Lecture 19. Stability of Least Squares
Algorithms

Least squares problems can be solved by various methods, as described in Lec-
ture 11, including the normal equations, Householder triangularization, Gram—
Schmidt orthogonalization, and the SVD. Here we compare these methods
and show that the use of the normal equations is in general unstable.

Example

To illustrate the behavior of our algorithms, we shall apply them to a numerical
example with m = 100, n = 15. Here is the MATLAB setup:

m = 100; n = 15;

t = (0:m-1)’/(m-1); Set t to a discretization of [0, 1].

A = []; for i=1:m, Construct Vandermonde matrix.
A=A t."(i-1)]; end

b = exp(sin(4*t)); Right-hand side.

b = b/2006.787453080206; Normalization (see text).

The idea behind this example is the least squares fitting of the function
exp(sin(47)) on the interval [0,1] by a polynomial of degree 14. First we
discretize [0, 1], defining a vector ¢ of 100 points equally spaced from 0 to 1.
The matrix A is the 100 x 15 Vandermonde matrix whose columns are the

137



138 PART III. CONDITIONING AND STABILITY

powers 1,7,..., 7! sampled at the points of ¢, and the right-hand side b is the
function exp(sin(47)) sampled at these points.

The reason for the bizarre final line of the code is as follows. For sim-
plicity, we are going to compare just the coefficients z,; computed by our
various algorithms. Without this final line, the correct value of z,; would be
2006.787453080206 . .. (this figure was obtained with an extended precision
arithmetic package). By dividing by this number, we obtain a problem whose
solution has z,; = 1, making our comparisons easier to follow.

To explain our observations, we shall need the quantities (18.3)-(18.5).
One can determine these to sufficient accuracy by solving the least squares
problem numerically with the aid of MATLAB’s \ operator:

x = A\b; y = A*x; Solve least squares problem.
kappa = cond(A)
kappa = 2.2718e+10 k(A)
theta = asin(norm(b-y)/norm(b))
theta = 3.7461e-06 0
eta = norm(A)*norm(x)/norm(y)
eta = 2.1036e+05 n

The result x(A) =~ 10'° indicates that the monomials 1,#¢,...,t!* form a highly
ill-conditioned basis. The result § ~ 10~ indicates that exp(sin(4t)) can be
fitted very closely by a polynomial of degree 14. (The fit is so close that we
computed § with the formula 6 = sin~*(]|b—y||/||b||) instead of (18.4), to avoid
cancellation error.) As for 7, its value of about 10° is about midway between
the extremes 1 and x(A) permitted by (18.6).

Inserting these numbers into the formulas of Theorem 18.1, we find that
for our example problem, the condition numbers of y and 2 with respect to
perturbations in b and A are approximately

y z
b 1.0 1.1 x 10°
Al 2.3x1010 3.2 x 1010

Householder Triangularization

As mentioned in Lecture 11, the standard algorithm for solving least squares
problems is QR factorization via Householder triangularization (Algorithm
11.2). Here is what we get with a MATLAB experiment:

[Q,R] = qr(a,0); Householder triang. of A.
x = R\(Q’*b); Solve for z.
x(15)

ans = 1.00000031528723




LECTURE 19. STABILITY OF LEAST SQUARES ALGORITHMS 139

What can we make of this result? Thanks to our normalization, the correct
answer would be z,; = 1. Thus we have a relative error of about 3x10~7. Since
the calculation was done in IEEE double precision arithmetic with €, e
10718, this means that the rounding errors have been amplified by a factor of
order 10°. At first sight this looks bad, but a glance at the table above reminds
us that the condition number of z with respect to perturbations in A is of order
10%°. Thus the inaccuracy in z,; can be entirely explained by ill-conditioning,
not instability. Algorithm 11.2 appears to be backward stable.

Above, we formed Q explicitly, but as emphasized in Lectures 10 and 16,
this is not necessary. It is enough to store the vectors v, determined at the
kth step of Algorithm 10.1 (equation (10.5)), which can then be utilized to
compute Q*b by Algorithm 10.2. In MATLAB, we can achieve this effect by
computing a QR factorization not just of A but of the mx (n+1) “augmented”
matrix [A b]. In the course of this factorization, the n Householder reflectors
that make A upper-triangular are applied to b also, leaving the vector {*b in
the first n positions of column n + 1. An a.ddltlona.l (n + 1)st reflector is then
applied to make entries n + 2,...,m of column n + 1 zero, but this does not
change the first n entries of that column, which are the ones we care about.
Thus:

UngA
~

[Q2,R2] = qr([A b],0); Householder triang. of [A b].
R2 = R2(1:n,1:n); Extract R ...
Qb = R2(1:n,n+1); ...and Q*b.
= R2\Qb; Solve for z.
x(15)
= 1.00000031529465

The answer is almost the same as before. This indicates that the errors intro-
duced in the QR factorization of A swamp those introduced in the computation
of Q*b.

There is also a third way to solve the least squares problem via Householder

triangularization in MATLAB. We can use the built-in operator \, as we did
already in finding x(A), 6, and #:

= A\b; Solve for z.
x(15)
= 0.99999994311087

This result is distinctly different from the others, and an order of magnitude
more accurate. The reason for this is that MATLAB’s \ operator makes use
of QR factorization with column pivoting, based on a factorization AP = QR,
where P is a permutation matrix. In this book we shall not discuss column
pivoting.



140 PART III. CONDITIONING AND STABILITY

From the point of view of normwise stability analysis, these three variants
of QR factorization are equal. All of them, it can be proved, are backward
stable.

Theorem 19.1. Let the full-rank least squares problem (11.2) be solved by
Householder triangularization (Algorithm 11.2) on a computer satisfying (13.5)
and (13.7). This algorithm is backward stable in the sense that the computed
solution ¥ has the property

I6A]

"(A + 6A)5: - b” = min’ W = O(emachine) (19'1)

for some 6A € C™*". This is true whether Q*b is computed via ezplicit

formation of Q or implicitly by Algorithm 10.2. It also holds for Householder
triangularization with arbitrary column pivoting.

Gram—Schmidt Orthogonalization

Another way to solve a least squares problem is by modified Gram—-Schmidt
orthogonalization (Algorithm 8.1). For m = n, this takes somewhat more
operations than the Householder approach, but for m > n, the flop counts
for both algorithms are asymptotic to 2mn2.

The following MATLAB sequence implements this algorithm in the obvi-
ous fashion. The function mgs is an implementation (not shown) of Algo-
rithm 8.1—the same as in Experiment 2 of Lecture 9.

[Q,R] = mgs(A); Gram-Schmidt orthog. of A.
x = R\(Q’*b); Solve for z.
x(15)

ans = 1.02926594532672

This result is very poor. Rounding errors have been amplified by a factor
on the order of 104, far greater than the condition number of the problem.
In fact, this algorithm is unstable, and the reason is easily identified. As
mentioned at the end of Lecture 9, Gram-Schmidt orthogonalization produces
matrices @, in general, whose columns are not accurately orthonormal. Since
the algorithm above depends on that orthonormality, it suffers accordingly.

The instability can be avoided by a reformulation of the algorithm. Since
the Gram-Schmidt iteration delivers an accurate product QR, even if Q does
not have accurately orthogonal columns, one approach is to set up the normal
equations Rz = (Q*Q)~1Q*b for the vector Rz, then get = by back substitu-
tion. As long as the computed Q is at least well-conditioned, this method will
be free of the instabilities described below for the normal equations applied to
arbitrary matrices. However, it involves unnecessary extra work and should
not be used in practice.



LECTURE 19. STABILITY OF LEAST SQUARES ALGORITHMS 141

A better method of stabilizing the Gram-Schmidt method is to make use
of an augmented system of equations, just as in the second of our two House-
holder experiments above:

[Q2,R2] = mgs([A bl); Gram-Schmidt orthog. of [A B].
R2 = R2(1:n,1:n); Extract R ...
Qb = R2(1:n,n+1); ...and Qb.
x = R2\Qb; Solve for z.
x(15)
ans = 1.00000005653399

Now the result looks as good as with Householder triangularization. It can be
proved that this is always the case.

Theorem 19.2. The solution of the full-rank least squares problem (11.2)
by Gram-Schmidt orthogonalization is also backward stable, satisfying (19.1),
provided that Q*b is formed implicitly as indicated in the code segment above.

Normal Equations

A fundamentally different approach to least squares problems is the solution
of the normal equations (Algorithm 11.1), typically by Cholesky factorization
(Lecture 23). For m > n, this method is twice as fast as methods depending
on explicit orthogonalization, requiring asymptotically only mn? flops (11.14).
In the following experiment, the problem is solved in a single line of MATLAB
by the \ operator:

x = (A’*A)\(A’%b); Form and solve normal equations.
x(15)
ans = 0.39339069870283

This result is terrible! It is the worst we have obtained, with not even a
single digit of accuracy. The use of the normal equations is clearly an unstable
method for solving least squares problems. We shall take a moment to explain
this phenomenon, for the explanation is a perfect example of the interplay of
ideas of conditioning and stability. Also, the normal equations are so often
used that an understanding of the risks involved is important.

Suppose we have a backward stable algorithm for the full-rank problem
(11.2) that delivers a solution Z satisfying ||(A + 6 A)Z — b|| = min for some §A
with ||[6A4]|/]|A]] = O(€pachine)- (Allowing perturbations in b as well as A, or
considering stability instead of backward stability, does not change our main
points.) By Theorems 15.1 and 18.1, we have

T—z Kk2tan @
" el ! - O((’“* . )"‘““) (192)




142 PART III. CONDITIONING AND STABILITY

where kK = x(A). Now suppose A is ill-conditioned, i.e., & > 1, and 0 is
bounded away from 7 /2. Depending on the values of the various parameters,
two very different situations may arise. If tan @ is of order 1 (that is, the least
squares fit is not especially close) and n < k, the right-hand side (19.2) is
O(K2%€pachine)- OR the other hand, if tan @ is close to zero (a very close fit) or
7 is close to k, the bound i8S O(k€,pin.)- The condition number of the least
squares problem may lie anywhere in the range k to 2.

Now consider what happens when we solve (11.2) by the normal equations,
(A*A)z = A*b. Cholesky factorization is a stable algorithm for this system of
equations in the sense that it produces a solution Z satisfying (A*A + 6H)Z =
A*b for some 6H with |[6H||/||A*A|| = O(€machine) (Theorem 23.3). However,
the matrix A*A has condition number 2, not k. Thus the best we can expect
from the normal equations is

T—z
" ”.’l:” ” = O(K‘26machine)’ (193)

The behavior of the normal equations is governed by k2, not k.

The conclusion is now clear. If tan@ is of order 1 and 7 < k, or if &
is of order 1, then (19.2) and (19.3) are of the same order and the normal
equations are stable. If k is large and either tan§ is close to zero or 7 is close
to k, however, then (19.3) is much bigger than (19.2) and the normal equations
are unstable. The normal equations are typically unstable for ill-conditioned
problems involving close fits. In our example problem, with s ~ 10%, it is
hardly surprising that Cholesky factorization yielded no correct digits.

According to our definitions, an algorithm is stable only if it has satis-
factory behavior uniformly across all the problems under consideration. The
following result is thus a natural formalization of the observations just made.

Theorem 19.3. The solution of the full-rank least squares problem (11.2) via
the normal equations (Algorithm 11.1) is unstable. Stability can be achieved,
however, by restriction to a class of problems in which k(A) is uniformly
bounded above or (tan8)/n is uniformly bounded below.

SVD

One further algorithm for least squares problems was mentioned in Lecture 11:
the use of the SVD (Algorithm 11.3). Like most computations based on the
SVD, this one is stable:

[U,S,V] = svd(A,0); Reduced SVD of A.
x = Vx(S\(U’*b)); Solve for z.
x(15)

ans = 0.99999998230471




LECTURE 19. STABILITY OF LEAST SQUARES ALGORITHMS 143

In fact, this is the most accurate of all the results obtained in our experiments,
beating Householder triangularization with column pivoting (MATLAB’s \ ) by
a factor of about 3. A theorem in the usual form can be proved.

Theorem 19.4. The solution of the full-rank least squares problem (11.2) by
the SVD (Algorithm 11.3) is backward stable, satisfying the estimate (19.1).

Rank-Deficient Least Squares Problems

In this lecture we have identified four backward stable algorithms for linear
least squares problems: Householder triangularization, Householder triangu-
larization with column pivoting, modified Gram-Schmidt with implicit calcu-
lation of @Q*b, and the SVD. From the point of view of classical normwise
stability analysis of the full-rank problem (11.2), the differences among these
algorithms are minor, so one might as well make use of the simplest and
cheapest, Householder triangularization without pivoting.

However, there are other kinds of least squares problems where column
pivoting and the SVD take on a special importance. These are problems
where A has rank < n, possibly with m < n, so that the system of equations
is underdetermined. Such problems do not have a unique solution unless one
adds an additional condition, typically that z itself should have as small a norm
as possible. A further complication is that the correct solution depends on
the rank of A, and determining ranks numerically in the presence of rounding
errors is never a trivial matter.

Thus rank-deficient least squares problems are not a challenging subclass
of least squares problems, but fundamentally different. Since the definition
of a solution is new, there is no reason that an algorithm that is stable for
full-rank problems must be stable also in the rank-deficient case. In fact, the
only fully stable algorithms for rank-deficient problems are those based on the
SVD. An alternative is Householder triangularization with column pivoting,
which is stable for almost all problems. We shall not give details.

Exercises

19.1. Given A € C™" of rank n and b € C™, consider the block 2 x 2 system

of equations . ,
e oJle] = o) 19

where I is the m x m identity. Show that this system has a unique solution
(r,z)T, and that the vectors r and z are the residual and the solution of the
least squares problem (18.1).

19.2. Here is a stripped-down version of one of MATLAB’s built-in m-files.



144 PART III. CONDITIONING AND STABILITY

[U,8,V] = svd(A);

S = diag(S);

tol = max(size(A))*S(1)*eps;
= sum(S > tol);

= diag(ones(r,1)./8(1:x));
= V(:,1:r)*8%0(:,1:x);

< KN

What does this program compute?



