 8, 16, and 32 edge knots

8 edges 16 edges 32 edges

Knot p T P T p T
3.1 52.92 | 0.0189 || 36.91 | 0.0271 || 33.88 | 0.0295
4.1 108.10 | 0.0093 || 49.91 | 0.0200 | 43.82 | 0.0228
5.1 225.50 | 0.0044 || 59.99 | 0.0167 || 50.48 | 0.0198
5.2 214.74 | 0.0047 || 63.72 | 0.0157 || 52.63 | 0.0190
6.1 258.32 | 0.0039 || 77.28 | 0.0129 || 61.82 | 0.0162
3.14-3.1 || 257.65 | 0.0039 || 75.51 | 0.0132 || 61.85 | 0.0162
3.1#3.1 || 415.13 | 0.0024 || 75.49 | 0.0132 || 61.89 | 0.0162
6.3 215.00 | 0.0047 || 80.94 | 0.0124 || 63.02 | 0.0159
6.2 201.29 | 0.0050 || 80.73 | 0.0124 || 63.74 | 0.0157
8.19 73.60 | 0.0136 || 64.59 | 0.0155
7.1 90.73 | 0.0110 || 68.83 | 0.0145
8.20 257.24 | 0.0039 || 84.40 | 0.0118 || 69.30 | 0.0144
7.3 95.61 | 0.0105 || 71.11 | 0.0141
7.2 92.06 | 0.0109 || 71.46 | 0.0140
74 98.01 | 0.0102 || 72.32 | 0.0138
8.21 93.33 | 0.0107 || 73.15 | 0.0137
7.7 105.13 | 0.0095 || 73.37 | 0.0136
3.1#4.1 98.34 | 0.0102 || 73.71 | 0.0136
7.6 103.56 | 0.0097 || 74.17 | 0.0135
7.5 105.07 | 0.0095 || 74.45 | 0.0134
9.46 92.04 | 0.0109 || 75.05 | 0.0133
9.42 95.31 | 0.0105 || 76.00 | 0.0132
9.43 102.31 | 0.0098 || 79.72 | 0.0125
9.44 110.67 | 0.0090 || 80.03 | 0.0125
3.14-5.1 111.03 | 0.0090 | 81.16 | 0.0123
8.3 116.95 | 0.0086 || 81.62 | 0.0123
8.1 117.68 | 0.0085 || 81.65 | 0.0122
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of curvature is close to the injectivity radius. To reduce the ropelength, the
injectivity radius realizing value must be increased without disturbing any of
the other values. If a knot is near a local minimum, very few pivots are likely
to do this. Thus, compared to ropelength, there are many more pivots that
could reduce the Mobius energy.

Still, we were able to test the criticality of the equilateral knots by using the
program Ming, written by Ying-Qing Wu [46]. Ming uses a gradient-type flow
to find energy minima for knots in Geo(n). Upon completing the simulated
annealing in Fqu(n), the knots were imported into Ming and the gradient
descent algorithm applied. Little improvement was observed for any of the
knots. Since the gradient-type descent works in Geo(n), some improvement
will always occur because the tension to keep the knot equilateral has been
released. Because little improvement occurred using Ming, we believe that
each knot is very close to a global equilateral energy minimum. In the case
of Geo(n), many distinct local energy minima have been found by J. Simon
and J. Tockle [47] using Ming. As above, other examples of local minima
with similar energies are common, but no pair of very different looking global
minimal conformations have been found. Thus, it appears that the energy
surface in Geo(n) is also nearly constant yet dented near a global minimum.

The result of the energy minimization process applied to the 16 edge 9.39
knot from Figure 5 is shown in Figure 13. Notice that the energy minimization
algorithm was unable to loosen the tight region of the knot as was also the
case for ropelength. However, the more global nature of the energy forces
the “free” portion of the knot to become more circle-like to minimize the self-
interactions of the edges in this region. Thus, the energy surface is not constant
in directions related to moving the free portion as in the case of ropelength but
is rather gently sloping towards this final conformation. Still, the steep cliffs
in the remaining directions make it difficult for the knot to find even more
relaxed conformations. Figure 14 shows the energy-minimizing conformation
from the initial conformation of Scharein that is reported in this paper. We
note that the 9.39 conformation in Figure 14 has box length 13.81 while that
in Figure 10 has box length 12.65, proving that the energy and ropelength
optima are distinct conformations.

The results of the energy optimizations mentioned above are contained in
Table 2.

5.8 Awverage Crossing Number, Average Writhe, and Total Curvature

In this section, we present the average crossing number (ACN), average writhe
(AW), and total curvature (TC) for ropelength and energy optimized equilat-
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Table 2

Minimal Ejsp of 8, 16, and 32 edge knots

Minimal Fy/p

Knot 8 edges | 16 edges | 32 edges
3.1 103.91 50.59 41.31
4.1 377.79 90.38 66.87
5.1 1316.28 | 122.05 83.41
5.2 1311.58 | 136.42 91.80
6.1 1972.22 | 197.95 118.42
3.1#4-3.1 || 2525.21 178.93 108.33
3.143.1 || 6292.12 | 177.78 108.26
6.3 1443.26 | 217.05 130.35
6.2 1238.93 | 201.32 124.56
8.19 211.00 141.68
7.1 263.19 134.81
8.20 2504.14 | 245.85 153.70
7.3 278.32 151.59
7.2 311.33 147.69
7.4 284.14 157.13
8.21 289.59 164.98
7.7 320.32 164.91
3.14#4.1 290.81 146.43
7.6 326.74 164.96
7.5 331.27 160.51
9.46 313.15 185.84
9.42 313.24 183.99
9.43 364.39 194.93
9.44 419.96 199.35
3.1#-5.1 372.98 172.64
8.3 436.98 187.18
8.1 397.15 181.13
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Fig. 13. Energy local minimum conformation of the 9.39 knot from first optimization
attempt, F(K) = 2389.12

Fig. 14. Energy local minimum conformation of the 9.39 knot from the reported
optimization, F(K) = 748.09

eral knots of 8, 16, and 32 edges. The average crossing number of a knot
conformation is the average over all viewing directions of the number of ob-
served crossings as described in Section 3. For a polygonal knot conformation,
the average crossing number can be computed in closed form as a function of
the vertices via an algorithm derived by T. Banchoff [48]. The average writhe
can be determined by a similar computation in which the signed crossings are
averaged. Since we make no distinction in this paper between mirror images,
we report the absolute values of the average writhes determined by our com-
putations. The total curvature of a polygonal knot conformation is the sum
of the exterior angles at the vertices. The computed values are contained in
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Table 3
8 edge optimized knots: ACN, AW, TC

8 edges
E-minimized p-minimized
Knot ACN | AW | TC || ACN | AW | TC
3.1 4.69 | 3.30 | 14.48 || 4.65 | 3.32 | 14.58
4.1 7.52 | 0.07 | 1737 || 7.56 | 0.10 | 17.47
5.1 9.84 | 5.80 | 19.28 || 10.28 | 5.95 | 19.36
5.2 9.69 | 4.98 | 18.84 || 9.77 | 4.96 | 18.87

6.1 10.80 | 1.12 | 20.08 || 11.02 | 1.05 | 20.28
3.1#-3.1 || 14.28 | 0.03 | 20.06 || 14.31 | 0.03 | 20.02
3.1#3.1 || 13.78 | 6.54 | 19.89 || 13.76 | 6.53 | 19.77

6.3 11.92 | 0.22 | 19.51 || 12.06 | 0.19 | 19.54

6.2 11.03 | 2.31 | 18.95 || 11.20 | 2.29 | 19.00

8.20 14.18 | 2.04 | 20.11 || 14.20 | 2.04 | 20.07

Tables 3, 4, and 5.

5.4  Box Dimensions of Knots

In this section, we present the values for the box length (BL), box width (BW),
box height (BH), box volume (BV), and box surface area (BSA) (defined in
Section 3) for ropelength and energy optimized equilateral knots of 8, 16, and
32 edges. In these calculations, the length of the knot has been set to 100, in
order to better display the relative values. The computed values are contained
in Tables 6-11.

5.5 Surface Area and Volume of Conver Hulls

In this section, we present values for the convex hull volume (HV) and surface
area (HSA) for ropelength and energy optimized equilateral knots of 8, 16, and
32 edges. The convex hulls were established by finding the triplets of vertices
that determine bounding planes for the polyhedron. The sum of the areas of
the triangles related to these triplets is the surface area. Each triplet with the
addition of the center point of the knot (the average of the coordinates of the
vertices) determines a pyramid; the sum of the volumes of these pyramids is
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Table 4

16 edge optimized knots: ACN, AW, TC

16 edges
E-minimized p-minimized

Knot ACN | AW | TC || ACN | AW | TC
3.1 4.24 | 3.34 | 14.64 || 4.42 | 3.36 | 15.09
4.1 6.16 | 0.00 | 16.96 || 6.66 | 0.00 | 17.51
5.1 7.44 | 5.88 | 19.79 || 7.86 | 6.13 | 20.41
5.2 7.88 | 4.72 | 19.62 || 8.38 | 4.60 | 20.25
6.1 10.09 | 1.31 | 21.86 || 10.81 | 1.18 | 21.97
3.14-3.1 || 9.35 | 0.00 | 22.79 || 10.02 | 0.01 | 23.03
3.1#43.1 || 9.71 | 6.66 | 22.60 || 10.58 | 6.70 | 22.98
6.3 10.71 | 0.17 | 23.15 || 11.55 | 0.00 | 22.32
6.2 10.39 | 2.46 | 22.97 || 11.01 | 2.50 | 23.82
8.19 10.90 | 8.41 | 21.02 || 11.26 | 8.39 | 21.03
7.1 11.50 | 8.54 | 24.28 || 12.50 | 8.83 | 25.59
8.20 11.75 | 2.09 | 22.42 || 12.84 | 2.16 | 21.98
7.3 11.75 | 7.33 | 23.90 || 13.69 | 7.40 | 24.56
7.2 12.71 | 6.33 | 26.30 || 13.15 | 5.76 | 25.06
74 12.31 | 6.30 | 24.17 || 12.92 | 6.14 | 25.11
8.21 12.62 | 4.61 | 23.23 || 13.25 | 4.77 | 23.59
7.7 12.48 | 0.86 | 24.55 || 14.10 | 1.11 | 26.55
3.1#44.1 || 12.15 | 3.35 | 25.06 || 13.02 | 3.46 | 25.59
7.6 13.29 | 3.04 | 25.85 || 14.83 | 3.15 | 25.69
7.5 13.88 | 7.62 | 25.72 || 15.40 | 7.41 | 26.33
9.46 13.57 | 2.96 | 22.78 || 14.20 | 2.92 | 23.95
9.42 13.62 | 1.10 | 23.58 || 14.08 | 1.04 | 24.60
9.43 14.67 | 5.25 | 24.97 || 15.22 | 5.23 | 26.07
9.44 15.22 | 1.26 | 25.90 || 15.57 | 1.25 | 25.14
3.1#-5.1 || 13.87 | 2.76 | 27.02 || 14.83 | 2.79 | 28.07
8.3 14.57 | 0.03 | 25.88 || 18.84 | 0.18 | 29.53
8.1 14.41 | 2.70 | 27.17 || 18.00 | 2.40 | 27.7
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Table 5

32 edge optimized knots: ACN, AW, TC

32 edges
E-minimized p-minimized

Knot ACN | AW | TC || ACN | AW | TC
3.1 4.18 | 3.35 | 14.66 || 4.30 | 3.38 | 16.59
4.1 6.10 | 0.00 | 17.41 || 6.57 | 0.01 | 20.54
5.1 7.27 | 5.88 | 21.23 || 7.89 | 6.19 | 23.13
5.2 7.76 | 4.71 | 20.29 || 8.35 | 4.60 | 22.58
6.1 9.28 | 1.45 | 23.72 || 10.29 | 1.20 | 25.03
3.14-3.1 || 8.29 | 0.00 | 23.37 || 9.58 | 0.00 | 26.07
3.1#3.1 || 8.37 | 6.70 | 23.38 || 9.556 | 6.73 | 25.58
6.3 9.85 | 0.03 | 22.20 || 10.77 | 0.01 | 25.98
6.2 9.57 | 2.61 | 23.00 || 10.71 | 2.71 | 26.54
8.19 10.54 | 8.44 | 21.35 || 10.60 | 8.42 | 21.92
7.1 10.27 | 8.30 | 28.40 || 11.79 | 8.98 | 29.67
8.20 11.06 | 2.08 | 23.60 || 12.15 | 2.07 | 23.66
7.3 10.98 | 7.22 | 25.65 || 12.07 | 7.42 | 27.47
7.2 10.80 | 6.23 | 27.28 || 12.21 | 5.79 | 27.83
74 11.21 | 6.12 | 25.84 || 12.37 | 5.83 | 27.40
8.21 11.55 | 4.62 | 23.91 || 12.95 | 4.68 | 25.83
7.7 11.51 | 3.18 | 26.29 || 13.13 | 0.64 | 27.47
3.1#4.1 || 10.32 | 3.36 | 26.49 || 12.60 | 3.37 | 27.65
7.6 11.52 | 3.24 | 26.18 || 13.02 | 3.35 | 27.94
7.5 11.34 | 7.35 | 26.02 || 12.88 | 7.31 | 29.02
9.46 12.74 | 2.89 | 24.33 || 13.33 | 2.96 | 24.82
9.42 12.62 | 1.11 | 24.38 || 13.55 | 1.10 | 25.93
9.43 12.88 | 5.23 | 25.47 || 13.97 | 5.31 | 27.10
9.44 13.22 | 1.42 | 25.89 || 14.58 | 1.41 | 27.64
3.1#-5.1 || 11.56 | 2.50 | 29.66 || 13.25 | 2.80 | 31.14
8.3 12.67 | 0.02 | 28.27 || 14.16 | 0.01 | 30.13
8.1 12.44 | 3.00 | 30.41 || 14.54 | 2.32 | 30.61
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Table 6
Box dimensions for 8 edge energy-minimized knots (Length = 100)

8 edge E-minimized
Knot BL BW | BH BV BSA
3.1 22.12 | 11.57 | 11.01 | 2816.73 | 1253.47

4.1 19.45 | 14.82 | 9.74 | 2808.54 | 1244.41

5.1 16.07 | 13.53 | 11.80 | 2566.75 | 1133.74

5.2 15.18 | 13.83 | 11.91 | 2498.87 | 1110.45
6.1 15.62 | 14.33 | 9.40 | 2104.83 | 1011.00
3.14-3.1 || 12.50 | 12.42 | 12.27 | 1904.46 | 921.89

3.1#3.1 || 12.76 | 12.50 | 8.56 | 1364.55 | 751.18
6.3 13.92 | 12.47 | 11.23 | 1949.18 | 939.82
6.2 14.85 | 12.40 | 10.89 | 2005.67 | 961.91
8.20 12.50 | 12.50 | 11.86 | 1853.67 | 905.67

Table 7
Box dimensions for 8 edge ropelength-minimized knots (Length = 100)

8 edge p-minimized

Knot BL BW | BH BV BSA
3.1 20.37 | 12.54 | 10.94 | 2794.36 | 1230.92
4.1 19.85 | 14.25 | 9.05 | 2559.42 | 1182.80
5.1 15.07 | 13.71 | 12.03 | 2485.45 | 1105.65

5.2 15.07 | 13.83 | 12.02 | 2505.14 | 1111.56
6.1 15.10 | 14.09 | 9.30 | 1979.77 | 968.79
3.1#4-3.1 || 12.50 | 12.45 | 12.26 | 1908.78 | 923.29
3.143.1 || 12.75 | 12.49 | 8.71 | 1386.43 | 757.97
6.3 13.91 | 12.70 | 10.47 | 1850.10 | 910.69
6.2 14.70 | 12.41 | 10.44 | 1903.33 | 930.52
8.20 12.50 | 12.50 | 11.93 | 1863.33 | 908.77

the volume of the convex hull. In these calculations, the length of the knot
has been set to 100 to better display the relative values. The computed values
are contained in Tables 12, 13, and 14.
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Table 8
Box dimensions for 16 edge energy-minimized knots (Length = 100)

16 edge E-minimized

Knot BL BW | BH BV BSA

3.1 19.26 | 17.33 | 11.95 | 3987.93 | 1541.92

4.1 16.30 | 14.25 | 13.47 | 3129.60 | 1287.79

5.1 17.43 | 11.98 | 10.72 | 2239.82 | 1048.60

5.2 16.92 | 14.29 | 13.18 | 3186.56 | 1306.23

6.1 15.22 | 14.22 | 10.81 | 2340.66 | 1069.68

3.14-3.1 || 16.74 | 12.44 | 7.33 | 1525.05 | 843.76

3.14#3.1 || 18.74 | 12.95 | 9.29 | 2254.75 | 1074.28

6.3 16.75 | 14.08 | 6.39 | 1506.42 | 865.40

6.2 18.88 | 12.74 | 5.83 | 1402.18 | 849.68

8.19 15.82 | 13.74 | 8.18 | 1778.45 | 918.37

7.1 15.83 | 14.44 | 6.54 | 1494.80 | 853.15

8.20 14.28 | 11.45 | 10.98 | 1795.62 | 892.16

7.3 20.38 | 7.78 | 6.09 | 965.89 | 660.22

7.2 16.44 | 10.35 | 8.96 | 1523.21 | 819.92

7.4 17.21 | 9.15 | 6.57 | 1035.10 | 661.53

8.21 14.08 | 11.40 | 11.14 | 1787.10 | 888.38

7.7 15.85 | 9.67 | 5.79 | 886.60 | 601.71

3.14#4.1 || 15.15 | 12.00 | 9.82 | 1785.33 | 896.84

7.6 14.94 | 11.55 | 6.99 | 1206.55 | 715.56

7.5 16.57 | 11.17 | 6.49 | 1201.60 | 730.35

9.46 12.94 | 11.75 | 10.51 | 1596.98 | 822.74

9.42 12.19 | 11.91 | 11.54 | 1676.62 | 847.00

9.43 12.57 | 12.37 | 7.01 | 1089.67 | 660.57

9.44 15.26 | 12.05 | 6.16 | 1132.77 | 704.24

3.1#-5.1 || 15.24 | 13.03 | 8.02 | 1592.04 | 850.42

8.3 19.86 | 6.76 | 6.64 | 891.37 | 621.99

8.1 1792 | 9.44 | 8.43 | 1425.83 | 799.57
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Table 9
Box dimensions for 16 edge ropelength-minimized knots (Length = 100)

16 edge p-minimized

Knot BL | BW | BH BV BSA
3.1 18.55 | 17.24 | 12.17 | 3890.73 | 1510.41
4.1 15.12 | 14.02 | 13.05 | 2765.53 | 1184.28

5.1 16.20 | 11.79 | 11.02 | 2104.32 | 998.74

5.2 17.40 | 12.94 | 10.03 | 2259.71 | 1059.38

6.1 14.34 | 13.25 | 10.95 | 2080.68 | 984.25
3.14-3.1 || 14.70 | 12.67 | 10.37 | 1930.64 | 939.93
3.14#3.1 || 17.14 | 12.00 | 8.80 | 1809.49 | 924.02

6.3 14.52 | 12.27 | 11.61 | 2068.43 | 978.39

6.2 18.00 | 14.72 | 5.67 | 1501.46 | 900.66

8.19 15.37 | 13.27 | 8.76 | 1785.09 | 909.16

7.1 15.92 | 13.49 | 8.45 | 1815.94 | 926.94

8.20 12.81 | 11.41 | 11.11 | 1623.19 | 830.27

7.3 13.66 | 11.09 | 10.76 | 1629.83 | 835.55

7.2 14.81 | 10.59 | 10.07 | 1579.73 | 825.32

7.4 16.68 | 13.71 | 6.74 | 1539.92 | 866.55

8.21 15.14 | 12.02 | 10.39 | 1890.76 | 928.31

7.7 14.94 | 10.28 | 8.20 | 1258.98 | 720.65
3.1#4.1 || 15.56 | 13.57 | 8.53 | 1802.48 | 919.73

7.6 12.72 | 10.64 | 8.32 | 1125.63 | 659.22

7.5 13.20 | 11.07 | 10.00 | 1461.51 | 777.77

9.46 13.05 | 11.63 | 10.27 | 1558.00 | 810.24
9.42 14.63 | 12.58 | 8.91 | 1639.76 | 852.93
9.43 13.32 | 9.79 | 8.53 | 1112.73 | 655.20
9.44 13.96 | 11.50 | 8.77 | 1407.82 | 767.62
3.1#-5.1 || 13.61 | 12.69 | 7.05 | 1217.21 | 716.09

8.3 13.56 | 10.24 | 7.49 | 1039.26 | 633.94
8.1 13.84 | 7.84 | 6.73 | 729.59 | 508.54
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Table 10
Box dimensions for 32 edge energy-minimized knots (Length = 100)

32 edge E-minimized

Knot BL BW | BH BV BSA

3.1 18.83 | 17.70 | 11.73 | 3907.69 | 1523.16

4.1 16.11 | 14.28 | 13.69 | 3148.86 | 1292.02

5.1 16.39 | 15.35 | 6.62 | 1665.69 | 923.54

5.2 16.84 | 13.39 | 11.43 | 2576.76 | 1141.89

6.1 15.87 | 12.18 | 10.06 | 1943.44 | 950.59

3.1#-3.1 || 19.58 | 13.01 | 6.34 | 1614.41 | 922.60

3.1#3.1 || 19.44 | 10.71 | 8.13 | 1693.72 | 907.03

6.3 14.97 | 11.64 | 9.80 | 1707.65 | 870.06

6.2 15.63 | 11.96 | 8.93 | 1670.09 | 866.86

8.19 14.34 | 13.98 | 8.51 | 1706.05 | 882.96

7.1 15.72 | 15.26 | 4.29 | 1027.69 | 745.06

8.20 15.70 | 12.08 | 8.16 | 1547.35 | 832.58

7.3 16.86 | 10.91 | 9.44 | 1735.80 | 892.00

7.2 15.98 | 11.81 | 8.26 | 1559.85 | 836.85

7.4 16.19 | 10.66 | 9.35 | 1612.77 | 846.99

8.21 14.13 | 13.60 | 8.41 | 1615.85 | 850.59

7.7 14.48 | 12.04 | 7.65 | 1333.98 | 754.56

3.1#4.1 || 18.42 | 11.21 | 8.35 | 1724.88 | 908.06

7.6 13.70 | 11.72 | 9.81 | 1574.12 | 819.54

7.5 14.88 | 10.48 | 10.40 | 1620.84 | 839.06

9.46 14.48 | 10.74 | 9.43 | 1467.32 | 786.96

9.42 13.73 | 12.49 | 9.07 | 1554.73 | 818.40

9.43 13.88 | 11.33 | 10.03 | 1577.28 | 820.21

9.44 13.73 | 11.30 | 9.13 | 1416.42 | 767.27

3.1#-5.1 || 18.49 | 10.78 | 5.04 | 1004.71 | 693.87

8.3 16.34 | 9.73 | 8.95 | 1422.52 | 784.47

8.1 15.66 | 11.89 | 7.29 | 1357.59 | 774.20
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Table 11
Box dimensions for 32 edge ropelength-minimized knots (Length = 100)

32 edge p-minimized
Knot BL | BW | BH BV BSA
3.1 18.41 | 17.17 | 10.44 | 3300.02 | 1375.07
4.1 14.51 | 14.03 | 13.70 | 2788.78 | 1189.09
5.1 16.58 | 11.95 | 10.13 | 2008.15 | 974.60
5.2 16.09 | 11.89 | 10.50 | 2009.04 | 970.27
6.1 14.88 | 13.06 | 8.05 | 1564.18 | 838.40
3.14-3.1 || 17.52 | 13.35 | 6.44 | 1507.68 | 865.89
3.1#3.1 || 17.58 | 10.04 | 8.39 | 1479.20 | 815.88
6.3 13.64 | 13.00 | 9.58 | 1700.26 | 865.57
6.2 13.90 | 11.87 | 9.82 | 1621.07 | 836.40
8.19 14.37 | 13.96 | 8.27 | 1657.98 | 869.40
7.1 15.12 | 11.89 | 7.31 | 1314.25 | 754.45
8.20 14.08 | 11.71 | 10.29 | 1697.56 | 860.86
7.3 15.62 | 10.33 | 8.84 | 1426.42 | 781.53
7.2 15.26 | 9.78 | 8.77 | 1309.21 | 737.81
74 14.73 | 10.66 | 8.38 | 1315.60 | 739.51
8.21 13.03 | 11.19 | 9.83 | 1432.81 | 767.63
7.7 12.26 | 11.32 | 10.92 | 1514.44 | 792.19
3.1#4.1 || 13.83 | 10.69 | 10.35 | 1530.37 | 803.33
7.6 14.37 | 10.46 | 10.25 | 1540.18 | 809.46
7.5 14.53 | 10.32 | 9.15 | 1372.65 | 754.88
9.46 13.29 | 11.45 | 11.14 | 1693.48 | 854.97
9.42 12.74 | 11.94 | 10.70 | 1627.47 | 832.32

9.43 13.28 | 12.61 | 9.35 | 1566.34 | 819.26
9.44 11.33 | 11.26 | 10.27 | 1309.43 | 718.87
3.14-5.1 || 15.83 | 10.17 | 6.87 | 1106.31 | 679.39
8.3 14.49 | 10.33 | 7.49 | 1120.87 | 671.01
8.1 13.15 | 11.28 | 7.95 | 1179.06 | 685.02
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Table 12
Convex hull volume and surface area for 8 edge optimized knots (Length = 100)

8 edges

E-minimized p-minimized

Knot HV HSA HV HSA
3.1 865.27 | 545.12 || 851.98 | 543.59
4.1 663.47 | 452.78 || 613.40 | 441.84

5.1 576.24 | 395.18 || 558.41 | 389.64
5.2 562.46 | 400.16 || 557.96 | 398.51
6.1 475.85 | 357.25 || 448.85 | 345.69
3.14-3.1 || 491.70 | 351.47 || 492.54 | 351.77
3.143.1 || 364.31 | 313.46 || 367.98 | 315.41
6.3 469.15 | 361.65 || 452.02 | 355.97
6.2 472.55 | 365.63 || 449.95 | 355.63
8.20 493.62 | 350.03 || 495.33 | 350.91

5.6  Numerical Estimation of Knot Probabilities

If an equilateral polygon is selected at random, what is the probability that it
will represent a specified topological knot type? Equivalently, what proportion
of equilateral knot space consists of knots of this type. This data is an update
of that provided in [8], [13], and [14].

The knot probabilities are estimated by means of a Metropolis Monte Carlo
sampling method. The basic operation is the random selection of a pair of
vertices of the equilateral polygon and the random selection an angle of ro-
tation for which there are no constraints imposed. A rotation of this angle is
applied to the segment of the polygonal configuration lying between the two
designated vertices about the axis they define. This algorithm is known to
generate an example of every equilateral knot conformation, [8]. This opera-
tion is applied sequentially and the results are selected randomly or according
to fixed criteria, e.g. every 10th step, to define the knot population sample. In
this project, we have studied the populations consisting of equilateral polygons
with 8, 16 and, 32 edges.

For the purposes of this project, the coordinates of the vertices of the knot are
reported as well as a carefully constructed expression of the crossing data. The
first provides the initial data used in our first attempts to study the physical
knot quantities and the second provides a reconstitution of the knot of the
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Table 13
Convex hull volume and surface area for 16 edge optimized knots (Length = 100)

16 edges
E-minimized p-minimized
Knot HV HSA HV HSA
3.1 1131.84 | 637.56 || 1130.11 | 616.19
4.1 840.06 | 512.82 || 859.46 | 493.65
5.1 597.16 | 438.02 | 605.67 | 423.63
5.2 665.00 | 435.25 | 593.37 | 408.41
6.1 509.81 | 371.04 | 506.07 | 359.31

3.14-3.1 || 526.32 | 387.04 | 474.75 | 351.51
3.14#3.1 | 541.62 | 385.99 || 457.54 | 343.26

6.3 441.93 | 346.24 || 484.89 | 342.36
6.2 442.58 | 362.59 || 410.89 | 355.70
8.19 525.95 | 364.52 || 516.84 | 358.44
7.1 409.37 | 333.02 || 415.96 | 326.23

8.20 451.18 | 336.36 | 489.03 | 337.10
7.3 331.33 | 297.07 || 403.51 | 312.73
7.2 401.08 | 327.10 || 404.53 | 316.48
7.4 403.13 | 334.61 || 398.57 | 346.68
8.21 431.56 | 320.50 || 419.23 | 323.76
7.7 380.25 | 328.73 || 335.85 | 291.36
3.1#4.1 | 480.88 | 347.19 || 408.52 | 327.55
7.6 430.68 | 338.76 || 370.69 | 293.46
7.5 376.02 | 299.36 || 329.12 | 271.27
9.46 371.61 | 298.40 | 403.58 | 301.03
9.42 391.60 | 300.75 || 377.97 | 307.23
9.43 375.14 | 287.93 || 351.34 | 281.68
9.44 342.12 | 293.66 | 339.73 | 276.34
3.1#4-5.1 || 401.01 | 321.54 || 352.05 | 296.93
8.3 305.09 | 281.36 || 269.51 | 242.89
8.1 355.99 | 301.88 || 248.44 | 229.71
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Table 14
Convex hull volume and surface area for 32 edge optimized knots (Length = 100)

32 edges

E-minimized p-minimized

Knot HV HSA HV HSA
3.1 1154.62 | 643.95 || 1047.8 | 613.61
4.1 904.97 | 532.83 || 836.29 | 490.16
5.1 657.91 | 480.41 || 680.30 | 444.92
5.2 757.49 | 465.16 || 677.15 | 425.47
6.1 636.33 | 419.12 || 556.24 | 378.58

3.14-3.1 || 642.16 | 470.75 || 517.57 | 390.56
3.143.1 | 648.75 | 467.39 || 576.58 | 396.99

6.3 602.77 | 393.47 || 532.53 | 353.73
6.2 611.13 | 407.35 || 523.44 | 354.02
8.19 584.83 | 385.72 || 538.29 | 369.91
7.1 491.64 | 404.75 || 474.48 | 345.43
8.20 515.18 | 366.76 || 487.92 | 335.72
7.3 528.17 | 374.43 || 465.42 | 342.53
7.2 524.05 | 380.11 || 449.27 | 333.85

7.4 507.54 | 365.54 || 450.50 | 329.49
8.21 488.25 | 361.09 || 448.35 | 318.04
7.7 500.44 | 357.68 || 441.65 | 310.95
3.1#4.1 | 567.93 | 407.64 || 456.00 | 324.27
7.6 510.96 | 355.48 | 435.21 | 315.40
7.5 526.85 | 365.13 || 429.19 | 315.09
9.46 463.93 | 337.58 || 440.18 | 319.50
9.42 469.13 | 337.28 || 449.22 | 317.90
9.43 452.02 | 332.55 || 404.09 | 304.25
9.44 447.73 | 328.78 | 402.70 | 293.09
3.14-5.1 || 409.66 | 365.72 || 393.60 | 324.47
8.3 452.41 | 342.91 || 411.26 | 314.03
8.1 469.38 | 352.83 | 398.97 | 300.62
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same topological knot type. This crossing data is analyzed by means of the
HOMFLY knot invariant program developed by Ewing and Millett [49]. The
HOMFLY polynomial [41,42] has integer coefficients and has as variables L and
M and their formal inverses. While the calculation of the HOMFLY polynomial
is known to be an exponentially difficult problem, [50], its calculation in this
population has proved to be exceptionally fast and, therefore, provides an
excellent research tool for this study. Indeed, based upon these calculations,
one might conjecture that the calculation of the HOMFLY polynomial of a
random polygonal knot has polynomial complexity with probability one.

Since the HOMFLY polynomial is not a faithful detector of the topological
knot type, i.e. two distinct topological knots may have equal HOMFLY poly-
nomials, the data used in this study is only an estimation of the knot popula-
tion. Jim Hoste [51] reports that for the 2,092,241 topological knot types, with
minimal crossing representations of no more than sixteen crossings, there are
1,471,651 distinct HOMFLY polynomials. For those with no more than twelve
crossings, the HOMFLY polynomial is more than 90% faithful. For the popu-
lation of knots in Fqu(16), the foundation of this study, the HOMFLY poly-
nomial appears to be an effective identifier of the knot type. As a consequence,
the fraction of occurrences of the corresponding HOMFLY polynomial of the
associated topological knot type provides an effective provisional estimate of
the knot population.

Thus, the knot probabilities are actually estimations of the occurrences of the
corresponding HOMFLY knot polynomial given by the ratio of the number of
occurrences of the HOMFLY polynomial of the topological knot type to the
total size of the sample. In a very few cases, we have studied the convergence of
these estimates as the size of the sample increases. This has been the principal
method of assessing the quality of the estimate and providing a more accurate
estimate of the actual number of knot types and their relative frequency, see
[8] or [13].

6 Comparison of Physical Knot Parameters

In addition to a desire to carefully explore the relationship between energy and
ropelength over a large class of knots, an underlying motivation for undertak-
ing the collection of this data is the search for unforeseen relationships among
physical knot parameters and other artifacts of geometric and statistical knot
theory. One example is the discovery and use of fundamental quantities as a
means to define or measure notions of complexity of knots. Another example
is to determine how well these notions correlate with experimental measures of
knot complexity such as the flow of DNA knots in gel electrophoresis. Do these
various measure reflect the same information or do they capture independent
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Table 15

Probabilities for 8, 16, and 32 edge knots

Probability

Knot 8 edges 16 edges 32 edges
3.1 0.00956010 | 0.06438900 | 0.05611080
4.1 0.00030110 | 0.01834750 | 0.00859033
5.1 0.00000223 | 0.00734240 | 0.00189590
5.2 0.00000444 | 0.01261630 | 0.00318695
6.1 0.00000042 | 0.00353423 | 0.00054377
3.1#-3.1 || 0.00000000 | 0.00125110 | 0.00044837
3.1#3.1 | 0.00000000 | 0.00117194 | 0.00045766
6.3 0.00000122 | 0.00287812 | 0.00031712
6.2 0.00000133 | 0.00464800 | 0.00061129
8.19 0.00069403 | 0.00005159
7.1 0.00039359 | 0.00004343
8.20 0.00000000 | 0.00148048 | 0.00011114
7.3 0.00035972 | 0.00004742
7.2 0.00084646 | 0.00009521
7.4 0.00048969 | 0.00004931
8.21 0.00090353 | 0.00006562
7.7 0.00078682 | 0.00005709
3.14#4.1 0.00088107 | 0.00021641
7.6 0.00140611 | 0.00012404
7.5 0.00106995 | 0.00009692
9.46 0.00018446 | 0.00001612
9.42 0.00048233 | 0.00002788
9.43 0.00024963 | 0.00002238
9.44 0.00049227 | 0.00002560
3.1#-5.1 0.00009426 | 0.00002257
8.3 0.00005965 | 0.00000436
8.1 0.00015722 | 0.00000872
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dimensions of knot complexity?

The data presented in the previous section concerns knots that have been op-
timized with respect to either ropelength or energy. Some of the relationships
involving these quantities, that we will discuss in this section, have been devel-
oped in the work of other researchers. For example, Freedman, et al. have given
a bound relating the energy and the average crossing number [19]. Buck, Raw-
don, and Simon [52] have explored the relationship between the energy and
the ropelength. Stasiak, et al.[2] have studied the relationship between another
definition of ropelength, the average writhe, the average crossing number, gel
speed, etc., for knots with a large number of edges.

6.1 FEnergy, Ropelength, and Average Crossing Numbers

Freedman, He, and Wang [19] show that the average crossing number of a knot
is bounded by the energy of the knot divided by 27. Buck, Rawdon, and Simon
[52] show that the energy of the knot is bounded by 4.63 times the 4/3 power
of the ropelength implying a 4/3 power bound of the average crossing number
by the ropelength. In his March 19, 1998 letter to Nature [53], Buck describes
the reasons why this 4/3 power law bound of the average crossing number of a
knot by its ropelength can not be improved. Following up on earlier work [1-3]
with simple knots suggesting a linear relationship between the average crossing
number and the ropelength, Stasiak, Dubochet, Katritch, and Pieranski [4]
have explored this relationship between (2, n) torus knots for 3 < n < 63. This
data shows that the rate of growth of the relation increases with increasing
number to twists. Pieranski [54] has further studied the relationship between
the average crossing number and the ropelength by considering prime knots
through nine crossings and observes that the relationship, “apparently linear
at the beginning, is clearly nonlinear in the larger interval.”

In this project, we have added the composite knots to the population. Let K,
denote the equilateral n-edge ropelength optimized knot. Similarly, Kg, will
denote an equilateral n-edge Ej;p optimized knot. The relationship between
the ropelength and the average crossing number of the knot is approximately
linear, as is shown graphically in Figure 15. This relationship is given by the
formula:

Equ(32) : ACN (K 35) = —3.14 + 0.22 p(K 32), R*> = 0.97.

The energy is bounded by 4/3 power of ropelength according to [52]. To test
this relationship we have fitted a 4/3 power equation to this data as follows:
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Fig. 15. ACN (K 32) versus p(K,32)

Equ(32) : Exp(K ) = —81.94 4 0.89 p(K ,32)"/3, R? = 0.97.

This data is shown in Figure 16. This suggests that the bound actually provides
an excellent approximation to the relationship between the data.

Thus, these apparent relationships suggest a 3/4 power law relationship be-
tween energy and average crossing number. This data is shown in Figure 17.
The relationship is expressed by the following equation:

Equ(32) : ACN(K ,35) = 1.55 4+ 0.22 Exp (K ,30)**, R? =0.99.

Finally, since it appears that there may be spatial differences between energy
and ropelength optimized knots of the same type, we tested the correlation
between the average crossing numbers and the energy of the 32-edge energy
optimized knots. This data is shown in Figure 18. The relationship is expressed
by the following equation:

Equ(32) : ACN (Kpgsz) = 0.99 + 0.23 Eyp(Kgs2)®*, R =0.99.
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This provides further evidence that the bound actually provides an excellent
approximation to the relationship between the data.

6.2 Comparison of Ropelength and Energy Optimized Knot Conformations

Earlier, we mentioned that the ropelength and candidate energy optimized
conformations are distinct despite some visual similarities. In this section we
discuss the similarity and difference between the corresponding optimizations
of knots in our population.

In Figures 11 and 12 on page 23, we see two ropelength local minima of
the 32 edge 5.1 knot. The conformations appear very similar. The energy
minimizing conformation for the 32 edge 5.1 knot is shown in Figure 19. Notice
that the shape of this conformation is much different. The energy minimizing
conformation exposes more of the symmetries of the knot, while the ropelength
minimizing conformation attempts to efficiently consume as much of the space
about the knot as possible. Despite the differences between the two functions
and between their optima, some spatial measures of the optima are surprisingly
similar.
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For example, the difference in the average crossing numbers as expressed by
the equation:

Equ(32) : ACN(Kg3) = 1.35+ 0.77 ACN (K ,32), R* =0.95.

6.3 Probability, Ropelength and, Energy

In Sections 2 and 3 we have discussed the relationship between pu(K), the
existence of embedded tubes with the knot K as its core, the ropelength,
and thickness. When the thickness is smaller than the edge length, u(K)
provides the dominant contribution to the thickness and connects thickness
to the radius of a neighborhood of the knot in Equg(n) that lies entirely
within the component containing K. In this regime, a configuration of optimal
thickness lies in the largest region of the component defining the equilateral
knot type. Its size, one might postulate, should provide an indicator of the
relative size of the component in knot spaces as measured by the proportion
of knot space it defines. As a rough approximation, if the components are quite
concentrated about the optimal ropelength knot, there should be a correlation
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between the ropelength or thickness and the proportion of the space in that
component, as measured by the knot probability.

Graphs of probability versus ropelength, thickness, and energy show that this
is not the case and suggest, rather, a possibly exponential relationship. An
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analysis or our data shows that,

Equ(32) : PR(K) = 9.03e™10¢(Ke2)  R2 — (.85

Thus, based on the data developed in this project, there appears to be no
evidence that the probability of an equilateral knot type is simply related to
the thickness, p(K 32), of the thickest representative of the knot type although
the general trend is visible in Figure 20. Alternatively, this data might suggest
that the component if not concentrated about the thickest representative but,
rather, is somewhat dispersed in knot space.

Considering the possibility of a similar relationship between probability and
energy gives a consistent structure,

Equ(32) : PR(K) = 0.091 e 008up(Kr2) - R2 — () 87 .
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6.4 Volume and Surface Area Associated to Spatial Knots

One way in which to enclose a spatial knot is to construct a small box sur-
rounding the knot and another is to take the convex hull of the knot. These
data clearly suggest a linear relationship between the volume and surface areas
of each of the encapsulating shapes. In each of the spaces Equ(8), Equ(16)
and, Fqu(32) the data provides the following equations:

Equ(8) : BV (K,5) = —823.32 + 2.94 BSA(K,5), R =0.99,

Equ(16) : BV (K 16) = —806.12 + 2.90 BSA(K y16), R* =0.98,

Equ(32) : BV (K ,3) = —746.02 + 2.84 BSA(K ,35), R* = 0.99.

where BV(K) = BL(K) - BW(K) - BH(K) and BSA(K) = 2(BL(K) -
BW(K) + BL(K) - BH(K) + BW(K) - BH(K)).

If one changes the variables to L', W', H' by subtracting 5.91244, 5.883981, and
5.724601 from each of BL, BW, and BH in Equ(8), Fqu(16), and Fqu(32),
respectively, the following equations result:

Equ(8) : L'W'H' =2.94+2(L'W' + 'H' + W'H')
Equ(16) : L'W'H' = 2.90 « 2(L'W' + L'H' + W'H')
Bqu(32) : L'W'H' =284+« 2(L'W' + 'H' + W'H') .

By dividing, one has the following relationship between the dimensions of the
box:

Equ(8) : 0.170068 = (1/L' + 1/W' + 1/H'),

Equ(16) :0.172414 = (1/L' + 1/W' + 1/H'),

Equ(32) : 0.176056 = (1/L' +1/W' +1/H') .
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showing that the reciprocals of L', W’ and H’ line in a plane.

This type of linear structure is not restricted to the case of an enclosing box.
Let HV(K) and HSA(K) denote the volume and the surface area of the
convex hull of K. In each of the spaces Equ(8), Equ(16), and Equ(32) the
data supports a linear relationship:

Equ(8) : HV (K ,5) = —240.22 + 2.00 HSA(K ,5), R? =0.97,

Equ(16) : HV (K y6) = —239.03 + 2.07 HSA(K 16), R* = 0.96,

Equ(32) : HV (K 35) = —190.78 + 1.98 HSA(K ,35), R* = 0.98.

Another manifestation of the special nature of the shape of the ropelength
optimized knots is the relationship between HVOL(K) and 7(K). In Equ(32),
we have

Equ(32) : HV (K 55) = —93.35 + 39614.10 7(K ), R> = 0.98.

Alternatively,

Equ(32) : HV (K ,32) = 209.63 + 36.09 - 77(K ,32)%, R*> = 0.93,

providing a comparison between the volume of the convex hull and the vol-
ume of a torus neighborhood of the knot with radius equal to the thickness.
This torus takes up approximately 1/36th of the volume suggesting a rather
irregular position for the knot.

7 Connections to the Molecular Biology of DNA

Knotted molecular configurations occur in research studies designed to identify
useful mechanisms describing the action of various classes of enzymes on DNA.
Principal examples are the topoisomerases and enzymes mediating site-specific
recombination. An understanding of the variation of the nature of knotting
that arises under specific physical structural constraints is a useful tool in
these studies. The coarsest grained structure is that of the polygonal knot
for which there are no constraints on the length of edges, the angle between
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adjacent edges, or other spatial constraints. Estimates based upon polygo-
nal knots structure represent a limiting behavior. Equilateral knot space is a
codimension n subspace of polygonal knot space. How does the structure of
equilateral knot space compare with that of polygonal knot space? This is a
complex question in as much as certain helpful aspects of the geometry and
topology are inherited by the subspace. For example many local aspects of the
structure of knots vary with the size of the perturbation in the same manner
without respect to whether the knots are equilateral or merely polygonal. On
the other hand, we know that the topological structure of the components of
equilateral knot space is more complex than those of polygonal knot space [5].
This may imply that many elementary spatial properties may vary in a com-
plicated fashion with the imposition of constraints on the angles or distinct
families of subsets of equilateral knot space.

The central theme of the book, Ideal Knots [55], edited by A. Stasiak, V. Ka-
tritch, and L.H. Kauffman, is an exploration of whether there is a most “nat-
ural” representation of a knot type. While some elements of this discussion
reflect a search for symmetry or visual simplicity, the underlying objective is
the identification of conformations that arise most frequently, at least in some
average manner, in the context of physical phenomena. Such “ideal” confor-
mations are, it is proposed, those which provide optimal values for certain knot
energies, for the thickness or the rope length, for the average crossing num-
ber, or for the ratio of knot volume divided by surface area. In the previous
section we have discussed the interrelationships between the characteristics
of such optimal conformations. One way by which the degree of success of
these ideal conformations can be measured is through the comparison of the
various spatial parameters and the electrophorectic separation of knots from
the unknotted circle. This method is used by Stasiak, et al, in Electrophoretic
mobility of DNA knots [2] derived from [56] and [57].

We wish to emphasize the disclaimer mentioned by Stasiak, et al. to the effect
that the correlations observed between the real physical behaviour of DNA
knots should not be construed as evidence that these represent the actual
conformation. Only that these physical parameters appear to capture some
characteristic of the “average” conformation that correlates to the physical
behavior. In many cases, the development of a physical model that explains
these observed relationships is the most important research objective in the
mathematical domain.

Note that Stasiak et al. employ “mean inverse distances” and state that these
are directly proportional to the average crossing numbers. “The mean of in-
verse distances in a molecule is an accepted measure of molecular compactness

and is simply related to the sedimentation constant” [58].

In [59], they propose to demonstrate “that the expected sedimentation coeffi-
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Fig. 21. Relative velocity of DNA versus p(K32)

cient of randomly fluctuating knotted or catenated DNA molecules in solution
shows approximately linear correlation with the average crossing number of
the corresponding knots or catenanes.” Later, “one of us (A.V.) developed
recently a method to calculate the expected sedimentation coefficient of DNA
molecules with a given topology [60].”

We see the same striking relationships between the ropelength, energy, average
crossing number (optimized knots) and the gel mobility of the corresponding
DNA knots. These relations are shown in Figures 21, 22, 23, and 24.

8 Conclusions, Conjectures, and Questions

One of the major objectives of this project has been the study of known
relationships between physical knot parameters and the search for new rela-
tionships. From one point of view, we have developed evidence that implies
the independence of many of these parameters. In other cases, for example ro-
pelength and energy optimized knot configurations, the geometry of the knot
is similar but not identical. Thus, similar but different properties of knots are
connected. Finally, we have observed a few new relationships.
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One example of this is the apparent linear relationship between volume and
surface area of optimal enclosing figures, boxes and convex hulls. While we are
not able to prove this is the case, in general, we wish to propose the following
conjecture:

Conjecture: There is a linear relationship between the volume and surface area
of the ropelength optimized configurations of the equilateral knot types with
the same number of edges;

and, propose the following question:

Question: What properties are implied by the existence of a linear relationship
between the volume and surface area of a family of ropelength optimized
equilateral knots?

In looking at the knot probability, we have observed the absence of a strong
correlation between the size of the largest ball centered at the ropelength
optimized knot and the probability. This suggests that the proportion of the
volume, in a ball centered at this knot, of knots of the same geometric type
falls off rapidly as the function of the radius. This is a measure of the degree of
dispersal of the given knot type in knot space. As a consequence, we propose
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the following question:

Question: What is the rate of dispersal of the knot types as a function of
the radius of the ball centered at the minimal ropelength conformation (the
conformation of maximal thickness)?

The geometric properties of the equilateral representatives (especially their
optimized representatives) appear to undergo a phase transformation as a
function of the number of edges. At one extreme, one has the minimal equi-
lateral edge number model which is a very “tight” conformation. At the other
extreme, one has models that closely approximate the ropelength optimized
smooth knot of the same topological type. Our data provide preliminary ev-
idence of the existence of this behavior and suggest some consequences in
terms of the spatial nature of the equilateral model. Further research is re-
quired to demonstrate the existence of this transition and to capture and
exploit potential connections between the behavior of the equilateral knots in
the two regimes. One expected outcome is the ability to identify differences
that strongly correlate with observed physical behavior such as gel mobility
of DNA knots.
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