HW 4 Solutions

September 5, 2011

Exercise 8.2.2a

The goal is to find a_0, a_1, a_2 such that the error

$$E(a_0, a_1, a_2) = \int_{-1}^{1} \left(f(x) - \sum_{k=0}^{2} a_k P_k(x) \right)^2 dx$$

is minimized, and $P_k(x)$ are the Legendre polynomials given on page 501, that is

$$P_0(x) = 1$$

 $P_1(x) = x$
 $P_2(x) = x^2 - \frac{1}{3}.$

It follows from the explanation on page 499 that

$$a_j = \frac{1}{\alpha_j} \int_{-1}^{1} f(x) P_j(x) \, dx$$

where

$$\alpha_j = \int_{-1}^1 P_j(x)^2 \, dx.$$

Using this we can easily compute

$$\alpha_0 = 2$$
$$\alpha_1 = \frac{2}{3}$$
$$\alpha_2 = \frac{8}{45}$$

In this exercise $f(x) = x^2 - 2x + 3$, so

$$a_{0} = \frac{1}{2} \int_{-1}^{1} x^{2} - 2x + 3 \, dx$$

$$= \frac{10}{3}$$

$$a_{1} = \frac{3}{2} \int_{-1}^{1} \left(x^{2} - 2x + 3\right) x \, dx$$

$$= -2$$

$$a_{2} = \frac{45}{8} \int_{-1}^{1} \left(x^{2} - 2x + 3\right) \left(x^{2} - \frac{1}{3}\right) \, dx$$

$$= 1,$$

yielding the least squares approximating polynomial

$$\sum_{k=0}^{2} a_k P_k(x),$$

with a_k and $P_k(x)$ as above. Exercise 8.2.2c

The function for this problem is $f(x) = \frac{1}{x} + 2$. The solution to this problem follows relatively easily from the work done in the previous problem.

$$a_{0} = \frac{1}{2} \int_{-1}^{1} \frac{1}{x+2} dx$$

= $\frac{\log(3)}{2} \approx .55$
 $a_{1} = \frac{3}{2} \int_{-1}^{1} \frac{1}{x+2} x dx$
= $3 - \log(27) \approx -.30$
 $a_{2} = \frac{45}{8} \int_{-1}^{1} \frac{1}{x+2} \left(x^{2} - \frac{1}{3}\right) dx$
 $\approx .16$

This yields the least squares approximating polynomial

$$\sum_{k=0}^{2} a_k P_k(x),$$

as above.